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Generalised Bent Criteria for Boolean Functions (I)
Constanza Riera and Matthew G. Parker,Member, IEEE,

Abstract— Generalisations of the bent property of a Boolean
function are presented, by proposing spectral analysis with
respect to a well-chosen set of local unitary transforms. Quadratic
Boolean functions are related to simple graphs and it is shown
that the orbit generated by successive local complementations
on a graph can be found within the transform spectra under
investigation. The flat spectra of a quadratic Boolean function are
related to modified versions of its associated adjacency matrix.

Index Terms— additive codes, bent functions, Boolean func-
tions, Clifford group, cryptography, graph states, graph theory,
local complementation, Pauli group, quantum codes.

I. I NTRODUCTION

It is often desirable that a Boolean function,p, used for cryp-
tographic applications, is highlynonlinear, where nonlinearity
is determined by examining the spectrum ofp with respect to
(w.r.t.) theWalsh Hadamard transform(WHT), and where the
nonlinearity is maximised for those functions that minimise
the magnitude of the spectral coefficients. Define the Boolean
function ofn variablesp : Fn

2 → F2. Definedeg(p) to be the
algebraic degree ofp when expressed using algebraic normal
form (ANF). Let the WHT be the2n × 2n unitary matrix
U = H⊗H . . .⊗H =

∏n−1
i=0 Hi, where the Walsh-Hadamard

kernel is

H =
1√
2

(
1 1
1 −1

)
.

’⊗’ indicates the tensor product of matrices, and unitary means
that UU† = I, where ’†’ means transpose-conjugate andI
is the 2n × 2n identity matrix. We further define a vector
s ∈ (C2)⊗n, s = (s0...00, s0...01, s0...11, . . . , s1...11)T , such
that si = (−1)p(i), wherei ∈ Fn

2 . Then the Walsh-Hadamard
spectrum ofp is given by the matrix-vector productP = Us,
whereP is a vector of2n real spectral coefficients,Pk, where
k ∈ Fn

2 .
The spectral coefficient,Pk, with maximum magnitude tells

us the minimum (Hamming) distance,d, of p to the set of
affine Boolean functions, whered = 2n−1 − 2

n−2
2 |Pk|. By

Parseval’s theorem, the extremal case occurs when allPk have
equal magnitude, in which casep is said to have aflat WHT
spectra, and is referred to asbent. If p is bent, then it is at
maximum distance from the affine functions [33], which is a
desirable cryptographic design goal. It is an open problem to
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classify all bent Boolean functions, although many results are
known [20], [32], [13], [21], [31].

In this paper, we extend the concept of a bent Boolean
function to somegeneralised bent criteriafor a Boolean
function, where we now require thatp has flat spectra w.r.t. one
or more transforms from a specified set of unitary transforms.
The set of transforms we choose is not arbitrary but is moti-
vated by a choice of local unitary transforms that are central
to the structural analysis of puren-qubit stabilizer quantum
states. We here apply such transforms to an-variable Boolean
function, and examine the resultant spectra accordingly. In
particular we apply all possible transforms formed fromn-
fold tensor products of the identity

I =
(

1 0
0 1

)
,

the Walsh-Hadamard kernel,H, and the negahadamard kernel
[35],

N =
1√
2

(
1 i
1 −i

)
,

wherei2 = −1.
Definition 1: The {I,H,N}n transform setis the set of

3n transforms of the form

{I,H,N}n =
∏

j∈RI

Ij
∏

j∈RH

Hj

∏
j∈RN

Nj ,

where the setsRI,RH andRN partition {0, . . . , n− 1}, and
Hj , say, is short for I ⊗ I ⊗ . . . ⊗ I ⊗H ⊗ I ⊗ . . . ⊗ I , with
H in the jth position.

Each one of the3n transforms in{I,H,N}n acts on a
Boolean function ofn variables to produce a spectrum of2n

spectral elements (complex numbers). By contrast, the WHT
can be described as{H}n, which is a transform set of size
one, where the single resultant output spectrum comprises2n

spectral elements.
Definition 2: Let X be an arbitrary set of2n × 2n unitary

transform matrices. For each transform,U ∈ X , we can, for
a given vector,s, compute the set of spectral valuesP = Us.
We will call the set{|Pk|2,k ∈ Fn

2}U the multi-set of power
spectral valuesof the vectors w.r.t. U . Then {{|Pk|2,k ∈
Fn

2}U , ∀U ∈ X} is the set of multi-sets of power spectral
values w.r.t. the transform set,X .
In this paper we focus on such multi-sets and, in particular,
the set of multi-sets w.r.t. the transform set{I,H,N}n.

We note that there are other ways to generalise the concept
of a bent function. For instance, in [59], Wolfmann identifies
that the special subgroups of the Galois ring GR(4n) are
difference sets w.r.t. the additive subgroup of GR(4n), and
also constructs bent functions of a Maiorana-McFarland type
over Z4, mapping these constructions back to bent binary
functions via the Gray map. Alternatively, in [42], Poinsot
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and Harari generalise, to any Abelian group of involutions,
the translations associated with the autocorrelation dual of the
Fourier transform and, in this way, generalise the notion of a
bent Boolean function.

A. The Quantum Context

In this paper,s = (−1)p will be taken to represent both
a complex vector∈ (C2)n, and a pure 1 quantum state
of n qubits ∈ (C2)n. More precisely, let2

−n
2 s ∈ (C2)⊗n

represent the pure quantum state ofn qubits such that a
joint measurement of2

−n
2 s in the computational basis (i.e.

the basis over which the state is defined) evaluates toi with
probability 2−n|(−1)p(i)|2 = 2−n. For brevity, for the rest of
this paper, we often refer to the quantum state ass, although
strict normalisation would require that we refer to that state
as2

−n
2 s.

Definition 3: A product state, s, of n qubits can be rep-
resented by a vectors ∈ (C2)⊗n, wheres =

⊗n−1
j=0 (aj , bj),

aj , bj ∈ C, i.e. s is wholly tensor factorisable.
Definition 4: The Pauli group is generated by thePauli

matrices, which areσx =
(

0 1
1 0

)
, σz =

(
1 0
0 −1

)
, and

σy = iσxσz, and is of size 16. The identity matrix,I =(
1 0
0 1

)
, is also classed as a Pauli matrix.

The Pauli matrices form a basis for the set of2× 2 unitary
matrices, and therefore a basis for the set of local errors that
could act on a qubit.

Definition 5: The local Clifford group, C1, with respect
to the Pauli group, is defined to be the set of matrices that
normalise2 , to within a multiplicative factor of±1, the Pauli
group.H andN are generators forC1, [11], [30], [55], where
|C1| = 192.

The focus onI, H, andN , in this paper is motivated by
their role as normalisers for the Pauli matrices.

The n-qubit local Clifford group,Cn, can, similarly, be
represented by the set of2n × 2n matrices that decompose
into a tensor product of2 × 2 unitary matrices from the
local Clifford group,C1, where|Cn| = 192n. These matrices
normalise tensor products of the Pauli matrices, and can be
generated by the2n generators,{H,N}n. Fortunately we are
primarily interested in the multi-set of power spectral values
w.r.t. each of the192n transforms. As is shown in section
III, this allows us to focus on a subgroup,T1, of C1, where
T1 = {I, λ, λ2},

λ =
ω5

√
2

(
1 i
1 −i

)
,

λ2 = ω3
√

2

(
1 1

−i i

)
, ω = e2πi/8, |T| = 3, andλ is a generator

for T1. One can obtainT1 by dividing C1 by another of its
subgroups, namely thediagonal group, D1, where|D1| = 64.
D1 comprises all members ofC1 whose action on an arbitrary
vector leaves its multi-set of power spectra values invariant.
Any member ofC1 can be expressed uniquely as∆λj , 0 ≤
j < 3, where∆ ∈ D1. It follows that, for a given vector

1A pure statecan be written as a normalised complex vector,s. A mixed
state is a statistical sum of normalised complex vectors.

2For two groups,G and H, G normalisesH iff ghg−1 ∈ H, ∀g ∈ G,
∀h ∈ H.

s and a givenj, the two multi-sets of power spectral values
of ∆λjs and∆′λjs are identical,∀∆,∆′ ∈ D1. This allows
us to choose to examine spectra w.r.t.{I,H,N}n instead of
w.r.t. {I, λ, λ2}n, as they share the same set of3n multi-sets
of power spectral values, whereN = ∆λ andH = ∆′λ2,
∆,∆′ ∈ D1.

A quantum error-correcting code (QECC)of the stabilizer
type is derived from the structure of the Pauli matrices. Letŝ =
Es, whereE ∈ {I, σx, σz, σy}n is an error operator acting on
s and formed from a tensor product of Pauli matrices3. Let
w(E) be the number of non-identity positions in the tensor
product expansion ofE. (For instancew(I⊗σx⊗σy⊗I) = 2).
Then we can think ofs as ann-qubit QECC of dimension zero
and distanced, i.e. an[[n, 0, d]] QECC, ifs·ŝ = 0, ∀E satisfy-
ingw(E) < d, where ’·’ indicates the inner product of vectors.
This is because, in such a case, the vectorss andŝ are mutually
orthogonal and therefore perfectly distinguishable. For a fixed
s, let P(s) = {P | P = Us, ∀U ∈ {I,H,N}n}. It can be
shown that, ifs is a [[n, 0, d]] QECC w.r.t. the error set,E,
then all pure states in the setP(s) are also[[n, 0, d]] QECCs
w.r.t. E [17]. In other words, the action of a transform from
the set{I,H,N}n on the pure state,s, keeps invariant the
distance properties of the states, when viewed as a zero-
dimensional QECC. Above, we refer to a single complex
vector and its spectra wrt{I,H,N}n as instances of a specific
zero-dimensional QECC w.r.t.E. More generally, the largest
eigensubspace of all operators belonging to a specific abelian
subgroup of the Pauli group is defined to be astabilizer QECC.
In this paper we are concerned only with the spectra of single
complex vectors of length2n, i.e. where the stabilizer QECC
is a one-dimensional eigensubspace.

One reason why we choose, in this paper, to use the
transform set,{I,H,N}n, instead of the set,{I, λ, λ2}n, is
to highlight that the local Clifford group containsmultivariate
discrete Fourier transforms, as represented by{H,N}n. This
Fourier interpretation then helps us to establish a link with
a generalised form of linear approximation in the context of
classical cryptanalysis [40].

