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The development of software for minimization problems is often based on a line search method.

We consider line search methods that satisfy sufficient decrease and curvature conditions, and

formulate the problem of determining a point that satisfies these two conditions in terms of

finding a point in a set T( p), We describe a search algorithm for this problem that produces a

sequence of iterates that converge to a point in 2’( p-) and that, except for pathological cases,

terminates in a finite number of steps. Numerical results for an implementation of the search

algorithm on a set of test functions show that the algorithm terminates within a small number of

iterations.
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optt m tzatton; gradlen t methods; nonlinear programming: G.4 [Mathematics of Computing]:
Mathematical So ftware—algorLthm analysls; efficiency; reliability and robustness
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nonlinear optimization, truncated Newton algorithms, variable metric algorithms

1. INTRODUCTION

Given a continuously differentiable function @: R ~ R defined on [0, CO)with

+’(0) <0, and constants p and q in (O, 1), we are

a > 0 such that

o(a) < $NO) + ~$b’(o)a

and

14’(CI)I < 7710’(0)1.

interested in finding an

(1.1)

(1.2)

The development of a search procedure that satisfies these conditions is a

crucial ingredient in a line search method for minimization. The search

algorithm described in this paper has been used by several authors, for
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example, by Liu and Nocedal [1989], O’Leary [1990], Schlick and Fogelson

[1992a; 1992b], and Gilbert and Nocedal [1992]. This paper describes this
search procedure and the associated convergence theory.

In a line search method, we are given a continuously differentiable function

f R“ - R and a descent direction p for f at a given point x = R”. Thus, if

+(a) =f(x + ap), a!>o, (1.3)

then (1. 1) and (1.2) define an acceptable step. The motivation for requiring

conditions (1. 1) and (1.2) in a line search method should be clear. If a is not

too small, condition (1. 1) forces a sufjjicient decrease in the function. However,

this condition is not sufficient to guarantee convergence, because it allows

arbitrarily small choices of a > 0. Condition (1.2) rules out arbitrarily small

choices of a and usually guarantees that a is near a local minimizer of ~.

Condition (1.2) is a curvature condition because it implies that

@’(cl)- +’(0) 2 (1 - q)ld’(o)l,

and thus, the average curvature of @ on (O, a) is positive. The curvature

condition (1.2) is particularly important in a quasi-Newton method, because it

guarantees that a positive definite quasi-Newton update is possible. See, for

example, Dennis and Schnabel [1983] and Fletcher [1987].

As final motivation for the solution of (1.1) and (1.2), we mention that if a

step satisfies these conditions, then the line search method is convergent for

reasonable choices of direction. See, for example, Dennis and Schnabel [1983]

and Fletcher [1987] for gradient-related methods; Powell [1976] and Byrd et

al. [1987] for quasi-Newton methods; and A1-Baali [ 1985], Liu and Nocedal

[1989], and Gilbert and Nocedal [1992] for conjugate gradient methods.

In most practical situations, it is important to impose additional require-

ments on a. In particular, it is natural to require that a satisfy the bounds

The main reason for requiring a lower bound a~,~ is to terminate the

iteration, while the upper bound am ~~ is needed when the search is used for

linearly constrained optimization problems or when the function @ is un-

bounded below. In linearly constrained optimization problems, the parameter

a!~ ~~ is a function of the distance to the nearest active constraint. An

unbounded problem can be approached by accepting any a in [ a~, ~, a~~, ]

such that O(a) < ~~,~, where @~,~ < O(O) is a lower bound specified by the

user of the search. In this case

(1.5)

is a reasonable setting, because if a~~, satisfies the sufficient decrease
condition (1. 1), then 4( a ~a,) < +~~m. On the other hand, if a~~x does not
satisfy the sufficient decrease condition, then we will show that it is possible

to determine an acceptable a.
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The main problem considered in this paper is to find an acceptable a such

that a belongs to the set

T(p) = {a >0: @(cl!) < 0(0) + clv#’(o), 1+’(cl)l < pl@J’(o)l}.

By phrasing our results in terms of T( P), we make it clear that the search

algorithm is independent of q; the parameter q is used only in the termina-

tion test of the algorithm. Another advantage of phrasing the results in terms

of 7’( p) is that T( ~) is usually not empty. For example, I“( w) is not empty

when @ is bounded below.

Several authors have done related work on the solution of (1.1) and (1.2).

For example, Gill and Murray [1974] attacked (1. 1) and (1.2) by using a

univariate minimization algorithm for @ to find a solution a * to (1.2). If a *

did not satisfy (1.1), then a” was repeatedly halved in order to obtain a

solution ~ * to (1.1). Of course, p * did not necessarily satisfy (1.2); but if p

was sufficiently small, then it was argued that this was an unlikely event. In

a similar vein, we mention that the search algorithm of Shanno and Phua

[1976; 1980] is not guaranteed to work in all cases. In particular, the

sufficient decrease condition (1. 1) can rule out many of the points that satisfy

(1.2), and then the algorithm is not guaranteed to converge.

