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Generalised Bent Criteria for Boolean Functions (1)

Constanza Riera and Matthew G. Parkdember, IEEE,

Abstract— Generalisations of the bent property of a Boolean classify all bent Boolean functions, although many results are
function are presented, by proposing spectral analysis with known [20], [32], [13], [21], [31].
respect to a well-chosen set of local unitary transforms. Quadratic In this paper, we extend the concept of a bent Boolean

Boolean functions are related to simple graphs and it is shown functi ¢ lised bent criteriaf Bool
that the orbit generated by successive local complementations unction to somegeneralise ent criterigor a boolean

on a graph can be found within the transform spectra under function, where we now require thahas flat spectra w.r.t. one
investigation. The flat spectra of a quadratic Boolean function are or more transforms from a specified set of unitary transforms.

related to modified versions of its associated adjacency matrix. The set of transforms we choose is not arbitrary but is moti-
Index Terms— additive codes, bent functions, Boolean func- vated by a choice of local unitary transforms that are central

tions, Clifford group, cryptography, graph states, graph theory, to the structural analysis of pure-qubit stabilizer quantum

local complementation, Pauli group, quantum codes. states. We here apply such transforms te-@ariable Boolean

function, and examine the resultant spectra accordingly. In

particular we apply all possible transforms formed fram

fold tensor products of the identity

It is often desirable that a Boolean functignused for cryp- Lo

tographic applications, is highiyonlinear, where nonlinearity 1= ( 01 ) ,

is determined by examining the spectrumpofvith respect to

(w.r.t.) theWalsh Hadamard transforrWHT), and where the the Walsh-Hadamard kernélf, and the negahadamard kernel

nonlinearity is maximised for those functions that minimisg35l,

the magnitude of the spectral coefficients. Define the Boolean N = 1 < Lo >

function of n variablesp : F} — F,. Definedeg(p) to be the v\t =)’

algebraic degree gf when expressed using algebraic normg{nerei2 = —1.

form (ANF). Let the WHT be the2" x 2" unitary matrix  pefinition 1: The {I,H, N} transform sefis the set of
U=H®H...@H =1][", H;, where the Walsh-Hadamards» transforms of the form

kernel is
H_1<1 1>. {(re.nNy =115 1] & [] ™

- \/i 1 -1 jeER1  jERm JjERN

'@’ indicates the tensor product of matrices, and unitary meaf{§ere the set®r, Ru andRy partition {0, ..., n — 1}, and
that UUT = I, where ¥ means transpose-conjugate and L S&, |§hshort_ forigle.. . eleHele...0I, with

is the 2" x 2" identity matrix. We further define a vector!! In the " position. .

s € (C)®, s = (50..0050..015 50115 - -+ 51..11) 7, such Each one qf the3™ tra_msforms in{I, H,N}" acts on a
thats; = (—1)?@, wherei € F%. Then the Walsh-HadamardBoolean function of, variables to produce a spectrum 25f
spectrum ofp is given by the matrix-vector produdt = UUs, SPectral elements (complex numbers). By contrast, the WHT

whereP is a vector oR2" real spectral coefficients?, where C€an be described agi}", which is a transform set of size
k € Fy. one, where the single resultant output spectrum compises

The spectral coefficient, with maximum magnitude tells SPectral elements.

us the minimum (Hamming) distance, of p to the set of Definition 2: _Let X be an arbitrary set o™ x 2" unitary
n=2 transform matrices. For each transforth,e X, we can, for

affine Boolean functions, wheré = 2"~! — 272 | P|. By X h ¢ | valuBor
Parseval's theorem, the extremal case occurs wheRdhlave a given vectors, compute the set of spectral valuPs= Us.

equal magnitude, in which cageis said to have dat wHT Ve Wil call the set{|P[*,k € F4 }i the multi-set of2power
spectra, and is referred to &ent If p is bent, then it is at SPECtral valuesof the vectors w.r.t. U. Then {{IA* k €
maximum distance from the affine functions [33], which is 42)0: YU € X} is the set of multi-sets of power spectral
desirable cryptographic design goal. It is an open problem Yg!Ues Wr.t. the transform set,. _ . .

In this paper we focus on such multi-sets and, in particular,

C. Riera was with the Depto. délgebra, Facultad de Mateaicas, the Set of multi-sets w.r.t. the transform et HvN}n
Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, We note that there are other ways to generalise the concept

Spain. E-mail:criera@mat.ucm.es . Supported by the Spanish Govern-of 5 hent function. For instance, in [59], Wolfmann identifies
ment Grant AP2000-1365, and a Marie Curie Scholarship from the Europet%n . L
Union. at the special subgroups of the Galois ring ( are

C.Riera and M.G.Parker are with the Selmer Centre, Inst. for Idifference sets w.r.t. the additive subgroup of @R, and

formatikk, Heyteknologisenteret i Bergen, University of Bergen, Bergeg|so constructs bent functions of a Maiorana-McFarland type
5020, Norway. E-mail:constanza,matthew@ii.uib.no . Supported

by the University of Bergen and the Norwegian Research Council. WeBY€" .Z4' m_apping these ConStrUCtion.S bac'_‘ to bent Pi”ary
http:/Avww.ii.uib.no/ matthew/ functions via the Gray map. Alternatively, in [42], Poinsot

I. INTRODUCTION



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, XXX 2006 2

and Harari generalise, to any Abelian group of involutions, and a givenj, the two multi-sets of power spectral values
the translations associated with the autocorrelation dual of theAM s and A’M s are identical VA, A’ € D;. This allows
Fourier transform and, in this way, generalise the notion ofus to choose to examine spectra w{k, H, N}" instead of

bent Boolean function. w.rt. {I,\, A?}", as they share the same set36f multi-sets
of power spectral values, whel¥ = AX and H = A’)?,
A, A e D;.

A. The Quantum Context

In this paper,s = (—1)? will be taken to represent both
a complex vectore (C2?)", and apure ! quantum state
of n qubits € (C?)". More precisely, le2="s € (C?)®"
represent the pure quantum state rofqubits such that a
joint measurement o272 s in the computational basis (i.e.
the basis over which the state is defined) evaluateisvidh

A quantum error-correcting code (QECQ®Y the stabilizer
type is derived from the structure of the Pauli matrices.d et
Es, whereE € {I,0,,0,,0,}" iS an error operator acting on
s and formed from a tensor product of Pauli matriéed.et
w(F) be the number of non-identity positions in the tensor
product expansion aF. (For instancev(IQo,Q0, Q1) = 2).

” . . Then we can think of as ann-qubit QECC of dimension zero
prpbablllty2*”|(—1)P(‘)|2 = 2. For brevity, for the rest of distancé, i.e. an[[n, 0, d]] ?QECC?, ifs-§ =0, VE satisfy-
this paper, we often refer t0 the quantum state,aslthough ing w(E) < d, where *" indicates the inner product of vectors.

strict normalisation would require that we refer to that statg i is because. in such a case the veatansds are mutually

as2 > s . orthogonal and therefore perfectly distinguishable. For a fixed
Definition 3: A product state s, of n qubits ;:aln be rep- s, letP(s) = {P | P=UsYU e {I,H N}"}. It can be
resented by a vector € (C*)®", wheres = @} (a;,b;),  ghown that, ifs is a [[n,0,d]] QECC w.r.t. the error set,
aj,b; € C, i.e. s is wholly tensor factorisable. _then all pure states in the sBt(s) are also[[n, 0, d]] QECCs
Definition 4: The Pauli group is generated by th&auli -, .+ 1 [17] In other words, the action of a transform from
matrices which areo, = (1§ 5 ), 0. = (o 1), and o set{I,H, N}" on the pure states, keeps invariant the
distance properties of the state when viewed as a zero-

oy = i0,0,, and is of size 16. The identity matrix, =
10 i i ;

( o 1 ) Is also classed as a Pauli matrix. dimensional QECC. Above, we refer to a single complex

as instances of a specific

The Pauli matrices form a basis for the setof 2 unitary vector and its spectra wft/, H, N}"
matrices, and therefore a basis for the set of local errors t%tro—dimensional QECC \7NI‘7E More generally, the largest
eigensubspace of all operators belonging to a specific abelian

could act on a qubit.
subgroup of the Pauli group is defined to b&tabilizer QECC

Definition 5: The local Clifford group C;, with respect
to the Pauli group, is defined to be the set of matrices thaly,is haper we are concerned only with the spectra of single
complex vectors of length™, i.e. where the stabilizer QECC

normalise? , to within a multiplicative factor of-1, the Pauli
group.H and N are generators fo€, [11], [30], [55], where is a one-dimensional eigensubspace.
One reason why we choose, in this paper, to use the

|C1| = 192.

thgrfngC;sS r?;rlﬁgé;gdfé\? t;::a tg: Ip E:L)Z{r.fegmt'vated by transform set{I, H, N}, instead of the sef{I, \, \}", is
: ! ui IC€s. to highlight that the local Clifford group contaimsultivariate

discrete Fourier transformsas represented byH, N}". This

The n-qubit local Clifford group,C,,, can, similarly, be
Fourier interpretation then helps us to establish a link with

represented by the set @f* x 2™ matrices that decompose
into a tensor product o2 x 2 unitary matrices from the a generalised form of linear approximation in the context of
%Iassical cryptanalysis [40].