Recently, certain pure quantum states have created sig-
nificant interest due to their suitability as components in a
potentially robust, distributed quantum computer. Such config-
urations are referred to ascluster states[43], [6], [44] or graph
states[51], [55], [28]. Graph states are locally equivalent to
the subclass of stabilizer QECCs which have dimension zero
[51], [24], [26], and are defined to be the unique eigenvectors
(to within global phase) of a particular subclass of abelian
subgroups of the Pauli group that can be characterised using
a graph (see (23) of appendix I). Proposition 2.14 of [55]
further shows that all graph states are equivalent under local
unitaries to quadratic forms expressed as(−1)p, wherep is
a quadratic Boolean function. We further show (Appendix I,

3As the Pauli matrices form a basis for the set of2× 2 unitary matrices,
general quantum errors can always be represented by the error operatorE =P

j ρjEj , where eachEj is some tensor product of Pauli matrices, andP
j |ρj |2 = 1. The first stage of the error-correction process projects (e.g.

via suitable measurement of an ancillary system) the errorE onto an error
Ej with probability |ρj |2. The second stage of the error-correction then only
needs to deal with an error of the formEj [53].
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theorem 11) that no graph state is equivalent to a state(−1)p

if the algebraic degree ofp is other than 2. Thus the study
of zero-dimensional stabilizer QECCs, or graph states, can be
cast as a study of quadratic Boolean functions, as is done in
this paper. A preliminary study of the class of pure quantum
states that can be represented by quadratic Boolean functions
in this way was undertaken in [38].

In this paper we examine the spectra of graph states,s, w.r.t.
{I,H,N}n, characterise those transformsU ∈ {I,H,N}n

that yield flat spectra, and present preliminary results on those
states represented by Boolean functions of degree greater than
two. In part II [45] we count the number of spectra which are
flat, taken over all3n transforms ofs w.r.t. {I,H,N}n. As
is shown in [45], the number of flat spectra w.r.t.{I,H,N}n

for pure states of the forms = (−1)p is strongly dependent
on the algebraic degree ofp, with the enumeration typically
maximised if deg(p) = 2. [45] also shows experimentally
that those graph states which represent[[n, 0, d]] QECCs with
highest distance,d, also have the most flat spectra w.r.t.
{I,H,N}n.

B. The Graphical Context

Quantum graph arrays, calledcluster states, were pro-
posed in [43], [6]. These clusters form the ’substrate’ for
measurement-drivenquantum computation [44]. A type of
measurement-driven quantum computation on aquantum fac-
tor graph was also proposed in [37], where the graphs under
consideration are locally-equivalent to bipartite cluster states.
The graphical description of certain pure quantum states was
also investigated in [38], where observations were made about
a local unitary (LU) equivalencebetween their graphs. These
graphs were interpreted as quadratic Boolean functions and it
was noted that bipartite graphs are LU-equivalent to indicators
for binary linear error-correcting codes. [51] identified a
graphical description forstabilizer quantum error-correcting
codes (QECCs), and such descriptions were also developed
in [24], [25], and in [26]. For QECCs of dimension zero, the
associated graphs aregraph states[28].

LU-equivalence for graph states can be characterised, graph-
ically, via local complementation(LC) on graphs, which was
proven, in the context of QECCs, in [24], where LC was called
vertex-neighbour-complement(VNC), and also, independently,
by [28], and by [56]. Local complementation was defined by
Fraysseix [23] and used by Bouchet [7], [8], [9] in the context
of isotropic systems, and also used by Fon-der-Flaas [22]. By
applying LC to a graphG we obtain a graphG′, in which case
we say thatG andG′ areLC-equivalent. Moreover, the set of
all LC-equivalent graphs form anLC-orbit. LC-equivalence
translates into the natural equivalence betweenF4 additive
codes that keeps the weight distribution of the code invariant
[11], [15], [16], [19]. There has been recent renewed interest
in Bouchet’s work motivated, in part, by the application of
interlace graphsto the reconstruction of DNA strings [3], [2].
In particular, variousinterlace polynomialshave been defined
[2], [1], [4], [5] which mirror some of the quadratic results of
part II of this paper [45]. We investigate these links further in
[46], [50].

C. The Boolean Context

For γ a rth complex root of 1, we can approximate, by
appropriate normalisation, any vectors ∈ (C2)⊗n, by

s(x) ' m(x)γp(x), (1)

for some sufficiently large choice of integer,r, wherem :
Fn

2 → Z, p : Fn
2 → Zr, and x ∈ Fn

2 , such that thejth

element ofs, sj = m(j)γp(j), where j ∈ Fn
2 . Once again

we omit normalisation - when viewed as a pure quantum state
of n qubits, the reader should remember thats should actually
satisfy

∑
i |m(i)γp(i)|2 = 1.

Definition 6: For γ a rth complex root of 1, ageneralised
affine functionof n Boolean variables,u(x) : Fn

2 → C, is a
product state given by

u(x) = m(x)γp(x),

wherem : Fn
2 → Z is a generalised Boolean function of

the formm =
∏

j∈K(ejxj + cj), ej , cj ∈ Z,K ⊂ Zn, and
p : Fn

2 → Zr is an affine generalised Boolean function.
Remark: In this paper we consider thatm is a generalised
Boolean function of the formm : Fn

2 → Zt, for some
positive integer,t, but by abuse of notation, interpret its
outputs, elements0, 1, . . . , t−1, as the integers0, 1, . . . , t−1,
respectively.
Observation: A row of

⊗n−1
j=0 Uj , where theUj are 2 × 2

unitary matrices, can always be written as a product state, and
a subset of generalised affine functions are described by the
rows of {I,H,N}n, wherem(x) : Fn

2 → F2 is a minterm,
andp(x) : Fn

2 → Z4 is an affine function.

In this paper our aim is to introduce new generalised bent
criteria which try to answer the question:

which Boolean functions are as far away as possible from
the subset of generalised affine functions as defined by the
rows of{I,H,N}n?

Spectral analysis w.r.t.{I,H,N}n also has application
to the cryptanalysis of classical cryptographic systems. In
particular, for a block cipher it models attack scenarios where
one has full read/write access to a subset of plaintext bits and
access to all ciphertext bits [17]. The analysis of spectra w.r.t.
{I,H,N}n tells us more aboutp than is provided by the
spectrum w.r.t. the WHT; for instance, identifying relatively
high generalised linear biases forp [40]. For example, [40]
tells us that the component functions of the S-box used in the
Advanced Encryption Standard (AES) have a nonlinearity of
112 w.r.t {H}n, but this is reduced to aneffective nonlinearity
4 of 97.93 w.r.t. {H,N}n and94.06 w.r.t. both{I,H}n and
{I,H,N}n. By extension, if significantly increased biases can
be found over ’well-designed’ S-boxes, then they should also
exist across any ’well-designed’ block cipher (such as AES).
However the application of standard linear and differential
cryptanalysis to a block cipher w.r.t. any tensor transform

4[40]. The effective nonlinearity ofp(x) satisfiesγ(p) = 2
n
2−1(2

n
2 −p

PARU (p)), where the peak-to-average power ratioPARU (p) =
2−nmax(|Pk|2 | P = U(−1)p, ∀U ∈ {U}), where the PAR is taken
w.r.t. a specified finite or infinite set,U , of unitary transforms.
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containingN will result in characteristics which are key-
dependent in their location if the round key is XOR’ed into
the cipher, as is typically done, and this will make high-bias
characteristics hard to find. Such key-dependency does not
occur if we restrict ourselves to biases w.r.t.{I,H}n and, as
observed above, the effective nonlinearity of the S-box used
in AES is already reduced to94.06 w.r.t. {I,H}n.

The classification of bent quadratic (degree-two) Boolean
functions is well-known [32], and is facilitated because the
bent criteria is an invariant of affine transformation of the
input variables. However, the classification of generalised bent
criteria for a quadratic Boolean function w.r.t. the{I,H,N}n

transform set is new, and the generalised bent criteria are
not, in general, invariant to affine transformation of the in-
puts. This paper characterises these generalised bent criteria
for both quadratic and more general Boolean functions. We
associate a quadratic Boolean function with an undirected
graph, which allows us to interpret spectral flatness with
respect to{I,H,N}n as amaximum rankproperty of suitably
modified adjacency matrices. We interpret LC as an operation
on quadratic Boolean functions, and as an operation on the
associated adjacency matrix, and we also identify the LC-orbit
with a subset of the flat spectra w.r.t.{I,H,N}n. The spectra
w.r.t. {I,H,N}n motivate us to examine the properties of the
WHT of all Z4-linear offsets of Boolean functions, the WHT
of all subspaces of Boolean functions that can be obtained
by fixing a subset of the variables, the WHT of allZ4-linear
offsets of all of the above subspace Boolean functions, the
WHT of each member of the LC-orbit, and the distance of
Boolean functions to allZ4-linear functions. We are able to
characterise and analyse the criteria for quadratic Boolean
functions by considering properties of the adjacency matrix
for the associated graph.

D. Paper Overview

For the interested reader, Appendix I reviews the graph state
and its intepretations in the literature. In Section II we review
LC as an operation on an undirected graph [24], [25], and
provide an algorithm for LC in terms of the adjacency matrix
of the graph. In Section III we show that the LC-orbit of a
quadratic Boolean function lies within the set of transform
spectra w.r.t. tensor products of the2×2 matrices,I,

√
−iσx,

and
√
σxσz, whereσx and σz are Pauli matrices, i.e. w.r.t.

{I,
√
−iσx,

√
σxσz}n. We also show, equivalently, that the

orbit lies within the spectra w.r.t.{I, λ, λ2}n, and also lies
within the spectra w.r.t.{I,H,N}n. We show that doing LC
to vertexxv can be realised, to within affine offset, by the
application of the negahadamard kernel,N , to positionv (and
the identity matrix to all other positions) of the bipolar vector
(−1)p(x), i.e.

ω4p′(x)+a(x) = ωa(x)(−1)p′(x) = Uv(−1)p(x)

= I ⊗ · · · ⊗ I ⊗N ⊗ I ⊗ · · · ⊗ I (−1)p(x) ,

wherep(x) andp′(x) are quadratic Boolean functions,p′(x)
is obtained by applying LC to variablexv of p(x), ω = e2πi/8,
and a(x) is an affine offset overZ8. In Appendix II we
identify spectral symmetries that hold forp(x) of any degree

w.r.t. {I,H,N}n. In Section IV, we introduce the concepts
of bent4, I-bent, I-bent4, andLC-bentBoolean functions, and
show how, for quadratic Boolean functions, these properties
can be evaluated by examining the ranks of suitably modified
versions of the adjacency matrix.

II. L OCAL COMPLEMENTATION (LC)

Given an undirected graphG with adjacency matrixΓ,
define itscomplementto be the graph with adjacency matrix
Γ+I+1 ( mod 2), whereI is the identity matrix and1 is the
all-ones matrix. LetN (v) be the set of neighbours of vertex,
v, in the graph,G, i.e. the set of vertices connected tov in G.

Definition 7: [7] The action oflocal complementation(LC)
on a graphG at vertexv is the graph transformation obtained
by replacing the subgraphG[N (v)] by its complement.

