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Abstract. Boolean-width is similar to clique-width, rank-width and NLC-width
in that all these graph parameters are constantly bounded on the same classes
of graphs. In many classes where these parameters are not constantly bounded,
boolean-width is distinguished by its much lower value, such as in permutation
graphs and interval graphs where boolean-width was shown to be O(logn) [1].
Together with FPT algorithms having runtime O∗(cboolw) for a constant c this
helped explain why a variety of problems could be solved in polynomial-time on
these graph classes.
In this paper we continue this line of research and establish non-trivial upper-
bounds on the boolean-width and linear boolean-width of any graph. Again we
combine these bounds with FPT algorithms having runtime O∗(cboolw), now to
give a common framework of moderately-exponential exact algorithms that beat
brute-force search for several independence and domination-type problems, on
general graphs.
Boolean-width is closely related to the number of maximal independent sets in
bipartite graphs. Our main result breaking the triviality bound of n/3 for boolean-
width and n/2 for linear boolean-width is proved by new techniques for bounding
the number of maximal independent sets in bipartite graphs.

1 Introduction

Boolean-width is a recently introduced graph parameter motivated by algorithms [2].
Having small boolean-width is witnessed by a decomposition of the graph into cuts
with few different unions of neighborhoods - Boolean sums of neighborhoods - across
the cut. This makes the decomposition natural to guide dynamic programming algo-
rithms to solve problems where vertex sets having the same neighborhood across a cut
can be treated as equivalent. Such dynamic programming on a given decomposition of
boolean-width boolw will for several problems related to independence and domination
have runtime O∗(cboolw) for a small constant c [2].

Boolean-width is similar to clique-width, rank-width and NLC-width in that all
these graph parameters are constantly bounded on the same classes of graphs. However,
in many classes where these parameters are not constantly bounded, boolean-width
is distinguished by its much lower value. For example, permutation graphs, interval
graphs, convex graphs and Dilworth k graphs all have boolean-width O(log n), and the
decompositions are easy to find [1]. SinceO∗(cO(logn)) is nO(1) this helps explain why
several problems related to independence and domination are polynomial-time solvable
on these graph classes.



In this paper we continue this line of research, combining O∗(cboolw) dynamic pro-
gramming for independence and domination problems with new bounds on boolean-
width. Rather than giving a framework for polynomial-time algorithms on restricted
graph classes, our goal in this paper is a framework for moderately-exponential exact al-
gorithms on general graphs. Our main results are non-trivial upper-bounds of (1−c)n/3
on the boolean-width, and (1 − c)n/2 on the linear boolean-width, of any graph, for
some c > 0 and sufficiently large values of n. This is accompanied by a polynomial-
time algorithm computing a decomposition witnessing the non-trivial bound on linear
boolean-width.

We combine this with dynamic programming algorithms on decompositions of lin-
ear boolean-width k that solve INDEPENDENT SET in time O∗(2k) and DOMINAT-
ING SET, INDEPENDENT DOMINATING SET and TOTAL DOMINATING SET in time
O∗(22k). The combination gives moderately-exponential exact algorithms on general
graphs solving all these problems, also weighted versions and counting versions, by a
runtime beating brute-force search. Note that faster algorithms do exist in the literature,
our goal in this paper is mainly to show the viability of this line of research. This is the
first time a non-trivial upper bound on the value of a graph width parameter has been
shown to hold for every graph.

Boolean-width is defined based on branch decompositions of a graph, using as cut
function what is called the boolean dimension bd(H) of a (bipartite) graphH . This cor-
responds to the logarithm (base 2) of the number of maximal independent sets mis(H)
ofH . Our upper bounds on (linear) boolean-width rely on new techniques for bounding
the number of maximal independent sets. This number has received much attention both
from the algorithmic and the structural perspectives. While it is known [10] that com-
puting mis(G) is #P -hard even for planar bipartite graphs, approximating it is a much
more delicate problem. From the structural point of view, bounding the number of max-
imal independent sets in special as well as in general graphs leads to interesting hard
problems. Let us just mention the entropy-based results about bd(G) = log2 mis(G)
of d-regular graphs [8], see the references therein for an updated picture of the state of
research in this area.

We introduce three techniques for our bounds. The first (Theorem 5) is based on
a vertex partition achieved from a packing of paths and goes via im(H), the size of a
maximum induced matching in bipartite graph H . The second (Theorem 6) is based
on a random partition and also goes via im(H). The third (Theorem 7) is based on
Hoeffding’s inequality and in contrast to the first two applies also to boolean-width
rather than just linear boolean-width. As already mentioned, our goal is to show the
viability of this line of research and these various techniques should be helpful in later
attempts to improve the bounds.