local Clifford group,C,, where|C,,| = 192". These matrices
ecently, certain pure quantum states have created sig-

normalise tensor products of the Pauli matrices, and can
enerated by the™ generators{ H, N }". Fortunately we are .. . . o .
g y 9 {H, N} y nificant interest due to their suitability as components in a

rimarily interested in the multi-set of power spectral values . L '
\F/)vrt egch of thel92"” transforms. As Fi)s showFr)l in Sectionpotentlally robust, distributed quantum computer. Such config-

lll, this allows us to focus on a subgrouf,, of C;, where urations are referred to atuster state$43], [6], [44] or graph
T, — {102 n ’ states[51], [55], [28]. Graph states are locally equivalent to
1 — 9 \y y

the subclass of stabilizer QECCs which have dimension zero

w1 [51], [24], [26], and are defined to be the unique eigenvectors
ﬁ ( 1= > ’ (to within global phase) of a particular subclass of abelian

s W L omi/8 . subgroups of the Pauli group that can be characterised using
A° = ﬁ( S )w = e*™/%, |T| = 3, and A is a generator 5 graph (see (23) of appendix 1). Proposition 2.14 of [55]
for T,. One can obtaifil', by dividing C, by another of its frther shows that all graph states are equivalent under local
subgroups, namely thdiagonal group D,, where|D;| = 64.  ypitaries to quadratic forms expressed (as)?, wherep is
D, comprises all members &, whose action on an arbitrary 3 quadratic Boolean function. We further show (Appendix |,
vector leaves its multi-set of power spectra values invariant.
Any member ofC, can be expressed uniquely as\, 0 < 3As the Pauli matrices form a basis for the set2ok 2 unitary matrices,

Jj < 3, where A € D;. It follows that, for a given vector general quantum errors can always be represented by the error ogator
>_; p;E;j, where eachk; is some tensor product of Pauli matrices, and
1A pure statecan be written as a normalised complex vectorA mixed Z]. lpj|? = 1. The first stage of the error-correction process projects (e.g.
stateis a statistical sum of normalised complex vectors. vid suitable measurement of an ancillary system) the efranto an error
2For two groups,G and H, G normalisesH iff ghg~' € H, Vg € G, E; with probability |p;|2. The second stage of the error-correction then only
Vh € H. needs to deal with an error of the forfy; [53].

A=
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theorem 11) that no graph state is equivalent to a staig? C. The Boolean Context

if the algebraic degree gf is other than 2. Thus the study For ~ a " complex root of 1, we can approximate, by

of zero-dimensional stabilizer QECCs, or graph states, can é’&propriate normalisation, any vectoe (C2)2", by
cast as a study of quadratic Boolean functions, as is done In ’ '

this paper. A preliminary study of the class of pure quantum 5(x) ~ m(x)yp(@’ 1)
states that can be represented by quadratic Boolean functions o _ _
in this way was undertaken in [38]. for some sufficiently large choice of integer, wherem :

In this paper we examine the spectra of graph staesrt. Fs — Z. p : F§ — Z,, andx € F%, such that thej"
{I,H,N}", characterise those transfors € {I, H, N}» €lement ofs, s; = m(j)7*"¥, wherej € FZ. Once again
that yield flat spectra, and present preliminary results on thd¥g omit normalisation - when viewed as a pure quantum state
states represented by Boolean functions of degree greater thhf qubits, the reader should remember thahould actually
two. In part Il [45] we count the number of spectra which argatisfy >o; [m(i)y?@[* = 1.
flat, taken over al™ transforms ofs w.r.t. {I, H, N}». As  Definition 6: Fory ar'" complex root of 1, ageneralised
is shown in [45], the number of flat spectra w.{f, #, N}» affine functionof » Boolean variablesu(x) : Fy — C, is a
for pure states of the form = (—1)P is strongly dependent Product state given by
on the algebraic degree of with the enumeration typically
maximised if deg(p) = 2. [45] also shows experimentally
that those graph states which represgnt0, dJ] QECCs with wherem : F} — Z is a generalised Boolean function of
highest distanced, also have the most flat spectra w.r.tthe formm = [ex ez +¢j), e ¢ € Z,K C Zy, and

u(x) = m{x)y"*),

{I,H,N}". p:F} — Z, is an affine generalised Boolean function.
Remark: In this paper we consider that is a generalised
B. The Graphical Context Boolean function of the formm : F3 — Z;, for some
positive integer,¢, but by abuse of notation, interpret its
Quantum graph arrays, calleduster states were pro- qouputs, elements, 1,...,t—1, as the integers, 1,..., ¢ —1,

posed in [43], [6]. These clusters form the 'substrate’ fQiggpectively.

measurement-drivemjuantum computation [44]. A type of opservation: A row of ®;:l U;, where thell; are2 x 2

measurement-driven quantum computation aquantum fac- nitary matrices, can always be written as a product state, and

tor graphwas also proposed in [37], where the graphs undgrgpset of generalised affine functions are described by the

con5|derat!on are Iog:al_ly-equaler_n to bipartite cluster statgg,ys of {I,H,N}", wherem(x) : F} — F, is a minterm,

The graph!cal de;crlptlon of certain pure quantum states Wakd p(x) : F} — Z,4 is an affine function.

also investigated in [38], where observations were made about

alocal unitary (LU) equivalencédetween their graphs. These In this paper our aim is to introduce new generalised bent

graphs were interpreted as quadratic Boolean functions andriteria which try to answer the question:

was noted that bipartite graphs are LU-equivalent to indicatorswhich Boolean functions are as far away as possible from

for binary linear error-correcting codes. [51] identified a@he subset of generalised affine functions as defined by the

graphical description fostabilizer quantum error-correcting rows of {1, H, N}"?

codes (QECCs), and such descriptions were also developed

in [24], [25], and in [26]. For QECCs of dimension zero, the Spectral analysis w.r.t{I, H, N}" also has application

associated graphs ageaph stateg28]. to the cryptanalysis of classical cryptographic systems. In
LU-equivalence for graph states can be characterised, grapfiticular, for a block cipher it models attack scenarios where

ically, via local complementatioLC) on graphs, which was One has full read/write access to a subset of plaintext bits and

proven, in the context of QECCs, in [24], where LC was calledcCcess to all ciphertext bits [17]. The analysis of spectra w.r.t.

vertex-neighbour-complemefNC), and also, independently, {Z; /7, N}" tells us more aboup than is provided by the

by [28], and by [56]. Local complementation was defined ectrum w.r.t. the WHT,; for instance, identifying relatively

Fraysseix [23] and used by Bouchet [7], [8], [9] in the conte igh generalised linear biases fpr[40]. For example, [40]

of isotropic systemsand also used by Fon-der-Flaas [22]. Bg,ells us that the component functions of the S-box used in the

applying LC to a graplt; we obtain a graple’, in which case Advanced Encryption Standard (AES) have a nonlinearity of

we say thaG andG’ areLC-equivalentMoreover, the set of 112 W.r.t {H}"™, but this is reduced to agffective nonlinearity

all LC-equivalent graphs form ahC-orbit. LC-equivalence * Of 97.93 w.r.t. {H, N}" and94.06 w.r.t. both{I, #}" and

translates into the natural equivalence betw@nadditive {I.H,N}". By extension, if significantly increased biases can

codes that keeps the weight distribution of the code invaria®¢ found over 'well-designed’ S-boxes, then they should also

[11], [15], [16], [19]. There has been recent renewed intereXist across any ‘well-designed’ block cipher (such as AES).

in Bouchet's work motivated, in part, by the application ofowever the application of standard linear and differential

interlace graphso the reconstruction of DNA strings [3], [2]. CfyPtanalysis to a block cipher w.r.t. any tensor transform

In particular, variousnterlace polynomialdiave been defined 4440]. The effective nonlinearity ob(x) satisfiesy(p) — 251 (2%

[2], [1], [4],_[5] which mirror some qf the quadra_tlc results o_f FAR. @), where the peak_?c’)_ave’r‘age poweVr pratioPARM ) -

part 1l of this paper [45]. We investigate these links further @wmax(‘mz | P = U(-1)",VU € {U}), where the PAR is taken

[46], [50]. w.r.t. a specified finite or infinite sekf, of unitary transforms.
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containing N will result in characteristics which are key-w.r.t. {I, H, N}". In Section IV, we introduce the concepts
dependent in their location if the round key is XOR’ed intof bent,, I-bent, I-bent;, andLC-bentBoolean functions, and
the cipher, as is typically done, and this will make high-biashow how, for quadratic Boolean functions, these properties
characteristics hard to find. Such key-dependency does nah be evaluated by examining the ranks of suitably modified
occur if we restrict ourselves to biases w.{f, H}™ and, as versions of the adjacency matrix.

observed above, the effective nonlinearity of the S-box used

in AES is already reduced ®@1.06 w.r.t. {I, H}". II. LocAL COMPLEMENTATION (LC)

The classification of bent quadratic (degree-two) B°°|eanGiven an undirected grapty with adjacency matrix

functions is well-known [32], and is facilitated because th&efine itscomplemento be the graph with adjacency matrix
bent criteria is an invariant of affine transformation of th%—kl—kl ( mod 2), whereT is the identity matrix and. is the
input variables. However, the classification of generalised beam-ones matrix L’et/\/(v) be the set of neighbours of vertex
criteria for a quadratic Boolean function w.r.t. thé, H, N'}" v, in the graph(, i.e. the set of vertices connecteditan G.
transform set is new, and the generalised bent criteria ar&yefinition 7: [7] The action oflocal complementatiofLC)
not, in general, invariant to affine transformation of the N5 a graphG at vertexw is the graph transformation obtained

puts. This paper characterises these generalised bent critB 3eplacing the subgranB A (v)] by its complement
for both quadratic and more general Boolean functions. WgExgmple'gFor LC v?/ith?;@:[ 0(0)] y P '

associate a quadratic Boolean function with an undirected

graph, which allows us to interpret spectral flathess with  © 1 0 !
respect tof I, H, N} as amaximum ranlproperty of suitably LCo

modified adjacency matrices. We interpret LC as an operation4 2 — 4 2
on quadratic Boolean functions, and as an operation on the R
associated adjacency matrix, and we also identify the LC-orbit 3

3
with a subset of the flat spectra w.Ktl, H, N }". The spectra

w.r.t. {I, H, N}" motivate us to examine the properties of the By Glynn (see [24]), a self-dual quantum coffe, 0, d]]
WHT of all Z,-linear offsets of Boolean functions, the WHTcorresponds to a graph arnvertices, which may be assumed to
of all subspaces of Boolean functions that can be obtained connected if the code is indecomposable. It is shown there
by fixing a subset of the variables, the WHT of #ll-linear that two graphs& and G’ give equivalent self-dual quantum
offsets of all of the above subspace Boolean functions, taedes iffG andG’ are LC-equivalent.