Example: For LC withv = 0,

1

2

3

4

LC

3

4

1

2

0 0

0

By Glynn (see [24]), a self-dual quantum code[[n, 0, d]]
corresponds to a graph onn vertices, which may be assumed to
be connected if the code is indecomposable. It is shown there
that two graphsG andG′ give equivalent self-dual quantum
codes iffG andG′ are LC-equivalent.

[7], [8], [9], [14] describe the relation between local comple-
mentation andisotropic systems. A suitably-specified isotropic
system has graph presentationsG andG′ iff G andG′ are LC-
equivalent.

A. LC in terms of the adjacency matrix

Let p(x) : Fn
2 → F2 be a (homogeneous) quadratic Boolean

function, defined by,

p(x) =
∑

0≤i<j≤n−1

aijx
ixj .

Expressp(x) by the adjacency matrix,Γ, of its associated
graph,G, Γ, such thatΓ(i, j) = Γ(j, i) = aij , i < j, Γ(i, i) =
0. W.l.o.g. the LC operation on vertex0 of G changesΓ to
Γ0, where

Γ0 =

0BBBBBB@

0 a01 . . . a0n

a01 0 . . . a1n + a01a0,n−1

a02 a12 + a01a02 . . . a2n + a02a0,n−1

a03 a13 + a01a03 . . . a3n + a03a0,n−1

...
...

. . .
...

a0,n−1 a1,n−1 + a01a0,n−1 . . . 0

1CCCCCCA .

The general algorithm, mod 2, is Γv(i, j) = Γ(i, j) + Γ(v, i) ∗ Γ(v, j), i < j
Γv(i, i) = 0 ∀i
Γv(j, i) = Γv(i, j), i > j

whereΓv is the adjacency matrix of the function after doing
LC to vertexxv.
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III. L OCAL COMPLEMENTATION (LC) AND LOCAL

UNITARY (LU) EQUIVALENCE

[28] states that LC-Equivalence (and therefore local unitary
(LU) equivalence5 ) of graph states can be obtained via
successive transformations of the form,

Uv(G) = (−iσ(v)
x )1/2

∏
b∈Nv

(iσ(b)
z )1/2 , (2)

whereσx =
(

0 1
1 0

)
andσz =

(
1 0
0 −1

)
are Pauli matrices,

the superscript(v) in their notation indicates that the Pauli
matrix acts on qubitv (with I acting on all other qubits)6 ,
andNv comprises the neighbours of qubitv in the graphical
representation. Define matricesx andz as follows:

x = ±(−iσx)1/2 =
1√
2

(
−1 i

i −1

)
and

z = ±(iσz)1/2 =
(

w 0
0 w3

)
,

wherew = e2πi/8. Observe thatx andz are generators of the
local Clifford group,C1. Furthermore, letI =

(
1 0
0 1

)
.

In this section we show that the LC-orbit of ann-vertex
graph,G, is contained within the flat spectra of(−1)p w.r.t.
{I, x, xz}n, whereG is the graph associated top. We then
show that, as we are only interested in the multi-set of power
spectral values w.r.t. each member of{I, x, xz}n, then one can
replace{I, x, xz}n by {I, λ, λ2}n, and also by{I,H,N}n.
Finally, we show that successive application ofN to (−1)p

generates the LC-orbit as a subset of the complete{I,H,N}n

spectra.

A. The Diagonal Group

Definition 8: D1 is the subgroup of the local Clifford
group, C1, , and D1 is generated byω, σx, and

(
1 0
0 i

)
,

where ω = e2πi/8 and |D1| = 64. Let D be the infinite
set of 2 × 2 matrices such that every element in the set is
either of the form

(
a 0
0 b

)
or of the form

(
0 a
b 0

)
, where

a, b ∈ C, |a| = |b| = 1.
We call D the diagonal setand D1 the diagonal group,

whereD1 ⊂ D. D1 is also aSylow-2 subgroupof the local
Clifford group 7 .
Following (1), let s = m(x)γp(x). Let ∆ ∈ D1, and ∆j =
I ⊗ · · ·⊗ I ⊗∆⊗ I · · · ⊗ I, with ∆ at positionj of the tensor
product. W.lo.g, letj = 0, and lets′ = ∆0s = m′(x)µp′(x),
whereµ is some complex root of one.

Lemma 1:The multi-set of 2n magnitude values
{|s′0...00|, |s′0...01|, . . . |s′1...11|} is equal to the multi-set
of 2n magnitude values{|s0...00|, |s0...01|, . . . |s1...11|}.

Lemma 2:Let p(x) be a function of degreed. Thenp′(x)
differs from p(x) by terms of degree< d.

5It remains an open problem to establish whether LU-equivalence of two
graph states implies LC-equivalence of the same two states (see Chapter 6 of
[55] and [58]).

6For instance,σ(2)
x = I ⊗ I ⊗ σx ⊗ I ⊗ . . .⊗ I.

7Thanks to Patrick Sole for pointing this out, and similary w.r.t. the
transform group.

Remark: In particular, if p is quadratic thenp′ only differs
from p by affine terms.

Proof: (of lemmas 1 and 2) Let∆ =
(

a 0
0 b

)
∈ D. To

within sufficient precision leta = e2πiα/ξ and b = e2πiβ/ξ,
with ξ, α andβ integers. Then,

∆0m(x)γp(x) = ∆0

(
m0(x)γp0(x)

m1(x)γp1(x)

)
=

(
m0(x)e2πiα/ξγp0(x)

m1(x)e2πiβ/ξγp1(x)

)
= m(x)µp′(x),

(3)
whereµ = e2πi/u, u = lcm(ξ, r), ’lcm’ means ’least common
multiple’, andp′(x) : Fn

2 → Zu satisfies

p′(x) = u

(
p(x)
r

+
α+ x0(β − α)

ξ

)
. (4)

Let now ∆ =
(

0 a
b 0

)
. Then,

∆0m(x)µp(x) =
(
m1(x)e2πiβ/ξ(−1)p1(x)

m0(x)e2πiα/ξ(−1)p0(x)

)
= m(x + (1, 0 . . . , 0))µp′(x),

(5)

where

p′(x) = u

(
p(x + (1, 0 . . . , 0))

r
+
β + x0(α− β)

ξ

)
. (6)

Lemma 1 is proved by equations (3) and (5), as these equations
demonstrate that the action of∆0 leavesm(x) unchanged or
permutes its outputs. Lemma 2 is proved from equations (4)
and (6) as the only extra terms introduced are linear or constant
or, via p(x + (1, 0 . . . , 0)), terms of degree< deg(p(x)).
Remark: Observe that we have proved w.r.t.D, but trivially
the proof also holds w.r.t.D1, asD1 ⊂ D.

Example: Letm(x) = 1 and let p : F2
2 → Z4, p(x) =

2x0x1 + x0 + 1( mod 4). Then p(0, 0) = 1, p(1, 0) = 2,

p(0, 1) = 1 and p(1, 1) = 0, so ip(x) =
(

i
−1

i
1

)
. Let ∆ =(

i 0
0 1

)
∈ D1. Then,(∆⊗ I)ip(x) =

(
−1
−1
−1

1

)
= ig(x), with

g : F2
2 → Z4, g(x) = 2x0x1 + 2. We can re-writeig(x)

as (−1)g′(x), with g′(x) Boolean,g′(x) = x0x1 + 1. It is
straightforward to verify that this example satisfies lemmas 1
and 2.

From lemmas 1 and 2 we conclude that a final multiplication
of a vector by a member ofDn = {D1}n leaves invariant the
multi-set of power spectra values, and also leaves invariant the
underlying graphical interpretation of a vector described by a
quadratic function, as the graphical interpretation is dependent
only on terms of degree 2. We introduce the symbol ’'’.

Definition 9: Let u and v be two 2 × 2 unitary matrices.
Then,

u ' v ⇔ u = ∆v, ∆ ∈ D .

Remark:Note thatu ' v cannot be deduced from (and does
not imply) u = v∆.
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B. The Transform Group

Definition 10: T1 is the subgroup of the local Clifford
group, C1, generated byλ = ω5N = ω5

√
2

(
1 i
1 −i

)
, where

|T1| = 3. We call T1 the transform group because it
represents the unique maximal subgroup of transforms within
the local Clifford group that do not, in general, leave the multi-
set of power spectral values invariant. Observe thatλ = N16.
T1 is also aSylow-3 subgroupof the local Clifford group.

Remark: As C1 = D1 × T1, every element ofC1 can
be represented uniquely by∆λj , 0 ≤ j < 3, for somej and
some∆ ∈ D1. This fact leads directly to theorem 1, and is
used implicitly in the proof of theorem 1.

In this paper we are interested in the set of multi-sets of
power spectral values of a vectors w.r.t. the transform set
Tn = {T1}n. As x ' λ andxz ' λ2, we can, without loss,
focus on such sets w.r.t. the transform set{I, x, xz}n, as is
done in the next subsection. AsN ' λ andH ' λ2, we can
also, without loss, focus on such sets w.r.t. the transform set
{I,H,N}n, as is done primarily in this paper.

C. The LC-orbit Occurs Within the{I, x, xz}n Set of Trans-
form Spectra

Summarising (2),
Lemma 3:Given graphsG and G′ as represented by

quadratic Boolean functions,p(x) and p′(x), then G
and G′ are in the same LC-orbit iff (−1)p′(x) '
Uvt−1Uvt−2 . . . Uv0(−1)p(x) for some series oft local unitary
transformations,Uvi .
Thus by applyingUv(G) successively for variousv to an initial
state, one can generate all LC-equivalent graphs within a finite
number of steps. (It is evident that the action of LC generates
an LC-orbit of finite size). Instead of applyingU successively,
it would be nice to identify a (smaller) transform set in which
all LC-equivalent graphs exist as spectra, to within a post-
multiplication by a member ofDn. One can deduce from
definition 9 thatzx ' x. Therefore,

Lemma 4:zxx ' I, andxzx ' zxz .
We can now derive the following.

Theorem 1:To within subsequent transformation by a
member ofDn, the LC-orbit of the graph,G, over n qubits
occurs within the spectra of all possible tensor product com-
binations of the2 × 2 matrices,I, x, andxz. There are3n

such transform spectra.
Proof: For each vertex inG, consider every possible

product of the two matrices,x, andz. Using the equivalence
relationship, ’'’, and lemma 4,

xxx ' x zxx ' I
xxz ' I zxz ' xz
xzx ' zxz ' xz zzx ' x
xzz ' zxzz ' xzxz ' xxzx ' x zzz ' I .

Thus, any product of three or more instances ofx and/or
z can always be reduced toI, x, or xz. Theorem 1 follows
by recursive application of (2) with these rules, and by noting
that the rules are unaffected by tensor product expansion over
n vertices.
Theorem 1 gives a trivial and very loose upper bound on
the maximum size of any LC-orbit overn qubits, this

bound being3n. It has been computed by Danielsen in
[16] that, up to graph isomorphism, the number of LC-
orbits for connected graphs forn = 1 to n = 12
is 1, 1, 1, 2, 4, 11, 26, 101, 440, 3132, 40457, and1274068, re-
spectively (see also [28], [25], [29], [15], [52], [19]).