Our paper is organized as follows. In Section 2 we give all definitions and some
preliminary results, for example showing that a non-trivial upper bound on (linear)
boolean-width of a graph G will follow from a non-trivial upper bound on the boolean
dimension of some balanced partition of G. In Section 3 we aim at an understanding of
the structure of bipartite graphs of high boolean dimension. It is well known and easy
that bd(H) is at most n/2, and the maximum is attained by a size-n/2 matching. We
tie bd(H) to im(H) and introduce and study the values of co-im(H) = n/2− im(H)



and co-bd(H) = n/2 − bd(H), the high-end ranges of im(H) and bd(H). We show
constant factor approximation algorithms for these values, as well as a stability result
showing that the smaller the values are, the closer is the bipartite graph to the size-
n/2 matching. In Section 4 we turn to general graphs, and show, constructively, by a
polynomial-time algorithm, that every graph has a balanced partition where the boolean
dimension of the associated bipartite graph beats the triviality bound. Combined with
the result from Section 2 this implies a constructive result for linear boolean-width of
general graphs, beating the triviality bound of n/2. In Section 5 we turn to the stan-
dard boolean-width parameter and show also in this case a non-trivial upper bound
beating the triviality bound of n/3, also constructive, but now by a randomized and
low-exponential-time algorithm.

2 Terminology and Preliminaries

We consider undirected unweighted simple graphs G = (V,E) and bipartite graphs
H = (A,B,E). We also denote the vertex set V by V (G). For S ⊆ V we denote by
G|S the subgraph induced by S. The neighborhood of a vertex v ∈ V is denoted N(v).
The neighborhood of a set S ⊂ V is N(S) = ∪v∈SN(v). Any S ⊆ V defines a cut
(S, V−S), and a bipartite graphGS,V−S = (S, V−S, {(u, v) ∈ E : u ∈ S∧v ∈ V−S}).

A decomposition tree of a graph G = (V,E) is a pair (T, δ) where T is a ternary
tree, i.e. all internal nodes are of degree three, and δ a bijection between the leaves of
T and V (G). Removing an edge (a, b) from T results in two subtrees Ta and Tb, and a
bipartition of V into Va and Vb corresponding, respectively, to the δ-labels of leaves of
Ta and Tb, and a bipartite graph GVa,Vb

.

Definition 1 (Boolean Dimension, Boolean Width and Linear Boolean Width). For
a bipartite graph H = (A,B,E), let NA = {N(X) ⊆ B |X ⊆ A} be the family of
neighborhoods of all sets X ⊆ A. The boolean dimension of H is defined as bd(H) =
log2 |NA|.

The boolean-width of a decomposition tree (T, δ) is the maximum value of bd(GVa,Vb
)

over all edges (a, b) of T . The boolean-width of G, denoted bw(G), is the minimum
boolean-width over all decomposition trees of G.

The linear boolean-width ofG, denoted lbw(G), is the minimum boolean-width over
all decomposition trees (T, δ) of G where T is a path on |V | inner nodes, each with an
attached leaf, corresponding to a linear arrangement of V .

Given a graph G there is a O∗(2.52n) algorithm computing its boolean-width ex-
actly [11] and in FPT time parameterized by bw(G) we can compute a decomposition of
boolean-width 22bw(G) using the algorithm for decompositions of optimal rank-width
[6]. The boolean-width parameter was originally introduced in [2] in the context of pa-
rameterized algorithms. In particular, using a natural dynamic programming approach
it was shown there that

Theorem 1. [2, 11] Given a graph G and a decomposition tree of boolean-width k,
one can solve weighted and counting versions of INDEPENDENT SET in time O∗(22k)
and DOMINATING SET, INDEPENDENT DOMINATING SET and TOTAL DOMINATING
SET in time O∗(23k).



These are dynamic programming algorithms that choose a root of the decomposition
tree and traverse it bottom-up, with each node of the tree representing the subgraph
induced by vertices corresponding to the leaves of the subtree. In a decomposition tree
for linear boolean-width we choose one end of the path of inner nodes as root so that
one of the two children of any node will always represent a subgraph on a single vertex.
The runtime on linear decompositions can for this reason be improved

Corollary 1. [2, 11] Given a linear arrangement of V (G) of linear boolean-width k,
one can solve weighted and counting versions of INDEPENDENT SET in time O∗(2k)
and DOMINATING SET, INDEPENDENT DOMINATING SET and TOTAL DOMINATING
SET in time O∗(22k).

Note that for any bipartite graph H = (A,B,E), we have |NA| = |NB |, see,
e.g., [9]. A good combinatorial way to demonstrate this is by establishing a bijection
between the elements of NA (or NB) and the set of all maximal independent sets of
H = (A,B,E). Here is a sketch of the argument. Given a set S ∈ NA, let X be the
maximal set in A such that N(X) = S. Then X is uniquely defined, and X ∪ B−S
is maximal independent. In the other direction, given a maximal independent set I ,
B−I ∈ NA. Moreover, if I resulted from S, then S results from I . 3 Hence,

Proposition 1. Let mis(H) be the number of maximal independent sets in a bipartite
graph H . Then, bd(H) = log2 mis(H).