WHT of each member of the LC-orbit, and the distance of [7], [8], [9], [14] describe the relation between local comple-
Boolean functions to alZ,-linear functions. We are able tomentation andsotropic systemsA suitably-specified isotropic
characterise and analyse the criteria for quadratic Boolegystem has graph presentatigiandG’ iff G andG’ are LC-
functions by considering properties of the adjacency matr@guivalent.

for the associated graph.

A. LC in terms of the adjacency matrix

D. Paper Overview Letp(x) : F3* — F; be a (homogeneous) quadratic Boolean
For the interested reader, Appendix | reviews the graph stig@ction, defined by,
and its intepretations in the literature. In Section Il we review p(x) = Z aijaial |

LC as an operation on an undirected graph [24], [25], and
provide an algorithm for LC in terms of the adjacency matrix ] ) ) )
of the graph. In Section Ill we show that the LC-orbit of &XPressp(x) by the adjacency matrixl’, of its associated
quadratic Boolean function lies within the set of transforflr@Ph.G:, I', such thal'(i, j) = I'(j, i) = aij, i < j, T'(i,4) =
spectra w.r.t. tensor products of thex 2 matrices,/, \/—io,, 0- W.-.0.g. the LC operation on vertex of & changesl’ to
and /.0, whereo, and o, are Pauli matrices, i.e. w.rt. o, where

{I,V/—io,,\/o,0.}". We also show, equivalently, that the

0<i<j<n—1

orbit lies within the spectra w.r.t{7, A\, \2}", and also lies 0 a81 Gon
within the spectra w.r.t{7, H, N}". We show that doing LC ot ot aoiaes i oo
to vertexz, can be realised, to within affine offset, by the, = 03 a3 + ao1aos a3: +a03a0::_1
application of the negahadamard kern¥l, to positionv (and
the identity matrix to all other positions) of the bipolar vector : '
(_1)p(x) ie ao,n—1 QA1,n—1 + a0140,n—1 e 0
o ()+ax) wa(x)(_l)pf(x) _ Uv(—l)P(x) The general algorithm, mod 2, is
1@ @IaN®I- -l (-1 Ty (i,5) =i, §) + D(v,i) * (v, ), i < j
Ly(i,i) =0 Vi

wherep(x) andp’(x) are quadratic Boolean functiong/(x) i O
is obtained by applying LC to variable, of p(x), w = e2™%/8, Lo (5,1) = Lo (3. 9),
and a(x) is an affine offset oveZs. In Appendix Il we wherel’, is the adjacency matrix of the function after doing
identify spectral symmetries that hold fp(x) of any degree LC to vertexz,,.

i>j
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I1l. LocAL COMPLEMENTATION (LC) AND LOCAL Remark: In particular, if p is quadratic therp’ only differs
UNITARY (LU) EQUIVALENCE from p by affine terms.

[28] states that LC-Equivalence (and therefore local unitary Proof: (of lemmas 1 and 2) L;‘?ﬂz( : 5) 6235;';0
(LU) equivalence® ) of graph states can be obtained vid/ithin sufficient precision let = e andb = e :
successive transformations of the form, with £, a and § integers. Then,

U.(G) = (—iaf)? T o)/, 2 px) mo (x) 7P
e Agm(x)y = Do ma ()P 0
27mio /€ A po(x) ,
whereo, = (¢ § )ando. = ($ _} ) are Pauli matrices, = ( mogx)e%w/gﬁyp?(x) > = m(x)p? 9,
the superscrip{v) in their notation indicates that the Pauli m(x)e " 3)

matrix acts on qubit (with I acting on all other qubits§ ,
and .V, comprises the neighbours of qubitin the graphical
representation. Define matricesand z as follows:

wherep = /%, 4 = lem(&, ), lcm’ means ’least common
multiple’, andp’(x) : F§ — Z,, satisfies

x:i(_wz)yQ:% < —:; _11' ) p'(x)zu(p(rx) _i_a—i—xoéﬁ—a)). @)
and LetnowA = ( ; ¢ ). Then,

st (3.2).

wherew = ¢2™/8, Observe that: and z are generators of the ) ,

local Clifford group,C; . Furthermore, lef = ( ) 9 ). =m(x+ (1,0...,0))ur ),
In this section we show that the LC-orbit of anvertex

graph,G, is contained within the flat spectra ¢f1)? w.r.t.

{I,z,zz}", whereG is the graph associated o We then <p(x+ (1,0...,0))  B+zo(la— g)) ©)

2miB/€(_1\p1(x)
o (T
Aom(x),u ( mo(X e27r7,a/§(71)?0(x) (5)

where

show that, as we are only interested in the multi-set of powerp/<x) =u r + ¢
spectral values w.r.t. each membeéf z, xz}™, then one can
replace{I,z,zz}" by {I,\,A\?}", and also by{I,H,N}". Lemma 1is proved by equations (3) and (5), as these equations
Finally, we show that successive application¥fto (—1)” demonstrate that the action of, leavesm(x) unchanged or
generates the LC-orbit as a subset of the comdlétél, N}" permutes its outputs. Lemma 2 is proved from equations (4)
spectra. and (6) as the only extra terms introduced are linear or constant
or, viap(x + (1,0...,0)), terms of degree< deg(p(x)). H

A. The Diagonal Group Remark: Observe that we have proved w.D, but trivially

. ) ) the proof also holds w.r.D;, asD; C D.
gr(E)ue;m(l;uon 8;;3;)|sisthgeenseurl;gt:]égugydof thear:(()jc(all CLlff)ord Example: Letm(x) = 1 and letp : F2 — Zy, p(x) =

L1, 1 y Oz, o i )» _ _
wherew = €2™/% and |D,| = 64. Let D be the infinite 2zoz1 + o + 1(mod 4). Then p(0,0) = 1, p(1,0) = 2
set of 2 x 2 matrices such that every element in the set ®0,1) = 1 andp(1,1) = 0, so#@) = [ ~1 ). Let A =

0 1

either of the form( ; { ) or of the form( | ¢ ), where ‘ _
a,be C,lal = |b| = 1. (o V) €Dy Then, (A ® I)iPt) = ( o ) = 9 with

We call D the diagonal setand D, the diagonal group L F2 — Zy, g(x) = 2zoz1 + 2. We (l:an re-writeid>)
wr_]ereDl C D. D, is also aSylow-2 subgroupf the local 54 (_1)9’()«), with ¢'(x) Boolean,¢'(x) = aoz1 + 1. It is
Clifford group” . straightforward to verify that this example satisfies lemmas 1
Following (1), lets = m(x)y?™). Let A € Dy, andA; =  gnd 2.
I® - @I®A®I---®I, with A at position;j of the tensor
product. W.lo.g, letj = 0, and lets’ = Ags = m/(x)u? ),
where . is some complex root of one.

Lemma 1:The multi-set of 2™ magnitude values
{Is6_ools 186 _o1ls---181. 111} is equal to the multi-set
of 2" magnitude valueg|so...ool, [so..01; - - [s1..11[}- only on terms of degree 2. We introduce the symhsl.’

_Lemma 2:Let p(x) be a function of degred. Thenp'(x) Definition 9: Let w and v be two 2 x 2 unitary matrices.
differs from p(x) by terms of degree< d. Then

From lemmas 1 and 2 we conclude that a final multiplication
of a vector by a member dD,, = {D;}" leaves invariant the
multi-set of power spectra values, and also leaves invariant the
underlying graphical interpretation of a vector described by a
guadratic function, as the graphical interpretation is dependent

51t remains an open problem to establish whether LU-equivalence of two u~v & u=Av, AeD .
graph states implies LC-equivalence of the same two states (see Chapter 6 of
[55] and [58]).
6For instances? = IQ TR0, @I ® ... Q1.
"Thanks to Patrick Sole for pointing this out, and similary w.r.t. the Remark:Note thatu ~ v cannot be deduced from (and does

transform group. not imply) u = vA.
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B. The Transform Group bound being3™. It has been computed by Danielsen in

Definition 10: T, is the subgroup of the local Clifford [16] that, up to graph isomorphism, the number of LC-
group, C1, generated by\ = w5N = % (1 ), where orbits for connected graphs fon = 1 to n = 12
IT;| = 3. We call T; the transform group because it Is 1, 1_7 1,2,4,11, 26,101, 440, 3132, 40457, and 1274068, re-
represents the unique maximal subgroup of transforms wittiRECtVely (see also [28], [25], [29], [15], [52], [19)).
the local Clifford group that do not, in general, leave the multi- ) o
set of power spectral values invariant. Observe that N16, D- The LC-orbit Occurs Within th¢Z, H, N}" Set of Trans-

T, is also aSylow-3 subgroupf the local Clifford group.  form Spectra

Remark: As C; = D; x T4, every element ofC; can Asz ~ XAandzz ~ )2, and asN ~ X and H ~ )2,
be represented uniquely hy)\’/, 0 < j < 3, for somej and and, as it also follows thalv ~ z and H ~ zz, we can,
someA ¢ D;. This fact leads directly to theorem 1, and isvithout change, replace the transform §&tx, 22}™ with the
used implicitly in the proof of theorem 1. transform set{I, H, N}", as the set of multi-sets of power

In this paper we are interested in the set of multi-sets epectral values remain invariant under such a change. This is
power spectral values of a vecterw.r.t. the transform set of theoretical interest becaugé defines a 2-point (periodic)
T, = {T1}". Asz ~ X andxz ~ A2, we can, without loss, discrete Fourier transform matrix, amd defines a 2-point
focus on such sets w.r.t. the transform $étx, x2}", as is negaperiodic discrete Fourier transform matrix. In other words
done in the next subsection. A¢ ~ \ and H ~ \?, we can a basis change from rows af andzz to rows of N and H
also, without loss, focus on such sets w.r.t. the transform gebvides a more natural set of multidimensional axes in some