Gill et al. [1979] proposed an interesting variation on (1.1) and (1.2) when

they argued that if there is no solution to (1.1) and (1.2), then it is necessary

to compute a point such that

+(a) = 4(0) + @’(o)a. (1.6)

If (1.6) has a solution, then their algorithm computes a sequence of nested

intervals such that each interval contains points that satisfy (1. 1) and (1.2),

or just (1.6). Their algorithm, however, is not guaranteed to produce a point

that satisfies (1.1) and (1.2).

Lemarechal [1981] developed a search algorithm for finding a step that

satisfies the sufficient decrease condition (1. 1) and

o’(a) 2 q+’(o). (1.7)

Moreover, he proved that the algorithm terminates in a finite number of

iterations whenever v < q. These conditions are of interest because (1.1) and

(1.7) are adequate for many optimization algorithms. A possible disadvantage
of these two conditions is that acceptable steps have higher function values

than those where (1.2) holds. On the other hand, satisfying the stronger

conditions (1. 1) and (1.2) requires a more elaborate algorithm.

Fletcher [1980] suggested that it is possible to compute a sequence of
nested intervals that contain points that satisfy (1. 1) and (1.2), but he did not

prove any result along these lines. This suggestion led to the algorithms

developed by A1-Baali and Fletcher [1984] and Mor6 and Sorensen [1984]. In

this paper we provide a convergence analysis, implementation details, and

numerical results for the algorithm of Mor6 and Sorensen [1984].

In addition to the preceding references, there are numerous references on

univariate minimization and their rates of convergence. We mention, in

particular, the paper of Hager [1989] because of its connection with the work

of A1-Baali and Fletcher [1984] and Mor6 and Sorensen [1984]. In this paper
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we establish finite termination of the search procedure, and thus, rate-of-

convergence results are not appropriate.

The search algorithm for 7’(p) is defined in Section 2. We show that the

search algorithm produces a sequence of iterates that converge to a point in

7’( p), and that, except for pathological cases, the search algorithm produces a

finite sequence ao, ..., am of trial values in [ a~,., amaxl,where am ~ 7’( p)

or is one of the bounds. Termination at one of the bounds can be avoided by a

suitable choice of bounds. For example, if a~,. = O and am.. is defined by

(1.5), then either am lies in 7’(W) or O( an) < ~~,..

The results of Section 2 show that the search algorithm can be used to find

an a that satisfies (1.1) and (1.2) when w s q. A result for an arbitrary

q e (O, I-L) requires additional assumptions, because there may not be an a
that satisfies (1. 1) and (1.2) even if @ is bounded below. In Section 3 we show

that if the search algorithm generates an iterate a~ that satisfies the

sufficient decrease condition and @‘( a~ ) > 0, then the search algorithm

terminates at an ah that satisfies (1.1) and (1.2).

Given a. in [an,., an.. ,] the search algorithm generates a sequence of

nested intervals {~~} and a sequence of iterateS ak ● lk n [ a~,., am.. 1.
Section 4 describes the specific choices for the trial values a~ that are used in

our algorithm. Our numerical results indicate that these choices lead to fast

termination.

Section 5 describes a set of test problems and numerical results for the

search procedure. The first three functions in the test set have regions of

concavity, while the last three functions are convex. In all cases the functions

have a unique minimizer. The emphasis in the numerical results is to explain

the qualitative behavior of the algorithm for a wide range of values of ~

and rjI.

2. THE SEARCH ALGORITHM FOR T(p)

In this section we present the search algorithm for determining an a in

7’( p). We assume that @ is continuously differentiable on [0, a~.z 1 with

@‘(0) <0. Most work on line searches assumes that p < l\2, because if d is

a quadratic with ~ ‘(0) < 0 and ~“ (0) > 0, then the global minimizer a * of @

satisfies

O(a”) = 0(0) + $a*@’(o),

and thus a * satisfies (1.1) only if w s 1/2. The restriction p < 1/2 also

allows a = 1 to be ultimately acceptable to Newton and quasi-Newton meth-

ods. In this section we need only assume that p lies in (O, 1).

Given a. in [ am,., a.,.. ,] the search algorithm generates a sequence of

nested intervals {Ik} and a sequence of iterates a~ = ~k fl [ a~,., a~., 1 ac-

cording to the following procedure:

Search Algorithm. Set I. = [0, CQ].

Fork =0, l,...
Choose a safeguarded a. ● Ik n [ am:., a 1ma.Z
Test for convergence.
Update the interval 1~.
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In this description the term safeguarded ak refers to the rules that force

convergence of the algorithm. For the moment we assume that a safeguarded

choice is made and discuss the updating of lk.