The following simple property of bd(H) will prove useful; it is an immediate con-
sequence of the definition of bd.

Proposition 2. bd(H) is monotone decreasing with respect to vertex removal. More-
over, such removal may decrease bd(H) by at most 1. Hence, for a bipartite graph
H = (A,B,E) we have bd(H) ≤ min(|A|, |B|).

More generally, given two bipartite graphs G = (A,B,E) and H = (A,B,E′) on
the same vertex set and the same two sides, it holds that bd(G∪H) ≤ bd(G)+bd(H).

Proposition 2 implies that bd(H) ≤ n/2, and this bound is met whenH is a match-
ing of size n/2. For a finer study of the structure of sub-extremal graphs H , we shall
need the following notions.

Definition 2. Define im(G) as the size of a maximum induced matching in G, i.e. a
maximum-size set of edges whose endpoints do not induce any other edges in G. Note
that im(G) ≤ n/2 and this bound is met only by a size-n/2 matching. To study the high-
end range of bd(H) and im(G) we define co-im(G) = n

2 − im(G) and the boolean
co-dimension co-bd(H) = n

2 − bd(H).

The extremal values of bw(G) and lbw(G) are not known. The following proposi-
tion provides a preliminary tool for the study of the former.

3 Observed by Nathann Cohen in a course of discussion with the authors. Later we have learned
that a similar observation was made in [3].



Proposition 3. LetA ⊆ V be a subset of vertices with 1
3n ≤ |A| ≤

2
3n and bd(GA,V−A) =

( 13 − ε)n for some 1
4 > ε ≥ 0. Then one can construct a decomposition tree of boolean-

width at most ( 13 −
ε
3 )n.

In particular, bw(G) ≤ n/3. We call this the triviality bound for bw(G).

Proof. Without loss of generality, |A| ≤ n/2; otherwise we switch to V−A. Partition V
into three setsA∪X,B1, B2 whereX is disjoint fromA and |X| ≤ 2

3εn, |A∪X| ≤ n/2
and |B1|, |B2| ≤ ( 13 −

1
3ε)n. Refining this partition to a decomposition tree arbitrarily

with the sole restriction that at the upper level A ∪ X is split into two approximately
equal parts we argue that the proposition holds using Proposition 2. For the top cut
bd(GA∪X,V−(A∪X)) ≤ n/3−ε+|X| ≤ ( 13−

ε
3 )n. For any node representing a subset of

B1 or B2 the proposition holds since the size of one side will be small. When splitting
A ∪ X into two approximately equal parts, each part has size at most n/4, we have
n/4 ≤ n/3 − ε/3 since ε < n/4, and hence the proposition holds. The conclusion
about bw(G) ≤ n/3 corresponds to choosing an A of size 1

3n, and ε = 0. ut

For lbw(G) one has an analogous statement:

Proposition 4. Let A ⊆ V be subset of vertices of size n/2 such that bd(GA,V−A) ≤
( 12 − ε) ·n for some ε ≥ 0. Then one can construct a linear arrangement of the vertices
of linear boolean-width at most ( 12 −

1
2ε) · n.

In particular, lbw(G) ≤ n/2. We call this the triviality bound for lbw(G).

Proof. Take any linear arrangement whose first n/2 elements are preciselyA. We claim
that it has the desired property. Let Ai denote the set of the first (equivalently, the
last) i elements in this arrangement. Let Gi = GAi,V−Ai

. Proposition 2 implies that
bd(Gi) ≤ i. It also implies that |bd(Gi)−bd(Gi+1)| ≤ 1 for every i, hence bd(Gi) ≤
bd(Gn/2) + (n/2 − i) ≤ n − εn − i. Combining the two bounds on bd(Gi), the
statement follows. ut

The present paper, besides studying bd(H), is mostly dedicated to establishing up-
per bounds on lbw(G) and bw(G). Before starting with our toil, let us just mention that
the above values can in general be as large as Ω(n), which is achieved e.g., when G is a
constant-degree expander. Indeed, in this case any GA,V−A where both sides are ≥ n/3
has at least Ω(n) edges, and hence, due to the constant degree, im(GA,V−A) = Ω(n).
Since the size of an induced matching is a lower bound on the boolean dimension (see
the next section for details), the conclusion follows. The constants obtained along this
line of reasoning are, however, quite miserable. The extremal values of lbw(G),bw(G)
and the structure of the corresponding extremal graphs remain a (highly inspiring) mys-
tery.