{I,H,N}™, as is done primarily in this paper. contexts. Observe that, fera non-negative integer,
3t b7 3t+1 3t+2 24
C. The LC-orbit Occurs Within thé¢l, z, zz}™ Set of Trans- N"=wii=l, N ~N, N ~H, N7 = I(’7)
form Spect'ra'l where w = €27¥/8, The {I, H,N}" transform set ovem
Summarising (2), binary variables has been used to analyse the resistance of

Lemma 3:Given graphsG; and G as represented by certain S-boxes to a form of generalised linear approximation
quadratic Boolean functionsp(x) and p'(x), then G in 40]. It also defines the basis axes under which aperiodic
and G' are in the same LC-orbit iff(—1) G _ autocorrelation of Boolean functions is investigated in [17],
Uy, U Uy, (—1)P%9 for some series of local unitary ang has been used to define Béifford merit factor - an

Vt—1 Y Vt—2
transformations(/.,,. _ _ _ . entanglement measure [41]. Thegahadamard transform
Thus by applyind/, (G) successively for variousto an initial N}", was introduced in [35] and, in [46], [47], it is noted

state, one can generate all LC-equivalent graphs within a finjigy; he peak-to-average power ratio of the spectrum of a
number of steps. (It is evident that the action of LC generatgsciors wrt. the negahadamard transform is givengby 1),
an LC-orbit of finite size). Instead of applyirig successively, \yhere 4 is the interlace polynomial of the associated graph.
it would be nice to identify a (smaller) transform set in whickegniryctions for Boolean functions with favourable spectral
all L.C—.eqL.uvaIent graphs exist as spectra, to within a posﬁ'roperties w.rt{H, N}" have been proposed in [39], and
multiplication by a member oD,,. One can deduce from [3g] showed that Boolean functions that are LU-equivalent to
definition 9 thatzz =~ x. Therefore, indicators for distance-optimal binary error-correcting codes
Lemma 4:zzz ~ I, andazz =~ 212 . yield favourable spectral properties w.£f., 7 }". Pivot orbits

We can now derive the following. , of a graph w.r.{ I, H}" have been characterised in [48], [49].
Theorem 1:To within subsequent transformation by a

member _ofI_)n, the LC-orbit of the grath, over n qubits E. A Spectral Derivation of LC
occurs within the spectra of all possible tensor product com- i o » .
We now derive LC by examining the repetitive action

binations of the2 x 2 matrices,I, z, andzz. There are3" )
such transform spectra. of N on the vector form of the graph states, interspersed

Proof: For each vertex inG, consider every possibIeWith the actions of certain matrices from,. These repeated
product of the two matrices;, and z. Using the equivalence actions not only generate the LC-orbit of the graph but, more

relationship, ~’, and lemma 4 generally, also generate thé, H, N'}" transform spectra. The
LC-orbit can be identified with a subset of the flat transform
T =X zra >~ I spectra w.r.t.{I, H, N}". Let s = (—1)?®®), wherep(x) is
rrz ~ 1 ZxZ ™~ T2

Boolean quadratic and represents a gréphThen the action

Ll = 2z = Tz REX =X of N, on G is equivalent tol, s, where:

~ / —_— ... DY
Thus, any product of three or more instancescond/or Up=Uy =18 @I NQI® &I,

z can always be reduced th x, or xz. Theorem 1 follows where N occurs at position in the tensor product decompo-
by recursive application of (2) with these rules, and by notirgjtion. Let us writep(x), uniquely, as,

that the rules are unaffected by tensor product expansion over _

n VertiCES. ] p(X) - vav (X) + q(X) 9

Theorem 1 gives a trivial and very loose upper bound amhere ¢(x) and N, (x) are independent of, (N,(x) has
the maximum size of any LC-orbit oven qubits, this nothing to do with the negahadamard kern#¥l,). We shall
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state a theorem that holds fefx) of any degree, not just Substituting fora and g gives,
guadratic, and then show that its specialisation to quadrati
p(x) gives the required single LC operation. Expregs(x) & = 2[a()]+ 2z Ny ()] +3[No ()] +3[ze] - (modd) -

as the sum of- monomials,e;(x), as follows, Applying Lemma 5 to the term3[\, (x)],
r—1
No(x) =D ei(x) . [ =21 ej(x)er(x)| +3N,(x) (mod4) .
i=0 j#k

Forp(x) of any degree, the;(x) are of degree< n—1. Inthe Furthermore, Lemma 5 implies that,

sequel we mix arithmetic, mod 2, and mod 4 so, to clarify, _
anything in square brackets is computed mod 2. Thel} [Zf 0 A} (mod4) = QZE:é[Ai]( mod 4),
result is then embedded in mod 4 arithmetic for subsequent where A; € F2,t >0 .
operations outside the square brackets. Define, Thus we obtairﬁ’(x), and re-introducing the global phase,
r-1 this establishes that = wi?’. [
Nj(x) = [ei(x)]  (mod4) For p(x) a quadratic function)\,(x) has degree one, so
=0 N!(x) is a sum of degree-one terms ovéf. Therefore the
Theorem 2:Let s’ = U,s, wheres = (—1)?®) ands’ = Za degree-one termgdy// (x) and3[z,], can be eliminated from
wi? X wherew = ¢27/8. Then, (8) by appropriate subsequent action by a membd pfo s’.

As all monomialse;(x), are then of degree one, (8) reduces

P(x) =2 [p(x) + 5 e5(0en(x)] +3Mx) +3[e], to,

(modd). g P =pe)+ Y wme  (mod2),  (9)
J,keEN,, j#k
Proof: Assign to A and B the evaluation ofp(x) at wherep/(x) ~ 2[p/(x)]. (9) precisely defines the action of a
x, =0 andx, = 1, respectively. Thus, single LC operation at vertex of G, where we have used
N ~ to mean that” ®) = B(—1)?®), for someB € D,,. As
= P(X)a,—0 = a(x) . p'(x) is also quadratic Boolean, we can realise successive LC
Similarly, operations on chosen vertices@hvia successive actions of
at these vertices, where each actiombmmust be interspersed
B = p(x)a,=1 = No(x) +q(x) . with the action of a matrix fronD,, to eliminateZ,-linear
We need the following equality between mod 2 and mod &'ms from (8) and the residu@k constant term introduced by
arithmetic. w. In particular, one needs to intersperse with tensor products
Lemma 5: Of_lgh ) %”g.( ) ho 4 b
i1 _ eorem 3:Given a grapnh,G, as represented by =
Zi?EEAi] (mod4) = (—1)P™), with p(x) quadratic, the LC-orbit of7 comprises
{Zizo Ai:| +2 [Ei# AiAJ} ( mod4), graphs which occur as a subset of the spectra Wii,tH, N'}"
whereA; € Fo,t >0 . acting ons.
Proof: DefineD’ c D; such that
Observe the following action aWv: “ a
g D'={(: ), (0 ¢) | a=1b==41} .
1 1 7 1 _ 1 .. . y
ﬁ( 1 > ( 1 ) = w( _ ) , Similarly, defineD” D, such that
. r=L(e ) (0 s a=1,b=+i},
wherew = €27/8, For the moment we ignore the global o) (e ) V\‘/hereiQ =—1. }

constant,w, so that N maps(—1)% to i°* and, similarly,
(—1)1° t0 i'2, (—1)°! to0 *° and (—1)'" to 2!, where by Then for anyA;, A} € D/, any A, A, € D”, and anyc €

c {1,i,—1,—i},
we mean . In general, forA,B € Fo, «,3 € Zy4,
& ) g 2z @f € Ls NA, = A\ N HA, = A H 0
(—=1)48 is mapped byN, to i*?, where, NAs; =cAH HA5 = c¢AN . (10)
a =2[AB]| + [A] + 3[B] ( mod4) Let A, € D’(JD”. Then successive applications of, N
B =2[AB]+3[4] +[B]+3 (mod4) . can, using (10), be re-expressed as,
Substituting the previous expressions tdrand B into the [[(aN) =cA JIN~]] N .

above and making use of Lemma 5 gives, .
g g But, from (7), successive powers df generatel, H, or N, to

a(x) = 2[g(x)] + 3Ny (x)] ( mod 4) within a final multiplication by a member d; . It follows that

B(x) = 2[g(x)] + [Ny(x)] +3 (mod4) . successive LC actions on arbitrary vertices can be described by
~, : the action ons of a member of the transform s€t], H, N},
P (x)~can now be written as, and therefore that the LC-orbit occurs within the, H, N}
P (x) = (B[xy] + Da(x) + [x,]8(x)  (mod4) . transform spectra of. [
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F. LC on Hypergraphs wherek € FJ andd € F». In other words, ifp(x) is bent then

For p(x) of degree> 2, N, (x) will typically have degree SO are all _its affine offsets, mod 2. queve_r the above does
higher than 1, and therefore the expansion of the sum wipt follow if one considers every possikig -linear offset of
contribute higher degree terms. For such a scenario we can$)- The WHT of p(x) at positionk, with a Z4-linear offset,
longer eliminate the nonlinear and non-Boolean tekfi(x), S Specified by, can be defined by,
from the right-hand side of (8) by subsequent actions from  o—n/2 N 20p(x)+k-x]+[e-x n
D,,. Therefore, it is typically not possible to iterate LC graph- Plee =2 ! Z (®) . e keely . (12)
ically beyond one step. We would like to identify hypergraph
equivalence w.r.t. localinitary transforms, in particular w.r.t.  Definition 11:
{I,H, N}". Computations have shown that orbits of Boolean
functions of degree- 2 and size> 1 do sometimes exist with
respect to{ I, H, N}™, although they appear to be significantly

x€Fp

p(x)isbeny <« VkeF; dJcsuchthatPy.|l=1 .

smaller in size compared to orbits for the quadratic case [17]. ot Rn andRy partition {0, 1,...,n — 1}. Let,
An interesting open problem is to characterise a 'LC-like’

equivalence for hypergraphs. U= H H; H N; .
Further spectral symmetries of Boolean functions w.r.t. jERm  jcRn