The aim of the updating process for the intervals Ik is to identify and

generate an interval lh such that T( p) n Ih is not empty, and then to refine

the interval so that 7’(~) n Ik remains not empty. We now specify conditions

on the endpoints of an interval 1 that guarantee that 1 has a nonempty

intersection with T’( ~). The conditions on the endpoints al and aU are

specified in terms of the auxiliary function v defined by

We assume that al + aU, but do not assume that al and aU are ordered.

THEOREM 2.1. Let I be a closed interval with endpoints al and aU. If the

endpoints satisfy

then there is an a * in I with @(a*) < V(al) and *’(a*) = O. In particular,

a* ~(T(~)nl).

PROOF. Assume that aU > al; the proof in the other case is similar. Define

Clm =Sup{a= [al, au]:+(p)< O,p=[al, a!]}.

Then am > al, because *‘( al) <0. We first claim that ~(a~) > V( al). The

assumption on au shows that this is certainly the case if am = aU. This also

holds if am < aU, because in this case the definition of am implies that

#(~~~n; Oland thus V(am) = O z @(al).
* to be a global minimizer of * on [ al, am]. We claim that

a * ● T( ~). The global minimum cannot be achieved at al, because ~‘( al ) <

O; and since we have established that V( am) > @(al), the global minimum

cannot be achieved at am. Hence, a * is in the interior of [ al, am]. In

particular, @’(a*) = O, and thus, l@’(a*)l = pl@’(0)1. We also know that a’

satisfies (1,1), because +( a) < 0 for all a in [ al, am]. Hence, a* ● T( ~), as

desired. ❑

Theorem 2.1 provides the motivation for the search algorithm by showing

that if the endpoints of 1 satisfy (2.1), then @ has a minimizer a* in the

interior of I and, moreover, that a * belongs to T( ~). Thus the search

algorithm can be viewed as a procedure for locating a minimizer of +.
The assumptions that Theorem 2.1 imposes on the endpoints al and aU

cannot be relaxed, because if we fix al and aU by the assumption +( al) <

@(a.), then the result fails to hold if either of the other two assumptions are
violated. The assumptions (2. 1) can be paraphrased by saying that al is the

endpoint with the lowest * value, that al satisfies the sufficient decrease

condition (1. 1), and that aU – al is a descent direction for @ at al so that

4(a) < @(al) for all a in 1 sufficiently close to a,. In particular, this last
assumption guarantees that 4 can be decreased by searching near al.
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We now describe an algorithm for updating the interval 1 and then show

how to use this algorithm to obtain an interval that satisfies the conditions of

Theorem 2.1.

Updating Algorithm. Given a trial value at in I, the endpoints a; and

a: of the updated interval I+ are determined as follows:

Case Ul: If v(cq) > @(al), then a:= al and a;= af.

Case U2: If ~(a~) < +(al)and ~’(a~)(al – at) >0, then al= at and a;= aU.

Case U3: If @(a~) s ~(al) and ~’(a~)(al – at) <0, then a:= at and a;= al.

It is straightforward to show that if the endpoints al and aU satisfy (2.1),

then the updated endpoints a: and a; also satisfy (2.1) unless ~ ‘(at) = O

and @(at ) < +( al ). Of course, in this case there is no need to update 1,

because a, belongs to 2’( p).

A1-Baali and Fletcher [1984] present two updating schemes. The aim of

Scheme S1 is to identify a point that satisfies (1.1) and @‘(a) > q@’(0), while

Scheme S2 seeks a point that satisfies (1.1) and (1.2). In Scheme S2 the

endpoints a; and a: are determined as follows:

If *(c+) >0 or if ~(a~) > @(al), then
al+= al and a;= at,

else if ~’(a~)(al – au) > 0, then
‘= CYfand a;= au,%

else a:= at and a:= al.

The two updating algorithms produce the same iterates as long as

but differ in their treatment of the situation where

In this case, our updating algorithm chooses 1+= [ al, at], while Scheme S2

sets 1+= [ at, aU ] if ~‘( at ) < 0. Our algorithm seems to be preferable in this

situation, because the interval 1+ contains an acceptable point, while the

interval generated by Scheme S2 is not guaranteed to contain an acceptable

point.

We now show how the updating algorithm can be used to determine an

interval 1 in [0, a~~z ] with endpoints that satisfy (2.1). Initially, al = O and

au = ~. Consider any trial value at in [ a~l ~, an~X ]. If Case U1 or U3 hold,

then we have determined an interval with endpoints al and aU that satisfy

the conditions of Theorem 2.1. Otherwise, Case U2 holds, and we can repeat

the process for some a; in [ a,, a~~$ ]. We continue generating trial values in

[ al, am~X] as long as Case U2 holds, but require that eventually a~a, be used

as a trial value. This is done by choosing

for some factor S~ ~~ > 1. In our implementation we use

‘= min{a~ + 8(a~ – al), a~.X},at 8= [1.1,4].
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This choice produces trial values that satisfy a; – at = 8( cq – aj ), where aj

is the previous value of at. Thus, if at > 80+ , then af+ > acq. Hence, an

induction argument shows that (2.2) holds with tj, ~, = 1.1.