D. The LC-orbit Occurs Within the{I,H,N}n Set of Trans-
form Spectra

As x ' λ and xz ' λ2, and asN ' λ and H ' λ2,
and, as it also follows thatN ' x and H ' xz, we can,
without change, replace the transform set{I, x, xz}n with the
transform set{I,H,N}n, as the set of multi-sets of power
spectral values remain invariant under such a change. This is
of theoretical interest becauseH defines a 2-point (periodic)
discrete Fourier transform matrix, andN defines a 2-point
negaperiodic discrete Fourier transform matrix. In other words
a basis change from rows ofx andxz to rows ofN andH
provides a more natural set of multidimensional axes in some
contexts. Observe that, fort a non-negative integer,

N3t = ωtI ' I, N3t+1 ' N, N3t+2 ' H, N24 = I,
(7)

where ω = e2πi/8. The {I,H,N}n transform set overn
binary variables has been used to analyse the resistance of
certain S-boxes to a form of generalised linear approximation
in [40]. It also defines the basis axes under which aperiodic
autocorrelation of Boolean functions is investigated in [17],
and has been used to define theClifford merit factor - an
entanglement measure [41]. Thenegahadamard transform,
{N}n, was introduced in [35] and, in [46], [47], it is noted
that the peak-to-average power ratio of the spectrum of a
vectors w.r.t. the negahadamard transform is given byq(−1),
whereq is the interlace polynomial of the associated graph.
Constructions for Boolean functions with favourable spectral
properties w.r.t.{H,N}n have been proposed in [39], and
[38] showed that Boolean functions that are LU-equivalent to
indicators for distance-optimal binary error-correcting codes
yield favourable spectral properties w.r.t.{I,H}n. Pivot orbits
of a graph w.r.t{I,H}n have been characterised in [48], [49].

E. A Spectral Derivation of LC

We now derive LC by examining the repetitive action
of N on the vector form of the graph states, interspersed
with the actions of certain matrices fromD1. These repeated
actions not only generate the LC-orbit of the graph but, more
generally, also generate the{I,H,N}n transform spectra. The
LC-orbit can be identified with a subset of the flat transform
spectra w.r.t.{I,H,N}n. Let s = (−1)p(x), wherep(x) is
Boolean quadratic and represents a graphG. Then the action
of Nv on G is equivalent toUvs, where:

Uv ' U ′
v = I ⊗ · · · ⊗ I ⊗N ⊗ I ⊗ · · · ⊗ I ,

whereN occurs at positionv in the tensor product decompo-
sition. Let us writep(x), uniquely, as,

p(x) = xvNv(x) + q(x) ,

where q(x) and Nv(x) are independent ofxv (Nv(x) has
nothing to do with the negahadamard kernel,Nv). We shall
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state a theorem that holds forp(x) of any degree, not just
quadratic, and then show that its specialisation to quadratic
p(x) gives the required single LC operation. ExpressNv(x)
as the sum ofr monomials,ei(x), as follows,

Nv(x) =
r−1∑
i=0

ei(x) .

For p(x) of any degree, theei(x) are of degree≤ n−1. In the
sequel we mix arithmetic, mod 2, and mod 4 so, to clarify,
anything in square brackets is computed mod 2. The{0, 1}
result is then embedded in mod 4 arithmetic for subsequent
operations outside the square brackets. Define,

N ′
v(x) =

r−1∑
i=0

[ei(x)] ( mod 4) .

Theorem 2:Let s′ = Uvs, wheres = (−1)p(x) and s′ =
ωip̃

′(x), whereω = e2πi/8. Then,

p̃′(x) = 2
[
p(x) +

∑
j 6=k ej(x)ek(x)

]
+ 3N ′

v(x) + 3[xv],
( mod 4) .

(8)

Proof: Assign toA and B the evaluation ofp(x) at
xv = 0 andxv = 1, respectively. Thus,

A = p(x)xv=0 = q(x) .

Similarly,

B = p(x)xv=1 = Nv(x) + q(x) .

We need the following equality between mod 2 and mod 4
arithmetic.

Lemma 5:∑t−1
i=0[Ai] ( mod 4) =[∑t−1

i=0 Ai

]
+ 2

[∑
i 6=j AiAj

]
( mod 4),

whereAi ∈ F2, t > 0 .

Observe the following action ofN :

1√
2

„
1 i
1 −i

« „
1
1

«
= w

„
1
−i

«
,

wherew = e2πi/8. For the moment we ignore the global
constant,w, so thatN maps (−1)00 to i03 and, similarly,
(−1)10 to i12, (−1)01 to i30 and(−1)11 to i21, where bycab

we mean

(
ca

cb

)
. In general, forA,B ∈ F2, α, β ∈ Z4,

(−1)AB is mapped byNv to iαβ , where,

α = 2[AB] + [A] + 3[B] ( mod 4)
β = 2[AB] + 3[A] + [B] + 3 ( mod 4) .

Substituting the previous expressions forA and B into the
above and making use of Lemma 5 gives,

α(x) = 2[q(x)] + 3[Nv(x)] ( mod 4)
β(x) = 2[q(x)] + [Nv(x)] + 3 ( mod 4) .

p̃′(x) can now be written as,

p̃′(x) = (3[xv] + 1)α(x) + [xv]β(x) ( mod 4) .

Substituting forα andβ gives,

p̃′(x) = 2[q(x)]+2[xvNv(x)]+3[Nv(x)]+3[xv] ( mod 4) .

Applying Lemma 5 to the term3[Nv(x)],

3[Nv(x)] = 2

∑
j 6=k

ej(x)ek(x)

 + 3N ′
v(x) ( mod 4) .

Furthermore, Lemma 5 implies that,

2
[∑t−1

i=0 Ai

]
( mod 4) = 2

∑t−1
i=0[Ai]( mod 4),

whereAi ∈ F2, t > 0 .

Thus we obtaiñp′(x), and re-introducing the global phase,ω,
this establishes thats′ = ωip̃

′
.

For p(x) a quadratic function,Nv(x) has degree one, so
N ′

v(x) is a sum of degree-one terms overZ4. Therefore the
Z4 degree-one terms,N ′

v(x) and3[xv], can be eliminated from
(8) by appropriate subsequent action by a member ofDn to s′.
As all monomials,ei(x), are then of degree one, (8) reduces
to,

p′(x) = p(x) +
∑

j,k∈Nv,j 6=k

xjxk ( mod 2) , (9)

where p̃′(x) ' 2[p′(x)]. (9) precisely defines the action of a
single LC operation at vertexv of G, where we have used
' to mean thatip̃

′(x) = B(−1)p′(x), for someB ∈ Dn. As
p′(x) is also quadratic Boolean, we can realise successive LC
operations on chosen vertices inG via successive actions ofN
at these vertices, where each action ofN must be interspersed
with the action of a matrix fromDn to eliminateZ4-linear
terms from (8) and the residualZ8 constant term introduced by
ω. In particular, one needs to intersperse with tensor products
of

(
1 0
0 1

)
and

(
1 0
0 i

)
.

Theorem 3:Given a graph,G, as represented bys =
(−1)p(x), with p(x) quadratic, the LC-orbit ofG comprises
graphs which occur as a subset of the spectra w.r.t.{I,H,N}n

acting ons.
Proof: DefineD′ ⊂ D1 such that

D′ =
{(

a 0
0 b

)
,
(

0 a
b 0

)
| a = 1, b = ±1

}
.

Similarly, defineD′′ ⊂ D1 such that

D′′ =
{(

a 0
0 b

)
,
(

0 a
b 0

)
| a = 1, b = ±i

}
,

wherei2 = −1 .

Then for any∆1,∆′
1 ∈ D′, any ∆2,∆′

2 ∈ D′′, and anyc ∈
{1, i,−1,−i},

N∆1 = c∆′
1N H∆1 = c∆′

1H
N∆2 = c∆1H H∆2 = c∆1N .

(10)

Let ∆∗ ∈ D′ ⋃D′′. Then successive applications of∆∗N
can, using (10), be re-expressed as,∏

(∆∗N) = c∆∗
∏

N '
∏

N .

But, from (7), successive powers ofN generateI, H, orN , to
within a final multiplication by a member ofD1. It follows that
successive LC actions on arbitrary vertices can be described by
the action ons of a member of the transform set,{I,H,N}n,
and therefore that the LC-orbit occurs within the{I,H,N}n

transform spectra ofs.
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F. LC on Hypergraphs

For p(x) of degree> 2, Nv(x) will typically have degree
higher than 1, and therefore the expansion of the sum will
contribute higher degree terms. For such a scenario we can no
longer eliminate the nonlinear and non-Boolean term,N ′

v(x),
from the right-hand side of (8) by subsequent actions from
Dn. Therefore, it is typically not possible to iterate LC graph-
ically beyond one step. We would like to identify hypergraph
equivalence w.r.t. localunitary transforms, in particular w.r.t.
{I,H,N}n. Computations have shown that orbits of Boolean
functions of degree> 2 and size> 1 do sometimes exist with
respect to{I,H,N}n, although they appear to be significantly
smaller in size compared to orbits for the quadratic case [17].

An interesting open problem is to characterise a ’LC-like’
equivalence for hypergraphs.

Further spectral symmetries of Boolean functions w.r.t.
{I,H,N}n are discussed in Appendix II.

IV. GENERALISED BENT PROPERTIES OFBOOLEAN

FUNCTIONS

A. Bent Boolean Functions

A bent Boolean function can be defined by using the WHT.
Let p(x) be our function overn binary variables. Define the
WHT of p(x) at positionk by,

Pk = 2−n/2
∑
x∈Fn

2

(−1)p(x)+k·x , (11)

where x,k ∈ Fn
2 , and · implies the scalar product.

The WHT of p(x) can alternatively be defined byP =
(
∏n−1

i=0 Hi)(−1)p(x).
p(x) is bent if |Pk| = 1 ∀k, in which case we say thatp(x)

has aflat spectraw.r.t. the WHT. In other words,p(x) is bent
if P is flat.

Let Γ be the binary adjacency matrix associated top(x)
whenp(x) is a quadratic.

Lemma 6: [32]

p(x) is bent ⇔ Γ has maximum rank as a binary matrix.

All bent quadratics are equivalent under affine transforma-
tion to the Boolean function

(∑n
2−1
i=0 x2ix2i+1

)
+ c · x + d

for n even, wherec ∈ Fn
2 , and d ∈ F2 [32]. More gen-

erally, bent Boolean functions only exist forn even. It is
interesting to investigate other bent symmetries where affine
symmetry has been omitted. In particular, in the context of
LC, we are interested in the existence and number of flat
spectra of Boolean functions with respect to the{H,N}n-
transform set (bent4), the{I,H}n-transform set (I-bent), and
the {I,H,N}n-transform set (I-bent4).