{I,H,N}"™ are discussed in Appendix II.
s =U(=1)P*) | (13)
IV. GENERALISED BENT PROPERTIES OFBOOLEAN

Lemma 7:p(x) is beny if there exists one or more parti-
FUNCTIONS

tions, Ry, Ry such thats’ is flat.
A. Bent Boolean Functions Proof: The rows oft/, U[t], can be described ki),
A bent Boolean function can be defined by using the WHWhere thef,’s are linear.,f; : Fy — Z,, and the coefficient of
Let p(x) be our function overn binary variables. Define the z; in any f;, € {0,2} for j € Ry ande {1,3} for j € Rn.
WHT of p(x) at positionk by, Therefores’ can always, equivalently, be expressedsas-
Y ke H ;) (i) ] where f is linear, f' : F — Fs, and
Pe=27"" Z (’1)1)( e 11) t(rlgjcoje)f(fic):ient ofz; inany f’ is 0 for j € Rli, and1 for
x€Fg j € Rn. =
where x,k € F3, and - implies the scalar product. An alternative way to define the benproperty for p(x)
The WHT of p(x) can alternatively be defined by = quadratic is via a modified form of the adjacency matrix.
(1= Hy)(—1)Pt). Lemma 8:For quadratig(x),
p(x) is bentif |P¢| = 1 Vk, in which case we say tha{x)

has aflat spectraw.r.t. the WHT. In other wordsy(x) is bent ~P(X) i beni < I'y has maximum rank as a binary

if P is flat matrix, for somev € F3 |
Let T be the binary adjacency matrix associatedpt{a)

whenp(x) is a quadratic. whereT', is a modified form ofl" with v; in position [i, 4],
Lemma 6:[32] wherev = (v, U1, ..., Vn_1).

_ _ _ _ Proof: We first show that the transform df-1)7)
p(x) is bent < T"has maximum rank as a binary matrix b tensor products off and N' produces a flat spectra iff
the associated periodic and negaperioBli@utocorrelation

All bent quadratics are equivalent under affine transform@pPectra have zero out-of-phase values. We then show how these
tion to the Boolean functio Z?:Bl ToiTaisn ) + ¢ % +d autocorrelation constraints lead directly to constraints on the

for n even, wherec € FZ, andd € Fy [32]. More gen- assoua_ted adjacengy matrlx: :
erally, bent Boolean functions only exist for even. It is ConS|d§(rre)1 funcpon;a, of ].USt. one Va”able’jino’ and Igt
interesting to investigate other bent symmetries where aﬂige: (=1)7%’. Define theperiodic autocorrelation function
symmetry has been omitted. In particular, in the context )
L)é, we ere interested in the ex?stence and number of flat ak = Z (—)ple)Fplzoth), kel .
spectra of Boolean functions with respect to thH, N}"- w0 R
transform setlfent), the {7, H }"-transform setl¢ben), and Claim 1: It is well-known thats’ = Hs is a flat spectrum iff
the {I, H, N }"-transform setltbent,). ar = 0 for k # 0.
The negaperiodic autocorrelation functiois less well-

B. Bent Properties with respect tod, N} known. It has been investigated in, for instance, [36], and
{H,N}" is the set of 2" transforms of the form in multivariate form, in [35]. Whereas the periodic auto-
[T;cry Hi Tl cry Ni» Where the set®y and Ry partition correlatlgn compares a sequence with its cyclic ShlftS., thg
{0,...,n— 1} negqperlodlc .autoc':orrelatlon compares a sequence with its
The following is trivial to verify: modified cyclic shifts, where the elements wrapped round

p(x) is bent < p(x) +k-x+d is bent, 8or odd-periodic
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are multiplied by—1. Define the negaperiodic autocorrelatioriunctions, the remainder is always linear or constant. This
function by, gives us a system of linear equations represented by the binary
by = Z (—1)P)+p@otk)thotl) g e, _adja_cenc_)( Tatrlxl“, Of‘p(x), with a moglfled diagonal, that
is with I'; ; = 1 for all ¢ € Ry, andT’; ; = 0 otherwise. Let
zo€F2 '

Claim 2: s’ = Ns is a flat spectrum iffb, = 0 for k& # 0 °.

We now elaborate on claims 1 and 2. Define
s(z) = so + sz, a(z) = a + a1z, and Therefore,
b(z) = by + biz. Then the periodic and negaperiodic n—1 . —
rt(ela)ltionship())s betbveen autocorrerl)ation and fouriergszectra %X) +px+k)+3 5 Xry (D)kizi
; Lo i " R0 (Xr, (0)zo + agiz1 + agaza + -+ + a0 n—1Tn—1)
claimed above, follow because periodic autocorrelation can bik (aN o+ (1)71 + aoaws + - - + a1 Tn1) 4
realised by the polynomial multiplication,(z) = s(z)s(z~!) kl 010 T Xryg (1)1 7T 40272 On—t "_11
mod (22 — 1), with associated residue reduction, mad- 1) Hhn-1(a0n-120 +++ + Gn-2n—1Tn-2 + Xy (0 = 1)Tn-1) -
and mod(z +1), realised bys' = Hs = % (1 _1)s with Thisis equal to:
the Chinese remainder theorem (CRT) realisediy’, where 20(Xp (ko + agrky + - - - + agnkn )+
'’ means transpose conjugate. By Parsewalcan only be x1(ao1l\l;o + Xnw Wk1 4+ a1 k1) + -+
flat if a; = 0. Similarly, negaperiodic autocorrelation can be B ’
realised by the polynomial multiplication(z) = s(z)s(z~!) _ ]
mod (% + 1), with associated residue reduction, mad—i) Which is balanced unless constant. The constant
and mod(z +1), realised bys' = Ns = = (1 _{ ), with 2i=o Xny (1)K Will not play any role in the equation

p('r()vxh e 71'n_1) -
a01To%1 + -+ 0iTiT; + -+ A2 n—1Tn—2Tn—1 .

Tn—1(a0,n—1ko ++* + an—2n—1kn—2 + Xg, (n = Dkn-1),

\/Q - . .
the CRT realised byV's’. By Parsevals’ can only be flat if A, = 0, and can t.>e ignored. We have the the following
by = 0. system of equations:

We now extend this autocorrelation» Fourier spectrum Xrp (0)ko + ap1k1 + aogka + -+ +app—1kn—1 =0

duality to n binary variables by defining multivariate forms g ko + Xrp (Dky + a12ke + - - + a1,n—1kn—1 =0
of the above polynomial relationships. If we choose periodic ...,
autocorrelation for indices iRy and negaperiodic autocorre-  qq ,, 1k + a1 1k + -+ an_on_1kn_2

lation for indices inR;, we obtain the autocorrelation spectra, + Xny (n—1)k,—1=0 .
Ak Ryg Ry = Z (fl)”(x)ﬂ’(ﬁk”zi’: Xry (DRi(@itD) - Writing this system as a matrix, we have:
x€Fy
(14) XRN (0) aoi ao2 e ag,n—1
where k = (ko,ki,...,k,—1) € F%, and xg (i) is the aor  Xpy (1) a2 ... a1n-1
characteristic function oRxy, i.e, ao2 a2 Xgy(2) .- a2,n—1
~_ ) 1L, ieRN : : : :
Xry (i) = 0, i ¢ Ry ao,n—1  Aln—1  A2n—1 ..o Xmy (n—1)
In - polynomial terms, withz € F3 and s(z) = Thisis a modification of’, with 1 or 0 in position of the
Zjng sj[[i=o #i*, we have, diagonal depending on whethez Ry or i € Ry. ]
1l In general,
ARy Rn(Z) = Ak Ru,R 2 . .
i (2) k;Fg e E) ’ p(x) is bent z p(x) is bent, .
_ -1 -1 -1
= s(z0 21, Z”_,IL),sl(ZO SRR Theorem 4:All Boolean functions of degreg 2 are benj.

mod ] (zF — (1)) . . .
=0 Proof: Degree zero and degree one functions are triv-
(15) ial. Consider the adjacency matriX, associated with the
Then, by appealing to a multivariate version of Parsevakfuadratic Boolean functiom(x). We now prove that', has
theorem,s” as defined in (13) is flat iffly r,; Ry =0, Vk # maximum rank as a binary matrix for at least one choice

0. of v, whereI'y, = TI' + diagv) as before. LetM be the
These constraints on the autocorrelation coefficients ofminor associated with the first entry @f, in other words,
translate to requiring a maximum rank property for a modifiedt 0= ( © | ) . We prove by induction that there exists

adjacency matrix, as follows. The conditiohc R Rx = 0 at least one choice of such thatl', has maximum rank as
for k # 0 is equivalent to requiring that, if we compare thg pinary matrix. The theorem is true far= 2: in this case,

function with its multidimensional periodic and negaperiodig _ (o ) . Then, either déT) = 1, in which case we
rotations (but for the identity rotation), the remainder Shou'@nooseav _

0,0), h =0 t h). In th
be a balanced function. When dealing with quadratic Boole:'a(,pSt case W( ,0), or we havea (empty graph). In the

e choose = (1,1), sodet(I'y) = 1+ a = 1.
%In fact, for p a Boolean function of just one variabl&]s is never flat and SUpPofse the theorem is true for— 1 Va”ak_)les' We_W'“ see
Ns is always flat. that it is true forn variables. If the determinant daf is 1 we
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takev = (0,...,0) and we are done. If dit) = 0, then we wherer(z) = s(z0, 21, -, 2Zn_1)5(2g 'y 21 ooy 20 00).
have two cases: But as r(z) comprises monomials containing only
. det(M) = 1: Takev = (1,0,...,0). 271,29 2}, the modular restriction in (16) has no effect on

o det(M) = 0: By the induction hypothesis there is atcoefficient magnitudes, and
least one choice oW (M) € Fy~!, wherev(M) = n
(v1,...,vn—1) such thatM, ) has full rank. Letv’ = r(z) = r(z) mod I_I(Z;l —-1) .
(0,v1,...,v,—1) € F3. If det(T'y+) = 1 we have finished. j=0
If det(I'y+) = 0 we are in the first case again, so we takg, wijthin a multiplication of the coefficients by 1. It follows,

v=(Lvi,...,vn-1), and we are done. by application of the CRT to (16) that, ilr,, ry (2z) = 27,
The theorem follows from lemma 8. B VRy, Ry, thenr(z) = 2™ also, i.er(z) is integer. But this is
Remark:Theorem 4 is true even for Boolean functions assimpossible as the coefficients of the maximum degree terms,
ciated with non-connected or empty graphs. ]'[j zj‘“’, u; € Fo, in r(z) can never be zero, but are always
Lemma 9:Not all Boolean functions of degree 2 are =£1. ]
bent,. Remark: Although we proved it only for Boolean functions,
Proof: Counter-example - by computation there are niv is possible to generalise theorem 5 for functidtfs— Z,,
bent, cubics of three variables. m for any even integey.