3 On Boolean co-Dimension

3.1 Boolean Dimension vs. the size of Maximum Induced Matching

We start with a lemma relating the boolean dimension of a bipartite graphG = (A,B,E),
|V (G)| = n, to the size of the maximum induced matching in G:



Lemma 1. When im(G) ≤ n/4, it holds that

im(G) ≤ bd(G) ≤ im(G) · log2(n/im(G)) · φ(2 · im(G)/n),

where φ is a function which never exceeds 1.088, and tends to 1 as im(G) tends to n/4.

Proof. The first inequality is obvious, as the boolean dimension is monotone with
respect to taking induced subgraphs. For the second inequality, assume w.l.o.g., that
|A| ≤ n/2, and consider the family of neighborhoods NA in B. For every S ∈ NA,
there is a a minimal set S∗ ⊆ A such thatN(S∗) = S. By minimality of S∗, each vertex
v∗ in it has a neighbour v ∈ S not seen by the other vertices. Forming a set S′ ⊆ S ⊆ B
by picking (one) such v for every v∗ ∈ S∗, we conclude that the subgraph ofG induced
by (S∗, S′) is an induced matching. In particular, it holds that |S∗| ≤ im(G), and thus
any S ∈ NA is a neighbourhood of a subset of A of size≤ im(G). Consequently, using
a standard estimation for the sum of binomial coefficients,

2bd(G) = |NA| ≤
im(G)∑
i=0

(
|A|
i

)
≤

im(G)∑
i=0

(
n/2

i

)
≤ 2n/2 ·H(im(G)/(n/2))

where H(p) = p log2
1
p + (1 − p) log2

1
1−p is the entropy function. We introduce

p log2
1
p + p = p log2

2
p as an approximator of H , and set φ(p) = H(p)/(p log2

2
p ).

Then,

bd(G) ≤ n

2
·H
(
im(G)

n/2

)
= im(G) · log2

(
n

im(G)

)
· φ
(
im(G)

n/2

)
Through numerical analysis we found that φ(0.157) ≈ 1.08798 is the global maximum
of φ in the range [0, 0.5]. ut

Thus, im(G) is a log n-approximation of bd(G), and the quality of approximation
improves as im(G) grows. However, when im(G) ≥ n/4, the approach of Lemma 1
fails to imply anything beyond the trivial upper bound bd(G) ≤ n/2. This makes
Lemma 1 inapplicable to the study of co-bd(G) vs. co-im(G). The key result of this
subsection is that when co-bd(G) is small, so is co-im(G), and, moreover, co-bd(G)
and co-im(G) are linearly related.

We start with a special case:

Lemma 2. Let G = (A,B,E) be a bipartite graph of degree at most 2. Then,

co-im(G) ≥ co-bd(G) ≥ 0.339 · co-im(G).

Proof. The first inequality was already established in Lemma 1. For the second in-
equality, observe that both co-bd(G) and co-im(G) are additive with respect to disjoint
union of graphs. Thus it suffices to consider connected G’s, i.e. G is either Cn, the
(even) n-cycle, or Pn−1, the path on (n − 1) edges. For such graphs both im(G) and
bd(G) are tractable. For the maximum induced matching one easily gets im(Cn) =
bn3 c and im(Pn−1) = bn+1

3 c. For boolean dimension, recall that by Proposition 1,
bd(G) = log2 mis(G), where mis(G) is the number of maximal independent sets in



G. Let c(n) = mis(Cn) and p(n) = mis(Pn−1). The recurrence formulae for these
values are well known (see e.g. [5]). Namely, c(n) = c(n − 2) + c(n − 3), and
p(n) = p(n − 2) + p(n − 3). The initial conditions are c(1) = 0, c(2) = 2, c(3) = 3
and p(1) = 1, p(2) = 2, p(3) = 2 respectively.

Thus, to compare co-bd(G) to co-im(G) one needs to lower-bound the expressions

n/2− log2(c(n))

n/2− bn3 c
and

n/2− log2(p(n))

n/2− bn+1
3 c

.

Combining case analysis (according to n mod 3), numerical computations and an in-
ductive argument, we conclude that the minimum is achieved on the 8-cycle C8, and its
value is 1

2 (4− log2 10) ≈ 0.339036. ut

We continue with the general case.

Theorem 2. Let G = (A,B,E) be a bipartite graph. Then,

co-im(G) ≥ co-bd(G) ≥ 0.0698 · co-im(G)− 4 .

Proof. As before, we shall be concerned only with the second inequality. Set ∆ =
co-bd(G). Keeping in mind that mis(G) = 2bd(G), observe that

mis(G) ≤ mis(G|V−{v}) + mis(G|V−{v}−N(v)), (1)

where the first term (over-)counts the maximal independent sets not containing v, and
the second term counts those containing v. In accordance with inequality, we define a
splitting process, or a (weighted) rooted splitting tree T , as follows.