B. Bent Properties with respect to{H,N}n

{H,N}n is the set of 2n transforms of the form∏
j∈RH

Hj

∏
j∈RN

Nj , where the setsRH andRN partition
{0, . . . , n− 1}.

The following is trivial to verify:

p(x) is bent ⇔ p(x) + k · x + d is bent ,

wherek ∈ Fn
2 andd ∈ F2. In other words, ifp(x) is bent then

so are all its affine offsets, mod 2. However the above does
not follow if one considers every possibleZ4-linear offset of
p(x). The WHT ofp(x) at positionk, with a Z4-linear offset,
as specified byc, can be defined by,

Pk,c = 2−n/2
∑
x∈Fn

2

(i)2[p(x)+k·x]+[c·x] k, c ∈ Fn
2 . (12)

Definition 11:

p(x) is bent4 ⇔ ∀k ∈ Fn
2 ∃c such that|Pk,c| = 1 .

Let RN andRH partition {0, 1, . . . , n− 1}. Let,

U =
∏

j∈RH

Hj

∏
j∈RN

Nj .

s′ = U(−1)p(x) . (13)

Lemma 7:p(x) is bent4 if there exists one or more parti-
tions,RN,RH such thats′ is flat.

Proof: The rows ofU , U [t], can be described by(i)ft(x),
where theft’s are linear,ft : Fn

2 → Z4, and the coefficient of
xj in any ft ∈ {0, 2} for j ∈ RH and∈ {1, 3} for j ∈ RN.
Therefores′ can always, equivalently, be expressed ass′ =
(
∏

j Hj)(i)2p[x]+[f ′(x)], wheref ′ is linear,f ′ : Fn
2 → F2, and

the coefficient ofxj in any f ′ is 0 for j ∈ RH, and 1 for
j ∈ RN.
An alternative way to define the bent4 property for p(x)
quadratic is via a modified form of the adjacency matrix.

Lemma 8:For quadraticp(x),

p(x) is bent4 ⇔ Γv has maximum rank as a binary
matrix, for somev ∈ Fn

2 ,

whereΓv is a modified form ofΓ with vi in position [i, i],
wherev = (v0, v1, . . . , vn−1).

Proof: We first show that the transform of(−1)p(x)

by tensor products ofH and N produces a flat spectra iff
the associated periodic and negaperiodic8 autocorrelation
spectra have zero out-of-phase values. We then show how these
autocorrelation constraints lead directly to constraints on the
associated adjacency matrix.

Consider a function,p, of just one variable,x0, and let
s = (−1)p(x0). Define theperiodic autocorrelation function
by,

ak =
∑

x0∈F2

(−1)p(x0)+p(x0+k), k ∈ F2 .

Claim 1: It is well-known thats′ = Hs is a flat spectrum iff
ak = 0 for k 6= 0.

The negaperiodic autocorrelation functionis less well-
known. It has been investigated in, for instance, [36], and
in multivariate form, in [35]. Whereas the periodic auto-
correlation compares a sequence with its cyclic shifts, the
negaperiodic autocorrelation compares a sequence with its
modified cyclic shifts, where the elements wrapped round

8or odd-periodic.
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are multiplied by−1. Define the negaperiodic autocorrelation
function by,

bk =
∑

x0∈F2

(−1)p(x0)+p(x0+k)+k(x0+1), k ∈ F2 .

Claim 2: s′ = Ns is a flat spectrum iffbk = 0 for k 6= 0 9.
We now elaborate on claims 1 and 2. Define

s(z) = s0 + s1z, a(z) = a0 + a1z, and
b(z) = b0 + b1z. Then the periodic and negaperiodic
relationships between autocorrelation and fourier spectra, as
claimed above, follow because periodic autocorrelation can be
realised by the polynomial multiplication,a(z) = s(z)s(z−1)
mod (z2− 1), with associated residue reduction, mod(z− 1)
and mod(z+1), realised bys′ = Hs = 1√

2

(
1 1
1 −1

)
s, with

the Chinese remainder theorem (CRT) realised byH†s′, where
’†’ means transpose conjugate. By Parseval,s′ can only be
flat if a1 = 0. Similarly, negaperiodic autocorrelation can be
realised by the polynomial multiplication,b(z) = s(z)s(z−1)
mod (z2 + 1), with associated residue reduction, mod(z − i)
and mod(z+ i), realised bys′ = Ns = 1√

2

(
1 i
1 −i

)
s, with

the CRT realised byN†s′. By Parseval,s′ can only be flat if
b1 = 0.

We now extend this autocorrelation↔ Fourier spectrum
duality to n binary variables by defining multivariate forms
of the above polynomial relationships. If we choose periodic
autocorrelation for indices inRH and negaperiodic autocorre-
lation for indices inRN, we obtain the autocorrelation spectra,

Ak,RH,RN
=

∑
x∈Fn

2

(−1)p(x)+p(x+k)+
Pn−1

i=0 χ
RN

(i)ki(xi+1)
,

(14)
where k = (k0, k1, . . . , kn−1) ∈ Fn

2 , and χ
RN

(i) is the
characteristic function ofRN, i.e,

χ
RN

(i) =
{

1, i ∈ RN

0, i /∈ RN

In polynomial terms, with z ∈ Fn
2 and s(z) =∑

j∈Fn
2
sj

∏n−1
i=0 z

ji

i , we have,

ARH,RN
(z) =

∑
k∈Fn

2

Ak,RH,RN

n−1∏
i=0

zki
i

= s(z0, z1, . . . , zn−1)s(z−1
0 , z−1

1 , . . . , z−1
n−1)

mod
n−1∏
i=0

(z2
i − (−1)χRN

(i)) .

(15)
Then, by appealing to a multivariate version of Parseval’s

theorem,s′ as defined in (13) is flat iffAk,RH,RN
= 0, ∀ k 6=

0.
These constraints on the autocorrelation coefficients ofs

translate to requiring a maximum rank property for a modified
adjacency matrix, as follows. The conditionAk,RH,RN

= 0
for k 6= 0 is equivalent to requiring that, if we compare the
function with its multidimensional periodic and negaperiodic
rotations (but for the identity rotation), the remainder should
be a balanced function. When dealing with quadratic Boolean

9In fact, for p a Boolean function of just one variable,Hs is never flat and
Ns is always flat.

functions, the remainder is always linear or constant. This
gives us a system of linear equations represented by the binary
adjacency matrix,Γ, of p(x), with a modified diagonal, that
is with Γi,i = 1 for all i ∈ RN, andΓi,i = 0 otherwise. Let

p(x0, x1, . . . , xn−1) =
a01x0x1 + · · ·+ aijxixj + · · ·+ an−2,n−1xn−2xn−1 .

Therefore,

p(x) + p(x + k) +
∑n−1

i=0 χRN
(i)kixi =

k0(χRN
(0)x0 + a01x1 + a02x2 + · · ·+ a0,n−1xn−1)

+k1(a01x0 + χ
RN

(1)x1 + a02x2 + · · ·+ a0,n−1xn−1) + · · ·
+kn−1(a0,n−1x0 + · · ·+ an−2,n−1xn−2 + χ

RN
(n− 1)xn−1) .

This is equal to:

x0(χRN
(0)k0 + a01k1 + · · ·+ a0nkn)+

x1(a01k0 + χ
RN

(1)k1 + · · · a1,n−1kn−1) + · · ·+
xn−1(a0,n−1k0 + · · ·+ an−2,n−1kn−2 + χ

RN
(n− 1)kn−1),

which is balanced unless constant. The constant∑n−1
i=0 χRN

(i)ki will not play any role in the equation
Ak = 0, and can be ignored. We have the the following
system of equations:

χ
RN

(0)k0 + a01k1 + a02k2 + · · ·+ a0,n−1kn−1 = 0
a01k0 + χ

RN
(1)k1 + a12k2 + · · ·+ a1,n−1kn−1 = 0

.................................................................................
a0,n−1k0 + a1,n−1k1 + · · ·+ an−2,n−1kn−2

+ χ
RN

(n− 1)kn−1 = 0 .

Writing this system as a matrix, we have:

0BBBBB@
χRN

(0) a01 a02 . . . a0,n−1

a01 χRN
(1) a12 . . . a1,n−1

a02 a12 χRN
(2) . . . a2,n−1

...
...

...
. . .

...
a0,n−1 a1,n−1 a2,n−1 . . . χRN

(n− 1)

1CCCCCA .

This is a modification ofΓ, with 1 or 0 in positioni of the
diagonal depending on whetheri ∈ RN or i ∈ RH.

In general,

p(x) is bent
⇒
6⇐ p(x) is bent4 .

Theorem 4:All Boolean functions of degree≤ 2 are bent4.

Proof: Degree zero and degree one functions are triv-
ial. Consider the adjacency matrix,Γ, associated with the
quadratic Boolean function,p(x). We now prove thatΓv has
maximum rank as a binary matrix for at least one choice
of v, where Γv = Γ + diag(v) as before. LetM be the
minor associated with the first entry ofΓ; in other words,
let Γ =

“
0

M

”
. We prove by induction that there exists

at least one choice ofv such thatΓv has maximum rank as
a binary matrix. The theorem is true forn = 2: in this case,
Γ =

“
0 a
a 0

”
. Then, either det(Γ) = 1, in which case we

choosev = (0, 0), or we havea = 0 (empty graph). In the
last case we choosev = (1, 1), so det(Γv) = 1 + a = 1.
Suppose the theorem is true forn− 1 variables. We will see
that it is true forn variables. If the determinant ofΓ is 1 we
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takev = (0, . . . , 0) and we are done. If det(Γ) = 0, then we
have two cases:

• det(M) = 1: Takev = (1, 0, . . . , 0).
• det(M) = 0: By the induction hypothesis there is at

least one choice ofv(M) ∈ Fn−1
2 , where v(M) =

(v1, . . . , vn−1) such thatMv(M) has full rank. Letv′ =
(0, v1, . . . , vn−1) ∈ Fn

2 . If det(Γv′) = 1 we have finished.
If det(Γv′) = 0 we are in the first case again, so we take
v = (1, v1, . . . , vn−1), and we are done.

The theorem follows from lemma 8.
Remark:Theorem 4 is true even for Boolean functions asso-
ciated with non-connected or empty graphs.

Lemma 9:Not all Boolean functions of degree> 2 are
bent4.

Proof: Counter-example - by computation there are no
bent4 cubics of three variables.
Further computations show that there are no bent4 Boolean
functions of four variables of degree> 2. Similarly, there are
only 252336 bent4 cubic Boolean functions in five variables
(out of a possible220 − 210, not including affine offsets), and
no bent4 Boolean functions of degree≥ 4 in five variables.
Bent4 cubics of six variables do exist. Lemma 9 identifies an
open problem:

What is the maximum algebraic degree of a bent4 Boolean
function ofn variables?