Further computations show that there are no bduolean

functions of four varlaples of degree 2..S|m|.IarIy, therg are ~ pgent Properties with respect , H}"
only 252336 bent; cubic Boolean functions in five variables . N
(out of a possibl@2’ — 219, not including affine offsets), and 1/, H}" is the set of 2* transforms of the form
no bent Boolean functions of degree 4 in five variables. 1ljer, Ii [Ljer,, H1j, where the setRr and Ry partition

Bent, cubics of six variables do exist. Lemma 9 identifies ah': - -- -7 — 1}- [38] has investigated other spectral properties
open problem: w.r.t. {I,H}", such asweight hierarchyof an associated

binary linear code if the graph is bipartite.
What is the maximum algebraic degree of a heBivolean The WHT of the subspace of a function froR§ to Fy,
function ofn variables? obtained by fixing a subseR;, of the input variables, can be
defined as follows. Lef € F5 be such tha#; = 1 iff j € Ry.
Letr < 0, where <’ means tha¥! ‘covers r, i.e.r; < 6;, Vi.
ghen,

Theorem 5:There is no Boolean functiop(x) such that
|Pgc| =1 Ve, k € F3.
Proof: This is trivial for degree zero and degree on

functions. . . . . Pk,r,e = 2_(n_Wt(9))/2 Zx:r+y\y5§(_1_)p(x N E (17)
Let p(x) be a quadratic. Consider the adjacency mairix, k=<0,r<
associated wittp(x). For degree 2, the theorem is equivalent _
to proving that there is & such thatl’, has rank less than Definition 12:
maximal. Then: p(x)isl-bent <  Vk <0,Vr <9,
1) if p(x) is not bent, then we take = (0, ...,0) and we 30 such that| P » 9| = 1,
are done. where wtf) < n.
2) if p(x) is bent, we také\l as in the proof for Theorem
4. If det(M) = 1, we takev = (1,0,...,0) and we  Let
are done; ifdet(M) = 0, modify the diagonal as in v=115 11 # - (18)
the proof for Theorem 4. If the determinant of the new jER1  jERm
Tatrix is equal td), we are done; if not, we are in case § = U(~1)Pe (19)

Let p(x) be a function of degree higher than quadratic. Lemma 10:p(x) is I-bent if there exist one or more parti-
Consider the proof of Lemma 8. We have established th#fns, R, Ru such thats’ is flat, where|Ry| < n.

for a fixed choice ofRy and Ry, s/, as defined in (13), An alternative way to define the I-bent property ) is
is flat if and only if Ai g, ry = 0, V k, k # 0. Therefore Via its associated adjacency matrik,LetI'; be the adjacency

p(x) is such that| P | = 1 Ve, k € F2 iff Ay gy ry = 0, Matrix obtained fromi™ by deleting all rows and columns of
vk, k # 0, for all partitons{ Ry, Ri}. In particular, ifp(x) I' with indices inRj.

is such that|P .| = 1 Vc,k € Fy, then the polynomials, Lemma 11:For quadraticp(x),

ARy Ry (2), as defined in (15), satistdr,, ry (z) = 27 for
all choices ofRy andRy; (i.e. their out-of-phase coefficients
are all zero). By the CRT we can combine theses polynomidés one or more choices dRy, where|Ry| < n.
for each choice oRy and Ry to construct the polynomial, In general,

p(x) is I-bent < I'; has maximum rank as a binary matrix

n . = .
r(z) mod [](z] — 1) = CRT{AR,, rn(2) | VRu,Rn} | p(x)isbent ,  p(x)is I-bent.
j=0

(16) Theorem 6:All quadratic Boolean functions are I-bent.
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Proof: It is easy to show that all quadratic BoolearD. Bent Properties with respect til, H, N}"
functions of 2 variables are I-bent. The theorem follows The (H N}nf\RI\ set of transforms of the subspace of a
by observing that all adjacency matriceE, representing f,nction from F2 to F,, obtained by fixing a subseR;, of

quadratic functions o, > 2 variables contaire x 2 non-  the input variables, is defined as follows. &€ F} be such
zero submatrices, obtained fromby deleting all rows and 5t 0, = 1iff j € Ry. Letr < 0. Then
. i L

columns ofT" with indicesRy, for |Ry| =n — 2.

Remark:An I-bent function is a Boolean functign: F} —  Pccro = 2~ (n-W(©))/2 Dty |y <a(8)? PO TR Flex],
F, such that there exists (w.l.o.g.) a decompositiorFpf= k,c<0,r=<6 .
F3' x F32 in such a way that (20)

Definition 13:

plwy=a):F3' —F, p(x)is bent, < Yk <0,¥r <6,

is bent for alla € Fy=. dc, 0 such thal| Bc.r ol = 1

Remark:An I-bent function is a Boolean function imvari- where wtf) < n.

ables such that the function, after fixing the subset of variables et R;, Ry and Ry partition {0,1,...,n —1}. Let,
indexed byRy, |Ri| > 0, is bent in the remaining variables

indexed byRy. Thereby, one can create I-bent functions v=115 11 # ] - (21)
by choosing2/®1l arbitrary bent functions and concatenating jER1 jERm  jERN

them, or even by taking a bent function in a set of variables and

!/ X
any non-bent function in the remaining variables and adding S = U0 (22)
them. Lemma 13:p(x) is I-bent, if there exists one or more
Theorem 7:The maximum degree of an I-bent Booleampartitions, Ry, Ry, Ry such thats’ is flat, where|Ry| < n.
function inn variables, where, > 2, isn — 1. As a generalization of (14), we get flat spectra for one or more

Proof: First, we show an I-bent Boolean function in partitionsRy, Ry, Ry iff

variables of degree — 1:
Ak RiRu Ry =

n—1 ; (s
p(x) = xor1 + 2172 Tp—1 - Zx:r+y|yj§(—1)p(x)+p(x+k)+2i:“ Xag (WRi(EA1) _ o
vk #0 |,
Let p(x)|r, be a restriction op where the variables indexed

by members ofR; have been arbitrarily fixed. If we takeWhered; =11iff j € Ry, r <0, andr; = k; if j € Ry.

R;={2,...,n— 1}, we see that _ An alter_na_tive_ way to defi_ne the I-_barmroperty yvherp(x)
is quadratic is via its associated adjacency mafrid.etI';
P (2o, 21) = To21 be the matrix obtained frorlr, when we erase thé&" row

P)IRs = { P (o, 1) = 201 + 21 and column ifi € Ry.

) Lemma 14:For quadraticp(x),
Both are bent, s@ is I-bent.

We now show that there is no I-bent Boolean function P(X)is l-bent <« Ty, has maximum rank as a

of n variables, whenn > 2, of degreen. A Boolean binary matrix wherev < ¢
function p of degreen in n variables can be written as for one or more choices of
p(X) = zo---xu1 + g(x), with dedg) < n. W.lo.g., v andf, where wtf) < n.
let Ry = {0,...,n1 — 1}. Then, after fixing the variables | |
in Ry, the possible functions we get areix)|lg, = n general,

Ty ooy 1) =Ty a1 + G (T, oo T . = x) is bent, = .
{ Z/;Exni““’xnj; _ g/(}m’._.fmnﬁﬁ( ! ) p(x) is bent e ngg i I-be?n £ p(x) is I-bent,.

with ¢'(zp,, -+, Zn—1) = 9(X)|r,. Both must be bent fop

to be I-bent. Suppose that-n, > 2: then eithen’ orp, are Theorem 8:All Boolean functions are I-bent

functions of degree. — n; in n —ny variables, s@ cannot be Proof: From Theorem 2, the action of a singlg, on
bent. Therefore: —n, < 2. Supposer —n; =2 or 1. Then, a Boolean functionp(x), of any degree, always gives a flat
either p} or p; (or both) are affine, and there are no affingutput spectra, for any value of This gives (at leasty, flat
bent functionsn —n; = 0 would imply Ry = {0,...,n—1}, spectra for any Boolean function. n
and by definition|R;| < n. Thereforep cannot be I-bent, so  Corollary 1: There are no Boolean functiopéx) such that
there are no I-bent functions of variables of degree. = |Pecrsl =1V0,c.k,r, k,c < 0,r <6.

Computations show that there are 416 I-bent cubics in  Proof: Follows from theorem 5 or lemma 12. [ ]
four variables, and that there are 442640 I-bent cubics, andtis natural to ask whether, for a given quadraticx), there
1756160 I-bent quartics in five variables. exists at least one member of its LC-orbit which is bent. If

Lemma 12:There is no Boolean functiop(x) with the so, then we state that the graph staiex), and its associated
property|Px 9| =1V 0,k,r, k <0, r < 0. LC-orbit, is LC-bent More formally,

Proof: Lets = (—1)?™). Let |Ry| = n — 1. Then forU Definition 14: The graph statep(x) (a quadratic Boolean
as defined in (18)s’ cannot be flat. m function), and its associated LC-orbit isC-bentif 3 p’(x)
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such that’(x) € LC-orbit(p(x)), and such thap’(x) is bent. could be characterised by looking at the ranks of suitably
modified versions of the adjacency matrix. In part Il [45], we
For example, the bent functiotyz, + zoz2 + zoxs + 122+  apply this method to enumerate the flat spectra W.EtH }™,
x123 + x2x3 IS in the same LC-orbit asgz, + zoxe + zoxs {H,N}™ and{I, H, N}" for certain concrete functions.
so, althoughegz; + zox2 + xgx3 IS NOt bent, it is LC-bent.
In general, forp(x) quadratic,

APPENDIX I
p(x) is bent = p(x) is LC-bent VARIOUS INTERPRETATIONS OF THEGRAPH STATES
#= In this section we summarise the different interpretations of
Theorem 9:Not all quadratic Boolean functions are LC-graph states, following [7], [8], [9], [11], [14], [24], [25], [34],
bent. [38], [54], [55].