Each inner node x of T is labelled by (Gx, v), where Gx is an induced subgraph
of G, and v ∈ V (Gx) is a vertex of degree 3 or more in Gx. At the root Gx = G; the
leaves correspond to induced subgraphs of degree at most 2. An inner node x has two
children, one corresponding to the graph obtained from Gx by removing v, the other
corresponding to the graph obtained from Gx by removing v and all its neighbours (at
least 4 vertices removed). The weight of the respective edge is defined as the number of
vertices (respectively) removed. The weight of the node x, w(x), is the defined as the
sum of weights on the path from the root to x.

In view of (1), it holds that

2bd(G) ≤
∑

x: leaf of T

2bd(Gx) . (2)

The strategy of proof is as follows. The leaves L of T will be split into L+ =
{x | w(x) ≥ z} and L− = {x | w(x) < z} according to a suitably defined threshold
value z. Then, it is shown that the leaves in L+ contribute little to the above sum, while
the graphs Gx corresponding to x ∈ L− have co-im comparable with ∆. The value of
z will be set later, in the course of analysis.

Upper-bounding the contribution of L+

By Proposition 2, bd(Gx) ≤ (n− w(x))/2 for any x ∈ T . Thus,∑
x∈L+

2bd(Gx) ≤ 2n/2 ·
∑
x∈L+

2−w(x)/2 .



It is readily checked that the right-hand side is maximized when T is the complete 1-4
tree, where every inner node has an outgoing edge of weight 1 and an outgoing edge of
weight 4. Moreover, for an inner node x and it two children x1 and x2 it holds that

2−w(x1)/2 + 2−w(x2)/2 = 2−w(x)/2 · (2−1/2 + 2−4/2) < 2−w(x)/2 .

Therefore, the right-hand side is maximized when the leaves are immediate descendants
of the inner nodes of weight < z.

Let s(i) denote the number of nodes of weight i in the complete 1-4 tree. Then,
|L+| ≤ s(z)+s(z+1)+s(z+2)+s(z+3). A closer look reveals that s(0), s(1), s(2) =
1, s(3) = 2, and that for i ≥ 4, s(i) = s(i−1)+s(i−4), where the first term counts the
strings with leading ”1”, and the second term counts those with leading ”4”. Moreover,
it holds that s(z) + s(z + 1) + s(z + 2) + s(z + 3) = s(z + 6). Finding the maximal
absolute-value root α = 1.38028 of the equation x4 = x3+1, and using the estimation
s(z) ≤ αz , we conclude that

|L+| ≤ s(z + 6) ≤ 8 · 1.38028z ≤ 8 · 20.4649589 z ,

and the total contribution of L+ to the right-hand side of (2) is bounded from above by

2n/2 ·
∑
x∈L+

2−w(x)/2 ≤ 8 · 2n/2 · 2−z/2 · 20.4649589 z ≤ 8 · 2n/2 · 2−0.035 z.

Setting z = d(∆+ 4)/0.035e, where ∆ = co-bd(G) = n/2− bd(G), ensures that the
total contribution of L+ is at most 0.5 · 2n/2 · 2−∆ = 0.5 · 2bd(G).

Consequently, the total contribution of L− to the right-hand side of (2) is at least∑
x∈L−

2bd(Gx) ≥ 0.5 · 2bd(G) = 0.5 · 2n/2 · 2−∆−1 . (3)

Upper bounding the contribution of L−

To get an estimation from above on
∑
x∈L− 2bd(Gx), consider bd(Gx) for a leaf x of

T . Since Gx has degree ≤ 2, Lemma 2 implies that:

bd(Gx) = (n− w(x))/2− co-bd(Gx) ≤ (n− w(x))/2 − 0.339 · co-im(Gx) .

Keeping in mind that w(x) = n−|V (Gx)|, it follows that co-im(Gx) ≥ co-im(G)−
w(x)/2. Substituting this in the previous line yields

bd(Gx) ≤ n/2− 0.33w(x)− 0.339 · co-im(G) ,

and thus,∑
x∈L−

2bd(Gx) ≤
∑
x∈L−

2
n
2−0.33w(x)−0.339co-im(G) = 2

n
2−0.339co-im(G)

∑
x∈L−

2−0.33w(x)

As before, the complete 1-4 tree yields the most general (i.e., the weakest possible)
upper bound on the sum

∑
x∈L− 2−0.33w(x), as it maximizes the number of nodes of

any weight i in T . Since this time the contribution of the father node is dominated by



that of its sons, it suffices to analyse the case when the leaves of L− have weights
z − 4, z − 3, z − 2 or z − 1. Arguing as before, we conclude that |L−| ≤ s(z + 2) ≤
20.4649589(z+2) < 20.4649589z+1. That is,∑
x∈L−

2−0.33w(x) ≤ |L−|·2−0.33(z−4) ≤ 20.4649589z+1·2−0.33(z−4) < 20.1349589z+2.32 .