Theorem 5:There is no Boolean functionp(x) such that
|Pk,c| = 1 ∀c,k ∈ Fn

2 .
Proof: This is trivial for degree zero and degree one

functions.
Let p(x) be a quadratic. Consider the adjacency matrix,Γ,

associated withp(x). For degree 2, the theorem is equivalent
to proving that there is av such thatΓv has rank less than
maximal. Then:

1) if p(x) is not bent, then we takev = (0, . . . , 0) and we
are done.

2) if p(x) is bent, we takeM as in the proof for Theorem
4. If det(M) = 1, we takev = (1, 0, . . . , 0) and we
are done; ifdet(M) = 0, modify the diagonal as in
the proof for Theorem 4. If the determinant of the new
matrix is equal to0, we are done; if not, we are in case
1.

Let p(x) be a function of degree higher than quadratic.
Consider the proof of Lemma 8. We have established that,
for a fixed choice ofRH and RN, s′, as defined in (13),
is flat if and only if Ak,RH,RN

= 0, ∀ k, k 6= 0. Therefore
p(x) is such that|Pk,c| = 1 ∀c,k ∈ Fn

2 iff Ak,RH,RN
= 0,

∀k, k 6= 0, for all partitions{RH,RN}. In particular, ifp(x)
is such that|Pk,c| = 1 ∀c,k ∈ Fn

2 , then the polynomials,
ARH,RN

(z), as defined in (15), satisfyARH,RN
(z) = 2n for

all choices ofRH andRN (i.e. their out-of-phase coefficients
are all zero). By the CRT we can combine theses polynomials
for each choice ofRH andRN to construct the polynomial,

r(z) mod
n∏

j=0

(z4
j − 1) = CRT{ARH,RN

(z) | ∀RH,RN} ,

(16)

wherer(z) = s(z0, z1, . . . , zn−1)s(z−1
0 , z−1

1 , . . . , z−1
n−1).

But as r(z) comprises monomials containing only
z−1
i , z0

i , z
1
i , the modular restriction in (16) has no effect on

coefficient magnitudes, and

r(z) ≡ r(z) mod
n∏

j=0

(z4
j − 1) .

to within a multiplication of the coefficients by±1. It follows,
by application of the CRT to (16) that, ifARH,RN

(z) = 2n,
∀RH,RN, thenr(z) = 2n also, i.e.r(z) is integer. But this is
impossible as the coefficients of the maximum degree terms,∏

j z
−1uj

j , uj ∈ F2, in r(z) can never be zero, but are always
±1.

Remark: Although we proved it only for Boolean functions,
it is possible to generalise theorem 5 for functionsFn

2 → Zq,
for any even integerq.

C. Bent Properties with respect to{I,H}n

{I,H}n is the set of 2n transforms of the form∏
j∈RI

Ij
∏

j∈RH
Hj , where the setsRI and RH partition

{0, . . . , n− 1}. [38] has investigated other spectral properties
w.r.t. {I,H}n, such asweight hierarchyof an associated
binary linear code if the graph is bipartite.

The WHT of the subspace of a function fromFn
2 to F2,

obtained by fixing a subset,RI, of the input variables, can be
defined as follows. Letθ ∈ Fn

2 be such thatθj = 1 iff j ∈ RI.
Let r � θ, where ‘�’ means thatθ ‘covers’ r, i.e. ri ≤ θi, ∀i.
Then,

Pk,r,θ = 2−(n−wt(θ))/2
∑

x=r+y|y�θ̄(−1)p(x)+k·x,

k � θ̄, r � θ .
(17)

Definition 12:

p(x) is I-bent ⇔ ∀k � θ̄,∀r � θ,
∃θ such that|Pk,r,θ| = 1,

where wt(θ) < n.

Let
U =

∏
j∈RI

Ij
∏

j∈RH

Hj . (18)

s′ = U(−1)p(x) . (19)

Lemma 10:p(x) is I-bent if there exist one or more parti-
tions,RI,RH such thats′ is flat, where|RI| < n.

An alternative way to define the I-bent property ofp(x) is
via its associated adjacency matrix,Γ. Let ΓI be the adjacency
matrix obtained fromΓ by deleting all rows and columns of
Γ with indices inRI.

Lemma 11:For quadraticp(x),

p(x) is I-bent ⇔ ΓI has maximum rank as a binary matrix

for one or more choices ofRI, where|RI| < n.
In general,

p(x) is bent
⇒
6⇐ p(x) is I-bent .

Theorem 6:All quadratic Boolean functions are I-bent.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX 2006 11

Proof: It is easy to show that all quadratic Boolean
functions of 2 variables are I-bent. The theorem follows
by observing that all adjacency matrices,Γ, representing
quadratic functions ofn > 2 variables contain2 × 2 non-
zero submatrices, obtained fromΓ by deleting all rows and
columns ofΓ with indicesRI, for |RI| = n− 2.

Remark:An I-bent function is a Boolean functionp : Fn
2 →

F2 such that there exists (w.l.o.g.) a decomposition ofFn
2 =

Fn1
2 × Fn2

2 in such a way that

p(x, y = a) : Fn1
2 → F2

is bent for alla ∈ Fn2
2 .

Remark:An I-bent function is a Boolean function inn vari-
ables such that the function, after fixing the subset of variables
indexed byRI, |RI| > 0, is bent in the remaining variables
indexed byRH. Thereby, one can create I-bent functions
by choosing2|RI| arbitrary bent functions and concatenating
them, or even by taking a bent function in a set of variables and
any non-bent function in the remaining variables and adding
them.

Theorem 7:The maximum degree of an I-bent Boolean
function in n variables, wheren > 2, is n− 1.

Proof: First, we show an I-bent Boolean function inn
variables of degreen− 1:

p(x) = x0x1 + x1x2 · · ·xn−1 .

Let p(x)|RI
be a restriction ofp where the variables indexed

by members ofRI have been arbitrarily fixed. If we take
RI = {2, . . . , n− 1}, we see that

p(x)|RI
=

{
p′(x0, x1) = x0x1

p′(x0, x1) = x0x1 + x1

Both are bent, sop is I-bent.
We now show that there is no I-bent Boolean function

of n variables, whenn > 2, of degreen. A Boolean
function p of degreen in n variables can be written as
p(x) = x0 · · ·xn−1 + g(x), with deg(g) < n. W.l.o.g.,
let RI = {0, . . . , n1 − 1}. Then, after fixing the variables
in RI, the possible functions we get are:p(x)|RI

={
p′1(xn1 , . . . , xn−1) = xn1 · · ·xn−1 + g′(xn1 , . . . , xn−1)
p′2(xn1 , . . . , xn−1) = g′(xn1 , . . . , xn−1)

with g′(xn1 , . . . , xn−1) = g(x)|RI
. Both must be bent forp

to be I-bent. Suppose thatn−n1 > 2: then eitherp′1 or p′2 are
functions of degreen−n1 in n−n1 variables, sop cannot be
bent. Thereforen− n1 ≤ 2. Supposen− n1 = 2 or 1. Then,
either p′1 or p′2 (or both) are affine, and there are no affine
bent functions.n−n1 = 0 would imply RI = {0, . . . , n−1},
and by definition|RI| < n. Thereforep cannot be I-bent, so
there are no I-bent functions ofn variables of degreen.

Computations show that there are 416 I-bent cubics in
four variables, and that there are 442640 I-bent cubics, and
1756160 I-bent quartics in five variables.

Lemma 12:There is no Boolean functionp(x) with the
property|Pk,r,θ| = 1 ∀ θ,k, r, k � θ̄, r � θ.

Proof: Let s = (−1)p(x). Let |RI| = n− 1. Then forU
as defined in (18),s′ cannot be flat.

D. Bent Properties with respect to{I,H,N}n

The {H,N}n−|RI| set of transforms of the subspace of a
function from Fn

2 to F2, obtained by fixing a subset,RI, of
the input variables, is defined as follows. Letθ ∈ Fn

2 be such
that θj = 1 iff j ∈ RI. Let r � θ. Then,

Pk,c,r,θ = 2−(n−wt(θ))/2
∑

x=r+y|y�θ̄(i)
2[p(x)+k·x]+[c·x],

k, c � θ̄, r � θ .
(20)

Definition 13:

p(x) is I-bent4 ⇔ ∀k � θ̄,∀r � θ,
∃c, θ such that|Pk,c,r,θ| = 1 ,

where wt(θ) < n.
Let RI, RH andRN partition {0, 1, . . . , n− 1}. Let,

U =
∏

j∈RI

Ij
∏

j∈RH

Hj

∏
j∈RN

Nj . (21)

s′ = U(−1)p(x) . (22)

Lemma 13:p(x) is I-bent4 if there exists one or more
partitions,RI,RH,RN such thats′ is flat, where|RI| < n.
As a generalization of (14), we get flat spectra for one or more
partitionsRI,RH,RN iff

Ak,RI,RH,RN
=∑

x=r+y|y�θ̄(−1)p(x)+p(x+k)+
Pn−1

i=0 χ
RN

(i)ki(xi+1) = 0,
∀k 6= 0 ,

whereθj = 1 iff j ∈ RI, r � θ, andrj = kj if j ∈ RI.
An alternative way to define the I-bent4 property whenp(x)

is quadratic is via its associated adjacency matrix,Γ. Let ΓI,v

be the matrix obtained fromΓv when we erase theith row
and column ifi ∈ RI.

Lemma 14:For quadraticp(x),

p(x) is I-bent4 ⇔ ΓI,v has maximum rank as a
binary matrix where,v � θ̄
for one or more choices of
v andθ, where wt(θ) < n.

In general,

p(x) is bent
⇒
6⇐

p(x) is bent4
p(x) is I-bent

⇒
6⇐ p(x) is I-bent4.

Theorem 8:All Boolean functions are I-bent4.
Proof: From Theorem 2, the action of a singleUv on

a Boolean function,p(x), of any degree, always gives a flat
output spectra, for any value ofv. This gives (at least)n flat
spectra for any Boolean function.

Corollary 1: There are no Boolean functionsp(x) such that
|Pk,c,r,θ| = 1 ∀θ, c,k, r, k, c � θ̄, r � θ.

Proof: Follows from theorem 5 or lemma 12.
It is natural to ask whether, for a given quadratic,p(x), there

exists at least one member of its LC-orbit which is bent. If
so, then we state that the graph state,p(x), and its associated
LC-orbit, is LC-bent. More formally,

Definition 14: The graph state,p(x) (a quadratic Boolean
function), and its associated LC-orbit isLC-bent if ∃ p′(x)
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such thatp′(x) ∈ LC-orbit(p(x)), and such thatp′(x) is bent.