Proof: By computation, the LC-orbit associated with the
n = 6-variable Boolean function;gzs+x125+xoxs+x324+
r4xs5 IS not LC-bent. [ |
By computation it was found that all quadratic Boolean Given a graphG on n vertices with adjacency matrik,
functions ofn < 5 variables are LC-bent. Table | lists theone defines: commuting Pauli operators
orbit representatives for those orbits which are not LC-bent, ) *)
for n = 2 to 9, and provides a summary for = 10, where Ko, = oz erNj 0z
the Boolean functions are presented in algebraic normal form ) a1, (L.
(ANF) and abbreviated so that, sayh,de, fg is short for = oa [[ip(oz") 7",
TaTy + TqTe + x4 FOr those orbits which are not LC'benR/vherea,.
we provide the maximum rank satisfied by a graph within th(%) -
orbit.

A. Interpretation as a Graph

(23)

=(7 ¢ )ando. = (s ° ), andthe superindex
implies that the operator has the corresponding matrix
on the i*" position in the tensor product and the identity

[ n [ ANF for the orbit representativé Max. Rank within Orbit] elsewhere.

25 - - Definition 15: [28] Graph states associated with the
6 04,15,25,34,45 4 vertex graph,G, are the set of pure-qubit quantum states
7 - - that are stabilized by a stabilizer of hermitian operatéfs,,
8 07,17,27,37,46,56,67 6 generated by K¢ ,0 < j < n}.
06,17,27,37,46,56,67 6 J . .
07.17.25.36.46 5767 6 It follows that the pure state of qubits, |¢), is a graph
06,17,27,36,45,46,47,56,57,67 6 state iff
07,16,26,35,45,47,67 6 K — 4.
9 08,18,28,38,47,57,67,78 6 cl¥) )
08,18,26,37,47,56,68,78 6
10 08,19,29,39,49,58,68,78,89 6 B. Interpretation as a Quadratic Boolean Function
51 other orbits 8 N o .
TABLE | Theorem 10:[55] (Proposition 2.14). To within normali-
sation, a graph state can be represented by the pure state
REPRESENTATIVES FOR ALLLC-ORBITS WHICH ARE NOTLC-BENT FOR . . .
= 91010 s = (—1)?, wherep is a quadratic Boolean function such

thatp = >, Tjkzjak + a(x), wherea(x) is an arbitrary
affine Boolean function.

An interesting open problem is to characterise those graphs 1'€orem 1L:A pure states of n qubits is an eigenvector
which are not LC-bent of a stabilizer of hermitian operatofs, and hence a graph
state, iffs = (—1)?, with p a quadratic Boolean function.

Proof: To within normalisation, lets = m(x)y?™),
where~ is arth complex root of 1y arbitrary but evenm :
— Z, andp : F} — Z,, such thats; = m(x = i)y?*=V,
show that no state with non-constant magnitudeand/or

V. CONCLUSION

This paper has examined the spectral properties of Bool
functions with respect to the transform set formed by tens&ﬁe

products of the identity/, the Walsh-Hadamard kernel{, . . '
and the negahadamard kernal, (the {I, H, N}" transform Egzzraelliggr?\?ergg,r ?é;g than two (i.e. withleg(p) # 2) can

set). In particular, the idea of a bent Boolean function was . .
generalised to[I, H, N}"™ and its subsets. Various theorem%:zzliyrﬁgarts gf FUEE& \é\él'oé?" apply all phase-flips., to
about the generalised bent properties of Boolean functions 9 q 9
were established. It was shown how a quadratic Boolean func- s = m(x)vp(x”% 2 Dok

tion maps to a graph and it was shown how the local unitary

equivalence of these graphs can be realised by succes§i# question then reduces to: For what stat€s,can a
application of the LC operation - local complementation - ogubsequent bit-flip to qubit, takes’ to s” such thats” = s,
alternatively, by identifying a subset of the flat spectra witfPr some scalar coefficient? For the phase pagt,can always
respect to{ I, H, N'}". For quadratic Boolean functions it wagbe written as

further shown how the(I, H, N}™ set of transform spectra p(x) = 2Ny (x) + ¢(x),
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whereg(x) and .\, (x) are independent of,. It follows that, vectorv = (a|b) € E we associate the vectgv) = aw + biv.
considering bit-flip orw, (note that bit-flip is done mod 2 andThe weight ofv is the Hamming weight ofs(v), and the

the result embedded maq, distance between two vectors il is the Hamming distance
(@ e 41 o) — plx . Znt) of their images. IfS is a subspace oF thenC = ¢(S) is
i ((1)"_"2’33 SJN ()’() ©En—1) TR0 - Tuy ey Tl a subset off” that is closed under addition (defining thus an

additive code). Therace inner producof u,v € F} is
We therefore arrive at our first condition:
o s =Xs iff (1 —=2z)Ny(x) = FF > Tonwr +
¢, Wherec € Z,. As the right-hand does not depend on
T, it follows that 2z,MN,(x) = 0, implying that\/,(x)
is a Boolean function. Moreover, as the right-hand is gfefine thedual codeC+ as
degree< 1, thendeg(N,) < 1.

If m(x) is dependent om:, thenm(x) must change after Ct={ueF} : uxv=0%eC} .
bit-flip on v (the bit positions are permuted); in that caé}ré,
cannot be a constant, socannot be an eigenvector &f;,, Now one can reformulate Theorem 12.
and therefore cannot be an eigenvectorof. Therefore, Theorem 13:Let C be an additive self-orthogonal subcode

« m must be independent of, . of F}, containing2"~* vectors, such that there are no vectors
of weight< d in C'\ C+. Then any eigenspace of ' (C) is
a QECC with parametern, k, d]].

By Glynn (see [24], [25]), we have: L&t be a stabilizer
matrix, that is(n — k) x n over F4 and such that its rows

a constant that can be neglected), andy&® = (—1)9, are [Fo-linearly independent. Then we .define a Q.ECQ with
with p, a quadratic Boolean function. The theorem is provetprametersin, k, dj] as the set of all"y-linear combinations

by observing that the set of all simple graphs is as large @5the rows ofS. The code isself-dualwhenk = 0.
the set of all homogenous quadratic functions. ]

n
uxv="Tr(u-v)= Z(uiﬁi + W)

i=1

By considering the above two conditions over all qubitsye
conclude that can only be an eigenvector &f; if m(x) =1
andp(x) is quadratic, where the degree-2 monomialg(r)
are uniquely defined by. The coefficients op are =~ (but for

. ) E. The QECC as a Graph via Projective Geometry
C. Interpretation as a Quantum Error Correcting Code

Assume that each column & contains at least two non-
zero values, for the columns that do not have this property may
be deleted to obtain a better code. Following [24], a self-dual

Let E be a 2n-dimensional binary vector
space, whose elements are written dslb), where

a, b € TF%, and E is equiped with the (symplectic) ;
inner product((alb), ('[')) = a - b + d - b. Define the quantum codé[n, 0, d]] corresponds to a graph envertices,
weight of (afb) = (Zzl anlbr b,) as the number of which may be assumed to be connected if the code is indecom-

coordinates such that at least one of thg or b; is 1. The posable. Let PGn, ¢) be the finite projective_space defined
distance between two elemeritgb) and (a’|V') is defined to from the vector space of rank + 1 over the fieldi,. Then
be the weight of their difference. theGrassmanmam_)f Imgs of PG(n_— 1,2), Gl(P.G(n —1,2)),

Theorem 12:[11] Let S be a(n — k)-dimensional linear regard.ed asa vquety |mmersed.|n R@ )’2) IS as foIIovys:
subspace of7, contained in its duab* (with respect to the each linel; is defined by two pointsy; and bi. We associate
inner product), such that there are no vectors of weight Iegst_he set of lines all producis;b; + a;b;, i # j (mod 2).
thand in S\ 5. By taking an eigenspace sf(for any chosen efine a mapping from a column of anx n stabilizer matrix
linear character) we obtain a quantum error-correcting codeover F, to a vector of Iength( Z ) with coefficients in
mappingk qubits ton qubits that correct§(d — 1)/2] errors. F,: We write each column oveF, asa + bw, wherea, b €
Such a code is called aadditive quantum error-correcting mmn
code (QECC)and is described by its parametefis, &, d]], 2
whered is the minimal distanceof the code.