Now, z < (∆ + 4)/0.035 + 1, implying 0.1349589z + 2.32 ≤ 3.856∆ + 18 . The
bottom line is: ∑

x∈L−

2bd(Gx) ≤ 2n/2 · 2−0.339·co-im(G) · 23.856∆+18 . (4)

We are ready to conclude the proof of Theorem 2. Combining (3) and (4) yields

2n/2 · 2−∆−1 ≤
∑
x∈L−

2bd(Gx) ≤ 2n/2 · 2−0.339·co-im(G) · 23.856∆+18 .

Combining the two sides, it follows that 0.339 · co-im(G) ≤ 4.856∆+ 19 , and,
finally, co-im(G) ≤ 14.33 (∆+ 4) = 14.33 (co-bd(G) + 4) . ut

One curious structural implication following at once from Theorem 2 is the follow-
ing result (for asymptotically tight results see [8]):

Corollary 2. Let G be a d-regular bipartite graph, d > 1. Then mis(G) ≤ 2(
1
2−ε)n for

some universal ε > 0.

The reason is that by a trivial computation, for such graphs one has im(G) ≤ n
2 ·

d
2d−1 ,

and since co-bd(G) is proportional to co-im(G), the conclusion follows.

3.2 A Constant Factor Polynomial Approximation Algorithm for co-bd(G)

Let us first give a polynomial time constant-factor approximation algorithm for co-im(G).
As before, G is bipartite.

Approx-CoIm: Construct (greedily or otherwise) a maximal vertex-disjoint packing P
of P2’s (paths on 2 edges) in G. Remove all the vertices in P . Output M̃ , the set of the
remaining edges.

Theorem 3. The above algorithm produces an induced matching M̃ with n/2−|M̃ | ≤
5 · co-im(G). In particular, it provides a 5-approximation for co-im(G).

Proof. Observe that after the removal of P2’s in P , the remaining induced graph con-
sists of singletons and isolated edges, and thus M̃ is indeed an induced matching.

LetM∗ denote the maximum induced matching ofG. Since every P2 in the packing
must contain at least one vertex outside of M∗, the size of P is at most n − 2|M∗|.
Now, since each P2 in P may hit at most 2 edges of M∗, at least |M∗| − 2|P| edges of
M∗ will survive the removal of P . Thus,

|M̃ | ≥ |M∗| − 2|P| ≥ |M∗| − 2 · (n− 2|M∗|) = 5|M∗| − 2n ;

n/2− |M̃ | ≤ 5/2n− 5|M∗| = 5 · (n/2− |M∗|) = 5 · co-im(G)ut.



Theorem 3 combined with Theorem 2 yields a constant factor approximation algorithm
for co-bd(G):

Theorem 4. The co-size of M̃ produced by Appox-CoIm on input G, i.e., n/2− |M̃ |,
approximates co-bd(G) within a multiplicative factor of 5 · 14.3 < 72.

4 Linear Boolean Width: Beyond the Triviality Bound

We show (constructively and efficiently) that every size-n graph has a balanced bipar-
tition of its vertex set such that the boolean dimension of the associated bipartite graph
is ≤ (1/2− c)n for some universal c > 0. Combined with Proposition 4, this implies
that lbw(G) ≤ (1/2 − c/2)n; the argument therein provides also the corresponding
linear arrangement of the vertices.

Two constructions are provided, the first deterministic and somewhat elaborate, the
other is just the random uniform bipartition. We start with the former.

GoodBipartition: Construct (greedily or otherwise) a maximal vertex-disjoint packing
P of P2’s (paths on 2 edges) in G. For each P2 ∈ P mark the middle vertex. Partition
the vertices into two equal- (up to ±2) size sets so that

(i) for every P2 ∈ P , the marked and the unmarked vertices lay on different sides;
(ii) no edge (parity permitting) remaining after the removal of V (P) is split.

Since P is maximal, removing V (P) one obtains an (induced) graph that consists
of isolated edges and vertices. The required partition is obtained by placing the middle
vertices ofP2’s, one by one, on alternating sides. The same is done for surviving isolated
edges and isolated vertices.

Let H = (A,B,E′) be the graph defined by this bipartition.

Theorem 5. It holds that co-im(H) ≥ 1
10 n, and bd(H) ≤ ( 12 −

1
143 )n+O(1).