For example, the bent functionx0x1 +x0x2 +x0x3 +x1x2 +
x1x3 + x2x3 is in the same LC-orbit asx0x1 + x0x2 + x0x3

so, althoughx0x1 + x0x2 + x0x3 is not bent, it is LC-bent.
In general, forp(x) quadratic,

p(x) is bent
⇒
6⇐ p(x) is LC-bent .

Theorem 9:Not all quadratic Boolean functions are LC-
bent.

Proof: By computation, the LC-orbit associated with the
n = 6-variable Boolean function,x0x4+x1x5+x2x5+x3x4+
x4x5 is not LC-bent.
By computation it was found that all quadratic Boolean
functions ofn ≤ 5 variables are LC-bent. Table I lists the
orbit representatives for those orbits which are not LC-bent,
for n = 2 to 9, and provides a summary forn = 10, where
the Boolean functions are presented in algebraic normal form
(ANF) and abbreviated so that, say,ab, de, fg is short for
xaxb + xdxe + xfxg. For those orbits which are not LC-bent
we provide the maximum rank satisfied by a graph within the
orbit.

n ANF for the orbit representative Max. Rank within Orbit
2-5 - -
6 04,15,25,34,45 4
7 - -
8 07,17,27,37,46,56,67 6

06,17,27,37,46,56,67 6
07,17,25,36,46,57,67 6

06,17,27,36,45,46,47,56,57,67 6
07,16,26,35,45,47,67 6

9 08,18,28,38,47,57,67,78 6
08,18,26,37,47,56,68,78 6

10 08,19,29,39,49,58,68,78,89 6
51 other orbits 8

TABLE I

REPRESENTATIVES FOR ALLLC-ORBITS WHICH ARE NOTLC-BENT FOR

n = 2 TO 10

An interesting open problem is to characterise those graphs
which are not LC-bent.

V. CONCLUSION

This paper has examined the spectral properties of Boolean
functions with respect to the transform set formed by tensor
products of the identity,I, the Walsh-Hadamard kernel,H,
and the negahadamard kernel,N (the {I,H,N}n transform
set). In particular, the idea of a bent Boolean function was
generalised to{I,H,N}n and its subsets. Various theorems
about the generalised bent properties of Boolean functions
were established. It was shown how a quadratic Boolean func-
tion maps to a graph and it was shown how the local unitary
equivalence of these graphs can be realised by successive
application of the LC operation - local complementation - or,
alternatively, by identifying a subset of the flat spectra with
respect to{I,H,N}n. For quadratic Boolean functions it was
further shown how the{I,H,N}n set of transform spectra

could be characterised by looking at the ranks of suitably
modified versions of the adjacency matrix. In part II [45], we
apply this method to enumerate the flat spectra w.r.t.{I,H}n,
{H,N}n and{I,H,N}n for certain concrete functions.

APPENDIX I
VARIOUS INTERPRETATIONS OF THEGRAPH STATES

In this section we summarise the different interpretations of
graph states, following [7], [8], [9], [11], [14], [24], [25], [34],
[38], [54], [55].

A. Interpretation as a Graph

Given a graphG on n vertices with adjacency matrixΓ,
one definesn commuting Pauli operators

KGj = σ
(j)
x

∏
k∈Nj

σ
(k)
z

= σ
(j)
x

∏n−1
k=0(σ(k)

z )Γjk ,

(23)

whereσx =
(

0 1
1 0

)
andσz =

(
1 0
0 −1

)
, and the superindex

(i) implies that the operator has the corresponding matrix
on the ith position in the tensor product and the identity
elsewhere.

Definition 15: [28] Graph states associated with then-
vertex graph,G, are the set of puren-qubit quantum states
that are stabilized by a stabilizer of hermitian operators,KG,
generated by{KGj

, 0 ≤ j < n}.
It follows that the pure state ofn qubits, |ψ〉, is a graph

state iff
KG|ψ〉 = ±|ψ〉.

B. Interpretation as a Quadratic Boolean Function

Theorem 10:[55] (Proposition 2.14). To within normali-
sation, a graph state can be represented by the pure state
s = (−1)p, where p is a quadratic Boolean function such
that p =

∑
j<k Γjkxjxk + a(x), wherea(x) is an arbitrary

affine Boolean function.
Theorem 11:A pure states of n qubits is an eigenvector

of a stabilizer of hermitian operatorsKG, and hence a graph
state, iff s = (−1)p, with p a quadratic Boolean function.

Proof: To within normalisation, lets = m(x)γp(x),
whereγ is a rth complex root of 1,r arbitrary but even,m :
Fn

2 → Z, andp : Fn
2 → Zr, such thatsi = m(x = i)γp(x=i).

We show that no state with non-constant magnitude,m, and/or
algebraic degree,p, other than two (i.e. withdeg(p) 6= 2) can
be an eigenvector forKG.

Apply KGv
to s. First, w.l.o.g., apply all phase-flips,σz, to

the neighbours of qubitv to get

s′ = m(x)γp(x)+ r
2

P
k Γvkxk .

Our question then reduces to: For what states,s′, can a
subsequent bit-flip to qubitxv takes′ to s′′ such thats′′ = λs,
for some scalar coefficient,λ? For the phase part,p can always
be written as

p(x) = xvNv(x) + q(x),
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whereq(x) andNv(x) are independent ofxv. It follows that,
considering bit-flip onv, (note that bit-flip is done mod 2 and
the result embedded modr),

p(x0, . . . , xv + 1, . . . , xn−1)− p(x0, . . . , xv, . . . , xn−1)
= (1− 2xv)Nv(x).

We therefore arrive at our first condition:

• s′′ = λs iff (1− 2xv)Nv(x) = −r
2

∑
k Γvkxk +

c, wherec ∈ Zr. As the right-hand does not depend on
xv, it follows that 2xvNv(x) = 0, implying thatNv(x)
is a Boolean function. Moreover, as the right-hand is of
degree≤ 1, thendeg(Nv) ≤ 1.

If m(x) is dependent onxv thenm(x) must change after
bit-flip on v (the bit positions are permuted); in that case,m′

m
cannot be a constant, sos cannot be an eigenvector ofKGv

,
and therefore cannot be an eigenvector ofKG. Therefore,

• m must be independent ofxv.

By considering the above two conditions over all qubits,v, we
conclude thats can only be an eigenvector ofKG if m(x) = 1
andp(x) is quadratic, where the degree-2 monomials inp(x)
are uniquely defined byΓ. The coefficients ofp are−r

2 (but for
a constant that can be neglected), and soγp(x) = (−1)pb(x),
with pb a quadratic Boolean function. The theorem is proved
by observing that the set of all simple graphs is as large as
the set of all homogenous quadratic functions.

C. Interpretation as a Quantum Error Correcting Code

Let E be a 2n-dimensional binary vector
space, whose elements are written as(a|b), where
a, b ∈ Fn

2 , and E is equiped with the (symplectic)
inner product((a|b), (a′|b′)) = a · b′ + a′ · b. Define the
weight of (a|b) = (a1, . . . , an|b1, . . . , bn) as the number of
coordinatesi such that at least one of theai or bi is 1. The
distance between two elements(a|b) and (a′|b′) is defined to
be the weight of their difference.

Theorem 12:[11] Let S be a (n − k)-dimensional linear
subspace ofE, contained in its dualS⊥ (with respect to the
inner product), such that there are no vectors of weight less
thand in S\S⊥. By taking an eigenspace ofS (for any chosen
linear character) we obtain a quantum error-correcting code
mappingk qubits ton qubits that corrects[(d− 1)/2] errors.
Such a code is called anadditive quantum error-correcting
code (QECC), and is described by its parameters,[[n, k, d]],
whered is theminimal distanceof the code.
We show, later, that a[[n, 0, d]] QECC can be represented by
a graph. First we re-express the QECC as aF4 additive code.

D. Interpretation as aF4 Additive Code

From [11] we see how to interpret the binary spaceE as the
spaceFn

4 and thereby how to derive a QECC from an additive
(classical) code overFn

4 . Let F4 = {0, 1, ω, ω̄}, with ω2 =
ω + 1, ω3 = 1; and conjugation defined bȳω = ω2 = ω + 1.
The Hamming weightof a vector inFn

4 , writtenwt(u), is the
number of non-zero components, and theHamming distance
betweenu, u′ ∈ Fn

4 is dist(u, u′) = wt(u + u′). Define the
trace functionas: tr(x) : F4 → F2, tr(x) = x + x̄. To each

vectorv = (a|b) ∈ E we associate the vectorφ(v) = aω+bω̄.
The weight of v is the Hamming weight ofφ(v), and the
distance between two vectors inE is the Hamming distance
of their images. IfS is a subspace ofE thenC = φ(S) is
a subset ofFn

4 that is closed under addition (defining thus an
additive code). Thetrace inner productof u, v ∈ Fn

4 is

u ? v = Tr(u · v̄) =
n∑

i=1

(uiv̄i + ūivi) ,

Define thedual codeC⊥ as

C⊥ = {u ∈ Fn
4 : u ? v = 0 ∀v ∈ C} .

Now one can reformulate Theorem 12.
Theorem 13:Let C be an additive self-orthogonal subcode

of Fn
4 , containing2n−k vectors, such that there are no vectors

of weight< d in C \C⊥. Then any eigenspace ofφ−1(C) is
a QECC with parameters[[n, k, d]].

By Glynn (see [24], [25]), we have: LetS be a stabilizer
matrix, that is(n − k) × n over F4 and such that its rows
are F2-linearly independent. Then we define a QECC with
parameters[[n, k, d]] as the set of allF2-linear combinations
of the rows ofS. The code isself-dualwhenk = 0.

E. The QECC as a Graph via Projective Geometry

Assume that each column ofS contains at least two non-
zero values, for the columns that do not have this property may
be deleted to obtain a better code. Following [24], a self-dual
quantum code[[n, 0, d]] corresponds to a graph onn vertices,
which may be assumed to be connected if the code is indecom-
posable. Let PG(m, q) be the finite projective space defined
from the vector space of rankm+ 1 over the fieldFq. Then
theGrassmannianof lines of PG(n−1, 2), G1(PG(n−1, 2)),
regarded as a variety immersed in PG(

(
n
2

)
, 2) is as follows:

each lineli is defined by two points,ai andbi. We associate
to the set of lines all productsaibj + ajbi, i 6= j (mod 2).
Define a mapping from a column of ann×n stabilizer matrix

S over F4 to a vector of length

(
n
2

)
with coefficients in

F2: We write each column overF4 as a + bω, wherea, b ∈
Fn

2 .

0BB@
x1

x2

...
xn

1CCA =

0BB@
a1

a2

...
an

1CCA + ω

0BB@
b1

b2

...
bn

1CCA .