X1 al b1
We show, later, that fn, 0, d]] QECC can be represented by Z2 as ba
a graph. First we re-express the QECC d8,additive code. : = : +w .
Tn an by

D. Interpretation as dF, Additive Code

From [11] we see how to interpret the binary spatas the  Taking all2 x 2 subdeterminants found when we put the two
spacel; and thereby how to derive a QECC from an additiveectors into a matrix, we get the points of the Grassmannian.
(classical) code oveF7}. Let Fy = {0,1,w,@}, with w? = A point in G;(PGn — 1,2)) = a line in PGn — 1,2) =
w+ 1, w? = 1; and conjugation defined by = w? = w + 1. a column of lengthn over F, (with at least two different
The Hamming weightf a vector inF}, written wt(u), is the non-zero components). A quantum self-dual cdfie 0, d]]
number of non-zero components, and themming distance corresponds to some setwoflines that generate R —1, 2).
betweenu, v’ € Fy is dist(u,u’) = wit(u + u’). Define the As each line of PG — 1,2) corresponds to a (star) kind of
trace functionas: tr(z) : Fy — Fo, tr(xz) = z + . To each graph, the set corresponds to a grapmiwertices.
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F. Interpretation as a Generator Matrix ovét; and overF, Lemma 15:([9]) Let G be a simple graph
From any connected graph we obtain an indecomposaBfih vertex set V. Let ¢4 € K'V such that
code. LetT' be the adjacency matrix of a graphi in n @(v) # ¥(v) Vo € V, and setl, = {¢(P) + ¢(N(P))
variables. ThenGy = (I | T') (whereT is then x n identity £ S V}. ThenS = (V, L) is an isotropic system. .
matrix) is the generator matrix of a binary linear code [54].f-;he triple Il = (G, ¢,¢) is called agraphic presentation

In other words, 0 . .
For¢ € KV, we setgp = {¢(P) : PCV}. ¢is a vector
10 ... 0 0 an ... aom subspace of(".
01 ... 0 ar O ... ain Definition 17: For ¢ € K'V, the restricted Tutte-Martin
Gr=1 . . . . . S polynomialm(S, v; x) is defined by
0 0 ... 1 aom ain ... 0 m(I, e JJ) _ Z(T _ l)dim(LU(g) 7

generates a code ovél;. Alternatively, we can interpret \ynere the sum is ovep € K’V such thatp(v) # ¥(v), v €
Gr as a generating matrix of an additive code o¥gr, as /. ’

follows [11]: Theorem 14:([9]) If G is a simple graph and is the
w a0l ... aon isotropic system defined by a graphic presentafiGno, 1),
ao1 w N A1n then
G=Ctwl=1 . . . q(Gsx) =m(l, ¢+ ;)
don Qi ... W whereq(G; z) is the interlace polynomial of5.

is the generating matrix of an additive code oVE}. Wo\lr\/keirr:wanéiorfstoh]e interlace polynomial and its relation to our

Different graphs may define the same code, but this relation
is 1-1 with respect to LC-equivalence between graphs, as

defined in section Il. Of the two interpretation$; andG, the |. Interpretation of a Bipartite Graph State as a Binary Linear
interpretation using> more precisely reflects the properties ofode
the graph state. Quadratic ANFs, as represented by bipartite graphs, have an

interpretation as binary linear codes [38]: LB, TcL be
G. Interpretation as a Modified Adjacency Matrix ovég a bipartite splitting of{0,...,n — 1}, and let us partition the

Define from a graph with adjacency matri, the gener- Variable se asx = xcUxc., wherexc = {z; : i € Tc},
ating matrix of an additive code ovef} as 2I' + I. This andxc. = {z; : i € Tos}. Letp(x) = 5y ar(xc)re(xc),
code has the same weight distribution o&rasT +wI over Where degu,(xc)) = dedri(xge)) = 1 vk (clearly, such

F7. Once again, LC-equivalent graphs define equivalgpt & function corresponds to a bipartite graph), andslet) =
additive codes. (=1)?®). Then the action of the transforfi, .. H;, with

T = T¢ or Tcu, 0On s(x) gives s'(x) = m(x), with m the
. . ANF of a Boolean functions’ is the binary indicator for a
H. Interpretation as an Isotropic System . . . 0
) . ) binary linear[n,n — |T|,d] error correcting code*
The graph state can also be viewed as an isotropic system
(see [7], [9], [8], [14], [34]). ApPPENDIXII
Let A be a 2-dimensional vector space oW Forx,y € FURTHER SPECTRAL SYMMETRIES OF BOOLEAN

A, define a bilinear forms, >, by FUNCTIONS WITH RESPECT TX{I, H, N }"

<3y > { L if  #y,z#0andy # 0 The power spectrunof the WHT of a Boolean function
’ 0, otherwise is invariant to within a re-ordering of the spectral elements
Let V be a finite set. Define the space df,- after an invertible affine transformation of the variables of
homomorphismst” : V — A. Define in thisF,-vector space the Boolean function'’. This implies that bent Boolean
a bilinear form as: functions remain bent after affine transform. However, the set

v of {I,H,N}" power spectra are not an invariant of affine
for g, € AV, <0 >=) < o(v),¥(v) > (MOd2) . yansformation.

vev Let Q = {qrs....1,9H1....1,ANT....[,AIN....I5 - - - ANN..N }
Definition 16: Let L be a subspace ofiY. Then,I = be the set of3” multi-sets,q......, Wwhere eachy comprises
(V, L) is anisotropic systenif dim (L) = |V| and< ¢,% >= 2™ power spectral values of a lengti vector w.r.t. a specific
0V ¢,y € L. transform in{I, H, N}".

For a graphG, V(G) denotes the set of vertices 6f. If LetS =qsr.. rUdnr.  rYdnr. tUdIN. 1U. .. ,dNN..N
v € V(G), N(v) denotes theneighbourhooof vertexwv, that be the multi-set oB™ x 2™ power spectral values of a vector,
is, the set of all its neighbours. Fét C V, we setN (P) =
Z PN(U) Let K = {0 T,y z} be the Klein group which 10There is also an equivalent interpretation of bipartite graphbimary
ZiveP?Y S e ! matroids(e.g. [12]).
is a 2-dimensional vector space, and &t= K \ {0}. Note ii7pe powerof the kth spectral element?y, is given by| Py |2, where Py
thatz +y + 2z = 0. is defined in (11).
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being the union of all multi-setsy, w.r.t. transforms in the divide I. Then$S of i??(*) and ofi??*)+/) are identical, but
transform sef{1, H, N}"™ . Q is not kept invariant.

In this section we ascertain for which transformations of Proof: The argument follows similarly to those for
the input vector (other than LCY) and/orS are invariant. If lemmas 18 and 19, but this time the prior phase-flip is of the
Q is invariant under some transformation of the input vectdigrm ( o G ) or ( I ) From (10) one can ascertain that
thenS is also invariant under the same transformation. the transformations under consideration are in thdsgtand

We emphasise thaQ and S, are not ordered, nor dotherefore the roles off and N are swapped when any such

they contain phase information as we are dealing with pow&ansformation is passed through or N. So Q is not kept
values. invariant, whilstS is. [ ]

The following is clear. Let p(x) be a Boolean function ofiny degree overn

Lemma 16:Let p(x) be a Boolean function of any degreevariables. Let us liftp to Z,. We perform a combination
over n variables. of affine offset and periodic shift o2p(x) by the following
Let 7(x) = (Tx(0)s Tr(1)s- - - » Tr(n_1)) DE @ permutation of Operation:

Boolean variablesx. Then$S of (1)) and of (—1)P("®) 2p(x) = 2p(x +a) + ¢ x +d,
are identical.

From the discussion of sections I1I-C and III-D it is evidenwherea € F3, ¢ € Z}, d € Z4, and *" is the scalar product.
thatS is LC-invariant for a quadratic Boolean function. MoreBy lemmas 18, 19, and 20, the resultant function has the
generally, we have the following lemma. sameS as2p(x) mod 4. The symmetries generated by affine

Lemma 17:Let p(x) be a Boolean function of any degreé)ffset and.per_iodic shift iljclude the symmetrigs generated by
over n variables. LetU € C,. ThenS of (—1)? and of any combination of certain constaperiodic shifts, because we
U(-1)? are identical. perform these constaperiodic shifts pfx) by the following

We now identify special cases of lemma 17. operation:

Lemma 18:Let p(x) be a Boolean function of any degree
over n variables. Then botlQ and S of (—1)?™) and of
(—1)Px+a) are identical, wherex € F.

Proof: Replacingz; with z; + 1 within any p(x) is
equivalent to the action of the bit-flip operater, = ( { ¢ ),
at positionj of the transform on(—1)?™*), applying I in all
other positions.

From (10), we can rewritddo, aso,.H. In other words,
a bit-flip (or periodic shift) followed by the action off is

( mod4) ,

p(x) = 2p(x+a)+c-x— wt(c), c=<a

)

wherea € F, ¢ € Z}, 'c < a’ means thaic; = 0 if a; = 0,

Vi (i.e. a coversc), and w{c) is the sum of the elements
of ¢, mod4. The one positions i identify variablesz;
which are to undergo constaperiodic shift, and the non-zero
positions inc identify the variablesc; which are to undergo
periodic, constaperiodic, negaperiodic, or constaperiodic shift
if ¢; = 0,1,2 or 3, respectively. The constaperiodic sym-
identical to the action off followed by a phase-flip. (This is Metry is induced by{H, N}" and can be generalised to a
well-known to quantum code theorists). The final phase-flip fd-constaperiodic symmetry w.r{l, #, N}", where the

a member of the sdb, (see Section IIl) so does not ChangéI,H,N}f" spectra encapgulate the fixed-aperiodic properties
the magnitude of the spectral values producedibyrherefore ©Of P» @s discussed further in [17] and [41].

the power spectra produced B¥ is invariant to prior periodic
shift.

We can rewriteNo, as —o,N. In other words, a bit-flip  The authors would like to thank the anonymous reviewers
(or periodic shift) followed by the action oV is identical to who helped to improve the quality of this manuscript. Thanks
the action of NV followed by a member oD;. Therefore the also to the reviewer who suggested the remarks leading up to
power spectra produced h¥ is invariant to prior periodic theorem 7.
shift.
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The above argument is trivial with respectfoln all three
cases, the transform kerndl, H, or N, remains unchanged
after passing the bit-flip through the kernel. So b@tand S

are invariant to such a transformation. The argument extendd

naturally to{I, H, N}". |

Lemma 19:Let p(x) be a Boolean function of any degree.

Then bothQ and$ of (—1)?™®) and of(—1)P®)+*) are iden-

tical, wherel is any affine Boolean function of its arguments.

Proof: The argument follows similarly to that for lemma
18, by appealing to (10) for a prior phase-flip. ]

Lemma 20:Let p(x) be a Boolean function of any degree

over n variables. The output op can be lifted toZ, by
replacingp with 2p. Let I(x) : F} — Z4 be any generalised
affine Boolean function outputting t,, such thaR does not
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