Proof. The edge set of H consists of all the edges of P , plus some edges of C, the cut
defined by V (P). To bound im(H), consider im(H∗) where H∗ = (V,E(P) ∪ C).
Clearly, im(H) ≤ im(H∗). Let M∗ be the maximum induced matching of H∗.

Each P2 ∈ P is adjacent to some e ∈ M∗, since otherwise M∗ could be extended.
If some P2 ∈ P is adjacent to a single edge e ∈ M∗, replace (if needed) e in M∗

by an adjacent edge in E(P2), obtaining another maximum induced matching of H∗.
Let H∗∗ = (V,M∗ ∪ E(P). By above observation, H∗∗ is w.l.o.g., a disjoint union
of |P| simple paths or/and cycles of (vertex) size ≥ 3. Consequently, any connected
component of H∗∗ of size k contributes to M∗ at most

im(Ck) ≤ im(Pk−1) =

⌊
k + 1

3

⌋
≤ 2

5 k

edges, with equality achieved (only) at P4. Thus, |M∗| ≤ 2
5n. Since im(H) = |M∗|,

we conclude that im(H) ≤ 2
5n, and, equivalently, co-im(H) ≥ 1

2n −
2
5n = 1

10n . By
Theorem 2, this implies that co-bd(H) ≥ 1

10·14.3 n = 1
143 n. ut



Next, we show that a statement similar to that of Theorem 5 holds also for a random
uniform bipartition of V (G), when each vertex of V is assigned randomly and indepen-
dently either to side A or to side B, resulting in H(A,B,E′′). While the bound will be
weaker, this structural result is of independent interest. The proof is in the appendix.

Theorem 6. For H as above, it holds almost surely that co-im(H) ≥ 1
28 n − o(n).

Consequently, co-bd(H) ≥ 1
801 n− o(n).

5 Boolean Width: Beyond the Triviality Bound

We turn to the boolean-width of general graphs. Since we currently have much less
understanding of boolean dimension of unbalanced partitions than of the balanced ones,
in this section we provide an existential argument, which can nevertheless be turned into
an exponential time algorithm with a relatively small exponent.

Lemma 3. Every graphG hasA ⊂ V (G) with n
3 ≤ |A| ≤

n
2 such that bd(GA,V−A) ≤

n
3 −

n
226 + o(n).

Proof. If there exists S ⊆ V (G) such that |S| = n
226 and |N(S) ∪ S| ≤ n

3 we just
take a set A of size n/3 containing N(S)∪S. Then, bd(GA,V−A) ≤ n

3 −
n

226 ) since no
vertex in S has a neighbour in V−A.

Otherwise, every set S of size n
226 has |N(S)−S| ≥ n

3 −
n

226 . The set A will
be constructed by a random procedure by choosing every vertex v with probability 1/3,
randomly and independently from the others. We claim that almost surely the two events
hold: first, |A| = (1 − o(1)) · n/3, and second, all sets S ⊆ V −A of size n

226 have
|N(S) ∩ A| >

(
1
3 − 0.202

)
·
(
n
3 −

n
226

)
, which we short-cut as αn for a suitable α.

Such an A will be called good.
Since 1− Pr(X ∩ Y ) ≤ (1− Pr(X)) + (1− Pr(Y )), it suffices to show that each

of the two events holds almost surely separately. To bound the probabilities of failure,
we use the Hoeffding Bound. Let X be the number of successes in r i.i.d. 0/1 events,
each happening with probability p. Then by [7],

Pr(X ≤ (p− t)r) ≤ e−2t
2r.

The desired bound on the probability of the first event follows at once. For the second
event, the analysis is more technical.

Let S be any subset of size n
226 . The probability that S causes a failure is

Pr ({S ⊂ V−A} ∧ {|N(S) ∩A| ≤ αn}) =

= Pr ({|N(S) ∩A| ≤ αn} | {S ⊂ V−A}) · Pr(S ⊂ V−A).
The probability of the first factor in the above product can be bounded as follows. The
set S is fixed and is in V −A. The choosing process on the remaining V −S vertices
remains, however, unaltered. Since the vertices in N(S) \ S are chosen randomly and
independently as before, and there are n/3−n/226 vertices in this set, taking t = 0.202,
we get from Hoeffdings bound:

Pr

(
|N(S) ∩A| ≤

(
1

3
− 0.202

)(n
3
− n

226

)
| {S ⊂ V−A}

)
<



< e−2·0.202
2(n/3−n/226) < e−0.0268n.

We now use the union bound summing over all sets S of size n
226 .

Pr(There exists a bad S) ≤ e−0.0268n · Pr(S ⊂ V−A) ·
(

n

n/226

)
=

= e−0.0268n ·
(
2n/3

n/226

)
≈ e−0.0268n · 22/3·H(3/2·1/226) = o(1) .