Taking all2×2 subdeterminants found when we put the two
vectors into a matrix, we get the points of the Grassmannian.
A point in G1(PG(n − 1, 2)) ≡ a line in PG(n − 1, 2) ≡
a column of lengthn over F4 (with at least two different
non-zero components). A quantum self-dual code[[n, 0, d]]
corresponds to some set ofn lines that generate PG(n−1, 2).
As each line of PG(n − 1, 2) corresponds to a (star) kind of
graph, the set corresponds to a graph inn vertices.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX 2006 14

F. Interpretation as a Generator Matrix overF2 and overF4

From any connected graph we obtain an indecomposable
code. Let Γ be the adjacency matrix of a graphG in n
variables. Then,GT = (I | Γ) (whereI is then× n identity
matrix) is the generator matrix of a binary linear code [54].
In other words,

GT =

0BB@
1 0 . . . 0 0 a01 . . . a0n

0 1 . . . 0 a01 0 . . . a1n

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 a0n a1n . . . 0

1CCA
generates a code overFn

2 . Alternatively, we can interpret
GT as a generating matrix of an additive code overFn

4 , as
follows [11]:

G = Γ + ωI =

0BB@
ω a01 . . . a0n

a01 ω . . . a1n

...
...

. . .
...

a0n a1n . . . ω

1CCA
is the generating matrix of an additive code overFn

4 .
Different graphs may define the same code, but this relation
is 1-1 with respect to LC-equivalence between graphs, as
defined in section II. Of the two interpretations,GT andG, the
interpretation usingG more precisely reflects the properties of
the graph state.

G. Interpretation as a Modified Adjacency Matrix overZ4

Define from a graph with adjacency matrix,Γ, the gener-
ating matrix of an additive code overZn

4 as 2Γ + I. This
code has the same weight distribution overZn

4 asΓ+ωI over
Fn

4 . Once again, LC-equivalent graphs define equivalentZ4

additive codes.

H. Interpretation as an Isotropic System

The graph state can also be viewed as an isotropic system
(see [7], [9], [8], [14], [34]).

Let A be a 2-dimensional vector space overF2. For x, y ∈
A, define a bilinear form,<,>, by

< x, y >=
{

1 if x 6= y, x 6= 0 andy 6= 0
0, otherwise

Let V be a finite set. Define the space ofF2-
homomorphismsAV : V → A. Define in thisF2-vector space
a bilinear form as:

for φ, ψ ∈ AV , < φ, ψ >=
∑
v∈V

< φ(v), ψ(v) > (mod 2) .

Definition 16: Let L be a subspace ofAV . Then, I =
(V,L) is anisotropic systemif dim (L) = |V | and< φ,ψ >=
0 ∀ φ, ψ ∈ L.

For a graphG, V (G) denotes the set of vertices ofG. If
v ∈ V (G), N (v) denotes theneighbourhoodof vertexv, that
is, the set of all its neighbours. ForP ⊆ V , we setN (P ) =∑

v∈P N (v). Let K = {0, x, y, z} be the Klein group, which
is a 2-dimensional vector space, and setK ′ = K \ {0}. Note
that x+ y + z = 0.

Lemma 15:([9]) Let G be a simple graph
with vertex set V . Let φ, ψ ∈ K ′V such that
φ(v) 6= ψ(v) ∀v ∈ V , and setL = {φ(P ) + ψ(N (P )) :
P ⊆ V }. ThenS = (V,L) is an isotropic system.

The triple Π = (G,φ, ψ) is called agraphic presentation
of S.

For φ ∈ KV , we setφ̂ = {φ(P ) : P ⊆ V }. φ̂ is a vector
subspace ofKV .

Definition 17: For ψ ∈ K ′V , the restricted Tutte-Martin
polynomialm(S, ψ;x) is defined by

m(I, ψ;x) =
∑

(x− 1)dim(L∪bφ) ,

where the sum is overφ ∈ K ′V such thatφ(v) 6= ψ(v), v ∈
V .

Theorem 14:([9]) If G is a simple graph andI is the
isotropic system defined by a graphic presentation(G,φ, ψ),
then

q(G;x) = m(I, φ+ ψ;x) ,

whereq(G;x) is the interlace polynomial ofG.
We mention the interlace polynomial and its relation to our

work in [46], [50].

I. Interpretation of a Bipartite Graph State as a Binary Linear
Code

Quadratic ANFs, as represented by bipartite graphs, have an
interpretation as binary linear codes [38]: LetTC, TC⊥ be
a bipartite splitting of{0, . . . , n− 1}, and let us partition the
variable setx asx = xC ∪xC⊥ , wherexC = {xi : i ∈ TC},
andxC⊥ = {xi : i ∈ TC⊥}. Let p(x) =

∑
k qk(xC)rk(xC⊥),

where deg(qk(xC)) = deg(rk(xC⊥)) = 1 ∀k (clearly, such
a function corresponds to a bipartite graph), and lets(x) =
(−1)p(x). Then the action of the transform

∏
i∈THi, with

T = TC or TC⊥ , on s(x) gives s′(x) = m(x), with m the
ANF of a Boolean function.s′ is the binary indicator for a
binary linear[n, n− |T|, d] error correcting code.10

APPENDIX II
FURTHER SPECTRAL SYMMETRIES OF BOOLEAN

FUNCTIONS WITH RESPECT TO{I,H,N}n

The power spectrumof the WHT of a Boolean function
is invariant to within a re-ordering of the spectral elements
after an invertible affine transformation of the variables of
the Boolean function11. This implies that bent Boolean
functions remain bent after affine transform. However, the set
of {I,H,N}n power spectra are not an invariant of affine
transformation.

Let Q = {qII...,I ,qHI...,I ,qNI...,I ,qIN...,I , . . . ,qNN...N}
be the set of3n multi-sets,q∗∗...∗, where eachq comprises
2n power spectral values of a length2n vector w.r.t. a specific
transform in{I,H,N}n.

Let S = qII...,I∪qHI...,I∪qNI...,I∪qIN...,I∪. . . ,qNN...N

be the multi-set of3n × 2n power spectral values of a vector,

10There is also an equivalent interpretation of bipartite graphs asbinary
matroids(e.g. [12]).

11Thepowerof thekth spectral element,Pk, is given by|Pk|2, wherePk

is defined in (11).
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being the union of all multi-sets,q, w.r.t. transforms in the
transform set{I,H,N}n .

In this section we ascertain for which transformations of
the input vector (other than LC),Q and/orS are invariant. If
Q is invariant under some transformation of the input vector,
thenS is also invariant under the same transformation.

We emphasise thatQ and S, are not ordered, nor do
they contain phase information as we are dealing with power
values.

The following is clear.
Lemma 16:Let p(x) be a Boolean function of any degree

over n variables.
Let π(x) = (xπ(0), xπ(1), . . . , xπ(n−1)) be a permutation of
Boolean variables,x. ThenS of (−1)p(x) and of(−1)p(π(x))

are identical.
From the discussion of sections III-C and III-D it is evident

thatS is LC-invariant for a quadratic Boolean function. More
generally, we have the following lemma.

Lemma 17:Let p(x) be a Boolean function of any degree
over n variables. LetU ∈ Cn. Then S of (−1)p and of
U(−1)p are identical.

We now identify special cases of lemma 17.
Lemma 18:Let p(x) be a Boolean function of any degree

over n variables. Then bothQ and S of (−1)p(x) and of
(−1)p(x+a) are identical, wherea ∈ Fn

2 .
Proof: Replacingxj with xj + 1 within any p(x) is

equivalent to the action of the bit-flip operator,σx =
(

0 1
1 0

)
,

at positionj of the transform on(−1)p(x), applyingI in all
other positions.

From (10), we can rewriteHσx as σzH. In other words,
a bit-flip (or periodic shift) followed by the action ofH is
identical to the action ofH followed by a phase-flip. (This is
well-known to quantum code theorists). The final phase-flip is
a member of the setD1 (see Section III) so does not change
the magnitude of the spectral values produced byH. Therefore
the power spectra produced byH is invariant to prior periodic
shift.

We can rewriteNσx as−σyN . In other words, a bit-flip
(or periodic shift) followed by the action ofN is identical to
the action ofN followed by a member ofD1. Therefore the
power spectra produced byN is invariant to prior periodic
shift.

The above argument is trivial with respect toI. In all three
cases, the transform kernel,I, H, or N , remains unchanged
after passing the bit-flip through the kernel. So bothQ andS
are invariant to such a transformation. The argument extends
naturally to{I,H,N}n.

Lemma 19:Let p(x) be a Boolean function of any degree.
Then bothQ andS of (−1)p(x) and of(−1)p(x)+l(x) are iden-
tical, wherel is any affine Boolean function of its arguments.

Proof: The argument follows similarly to that for lemma
18, by appealing to (10) for a prior phase-flip.

Lemma 20:Let p(x) be a Boolean function of any degree
over n variables. The output ofp can be lifted toZ4 by
replacingp with 2p. Let l(x) : Fn

2 → Z4 be any generalised
affine Boolean function outputting toZ4, such that2 does not

divide l. ThenS of i2p(x) and ofi2p(x)+l(x) are identical, but
Q is not kept invariant.

Proof: The argument follows similarly to those for
lemmas 18 and 19, but this time the prior phase-flip is of the
form

(
1 0
0 ±i

)
or

(
0 1
±i 0

)
. From (10) one can ascertain that

the transformations under consideration are in the setD′′, and
therefore the roles ofH andN are swapped when any such
transformation is passed throughH or N . So Q is not kept
invariant, whilstS is.

Let p(x) be a Boolean function ofany degree overn
variables. Let us liftp to Z4. We perform a combination
of affine offset and periodic shift on2p(x) by the following
operation:

2p(x) ⇒ 2p(x + a) + c · x + d, ( mod 4) ,

wherea ∈ Fn
2 , c ∈ Zn

4 , d ∈ Z4, and ’·’ is the scalar product.
By lemmas 18, 19, and 20, the resultant function has the
sameS as2p(x) mod 4. The symmetries generated by affine
offset and periodic shift include the symmetries generated by
any combination of certain constaperiodic shifts, because we
perform these constaperiodic shifts onp(x) by the following
operation:

p(x) ⇒ 2p(x + a) + c · x− wt(c), c � a ,

wherea ∈ Fn
2 , c ∈ Zn

4 , ’c � a’ means thatci = 0 if ai = 0,
∀i (i.e. a covers c), and wt(c) is the sum of the elements
of c, mod 4. The one positions ina identify variablesxi

which are to undergo constaperiodic shift, and the non-zero
positions inc identify the variablesxi which are to undergo
periodic, constaperiodic, negaperiodic, or constaperiodic shift
if ci = 0, 1, 2 or 3, respectively. The constaperiodic sym-
metry is induced by{H,N}n and can be generalised to a
fixed-constaperiodic symmetry w.r.t.{I,H,N}n, where the
{I,H,N}n spectra encapsulate the fixed-aperiodic properties
of p, as discussed further in [17] and [41].
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