Thus, a random A is good almost surely for a large enough n. We proceed with up-
per bounding bd(GA,V−A) for a good A by counting the sets in NV−A, the family of
neighbourhoods of subsets of V−A in A.

Recall that |V−A| ≈ 2n/3. The sets S ⊂ V−A of size i < n/226 may contribute
only as many as

∑n/226
i=0

(
2n/3
i

)
distinct neigbourhoods in A. The contribution of sets

S ⊂ V −A of size ≥ n/226 may be bounded as follows. In each such S mark an
arbitrary subset X ⊆ S of size precisely dn/226e. Call two large S’s equivalent if the
same X was marked in both of them. Then, since every X sees at least αn vertices
n, the contribution of the entire equivalence class of large sets defined X is at most
2n/3−αn. The number of X’s is at most

(
2n/3
n/226

)
. By plugging in the numerical value of

α and using the entropy bound for
(
2n/3
n/226

)
, the entire contribution can be bounded by:

|NV−A| ≤
n/226∑
i=0

(
2n/3

i

)
+

(
2n/3

n/226

)
· 2n/3−αn ≤ 20.3286n ≤ 2

n
3−

n
226

the upper bound on bd(GA,V−A) = log2 |NV−A| follows. ut

As an immediate consequence of Lemma 3 and Proposition 3 we get

Theorem 7. For any graph G, it holds that bw(G) ≤ n
3 −

n
672 + o(n).

6 Conclusion

Our results are the first non-trivial upper bounds on the value of a graph width param-
eter that hold for every graph. In this paper we gave three techniques to show such
bounds, respectively Theorems 5, 6 and 7. At the moment the first two work only for
linear boolean-width and the third is here applied only to boolean-width but it should
work also for the linear case. We believe these bounds can be substantially improved.
Combining Corollary 1 with Proposition 4 and Theorem 5 we can solve MAXIMUM
WEIGHT INDEPENDENT SET and COUNTING INDEPENDENT SETS OF SIZE K in time
O∗(1.4108n), and solve MINIMUM WEIGHT DOMINATING SET, MINIMUM WEIGHT
TOTAL DOMINATING SET, MAXIMUM/MINIMUM WEIGHT INDEPENDENT DOMI-
NATING SET, and counting versions of these, in time O∗(1.9904n). These runtimes
beat brute-force search but faster algorithms exist in the literature, see [4]. Our goal
was mainly to prove the viability of this new line of research by establishing structural
qualitative results. The natural directions for further work are to improve the bounds
and hence the runtime, and to increase the class of problems handled by Corollary 1.



References
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7 Appendix

Theorem 6 Let each vertex of V be assigned randomly and independently either to side
A or to sideB, resulting inH(A,B,E′′). Then it holds almost surely that co-im(H) ≥
1
28 n− o(n). Consequently, co-bd(H) ≥ 1

801 n− o(n).

Proof. (Sketch) Consider the maximal packing P of P2’s and C3’s in G. Let p be the
number of P2’s and c the number of C3’s in P . In H , about a quarter of P2’s in P will
survive, and about half will become a single edge. About three quarters of C3’s in P
will become (new) P2’s. Let P ′ be the packing of the surviving and the newly created
P2’s, and letR′ be the packing of edges resulting from the half-surviving P2’s.

Let G′ be the induced subgraph of G on U = V − V (P). As before, G′ consists of
isolated vertices and edges, and about half of the latter will not survive into H ′ = H|U .

Qualitatively, the argument is based on the fact that either P ′ or E(H ′) is large,
each causing a loss in im(G). What follows is an elaboration of this basic idea.

Since any induced matching M∗ in H must miss at least one vertex for each P2 in
P ′, we conclude that

2 co-im(H) = n− 2 im(G) ≥ |P ′| ≥ 1
4p+

3
4c− o(n) . (5)

On the other hand, G′ contains at least about 1
2 |U | isolated vertices that can only be

matched into V (P). Call them U ′. For every P2 ∈ P ′, at least one of its vertices
will not be matched to U ′. The same applies to every e ∈ R′. A closer look reveals
that even if one of the endpoints of e is matched to U ′, the other endpoint becomes
unmatchable. Therefore, the number of unmatched vertices in any M∗ is at least about
|U ′| − |V (P)|+ |P ′|+ |V (R′)|. Thus,

2 co-im(H) ≥ (n− 3(p+ c))/2− 3(p+ c) +
{

1
4p+

3
4c
}
+ 2 · 12p− o(n) =

= n/2− 3.25 p− 3.75 c− o(n) . (6)

Optimizing the system of inequalities (5),(6), we conclude that co-im(H) ≥ 1
56n −

o(n), which is achieved at p = 1
7n, c = 0. By Theorem 2, we conclude that co-bd(H) ≥

1
56·14.3 n− o(n) =

1
801 n− o(n). ut