Since al = O initially and 1(0) = O, the sequence a., al, . . . of trial values

is increasing with

@(ci~) <0 and y’(cq) <0, k= O, l,..., (2.3)

as long as Case U2 holds. The search algorithm terminates at am.1 if

*(a’ ~.X)S O and @’(a ~ ~~) <0. This is a reasonable termination criterion,

because Theorem 2.1 shows that when these conditions do not hold there is
an a* = T(P) with a* < a~~x. Thus, after a finite number of trial values,

either the search algorithm terminates at am.,, or the search algorithm

generates an interval with endpoints that satisfy conditions (2.1).

Given an interval that satisfies conditions (2.1), the search algorithm uses

the updating algorithm to refine 1. We want to show that after a finite

number of trial values, either the search algorithm terminates at am,., or the

search algorithm generates an interval 1 in [ a~,., am.11 with endpoints that

satisfy conditions (2. 1).

We claim that if the search algorithm does not generate an interval 1 in

[a mzn> ‘max ] that satisfies conditions (2.1), then the sequence { a~} of trial

values is decreasing with

+(ak) >0 or Ij’(ak)>o, k= O, l,.... (2.4)

If all the trial values satisfy *(at) >0 or ~‘( at ) >0, then the updating

algorithm shows that the sequence of trial values is decreasing. If, on the

contrary, we use an cq with @(at) s O and v‘( at ) < 0, then the updating

algorithm shows that the interval 1+ lies to the right of at. Since we only use

trial values cq in [ an,,, a ~~X], the interval 1+ will contain [ a~,,~, a~~z ].

We force the search algorithm to use am,. as a trial value when (2.4) holds

and a~,. > 0. This is done by choosing

CYJG [amln, max{8mzn at, amln}] (2.5)

for some factor ti~, ~ < 1. In our implementation, (2.5) holds with 8~, ~ = 7\ 12.

For more details, see Section 4.

The search algorithm terminates at a~,~ if 4( a~,~) >0 or 4 ‘(am, n) >0.

This is a reasonable termination criterion, because Theorem 2.1 shows that

there is an a“ ● T(w) with a* < an,. when these conditions hold. Thus,
after a finite number of trial values, either the search algorithm terminates

at an,., or the search algorithm generates an interval 1 in [ a~, ~, am ~~] with

endpoints that satisfy conditions (2. 1).

The requirements (2.2) and (2.5) are two of the safeguarding rules. Note

that (2.2) is enforced only when (2.3) holds, while (2.5) is used when (2.4)

holds. If the search algorithm generates an interval 1 in [ am,,, a~~ ~], then

we need a third rule to guarantee that the choice of at forces the length of 1

to zero. In our implementation this is done by monitoring the length of 1; if

the length of I does not decrease by a factor of d < 1 after two trials, then a
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bisection step is used for the next trial at. In our implementation we use

8 = 0.66.

THEOREM 2.2. The search algorithm produces a sequence { ak} in [ a~,.,

a~~z ] such that after a finite number of trial values one of the following

conditions holds:

The search terminates at a~~z, the sequence of trial values is increasing,
and (2.3) holds.

The search terminates at am ;R, the sequence of trial values is decreasing,

and (2.4) holds.

An interval Ih c [ am,n, atmax] is generated.

PROOF. In this proof we essentially summarize the arguments presented

‘k) and a(k) be the endpoints of 1~, and defineabove. Let al u

(~) = min{ajk), au&
(k)

}, ~Jk) == max{afk), a~k)}.

The left endpoint ~jk ) of Ik is nondecreasing, while the right endpoint is

nonincreasing.

We first show that @~k) = ~ cannot hold for all k >0. If ~~k ) = ~, then only

Case U2 of the updating algorithm holds, because in the other two cases both

endpoints are set to finite values. Since only Case U2 holds, it is clear that

(2.3) holds, and thus the safeguarding rule (2.2) shows that the bound a~~ ~ is
eventually used as a trial value. Given an ~, as a trial value, the search

either terminates at a~~ ~ or /3Jk) = a~~ *.

A similar argument shows that /3jk ) = O cannot hold for all k >0. If

(k) = O then only Case U1 or U3 of the updating algorithm holds, because in/$
Case U; both endpoints are set to positive values. Moreover, in this case (2.4)

holds. The safeguarding rule (2.5) shows that (2.4) cannot hold for all h >0

when a~,~ = O, because we have assumed that V(O) <0 and @‘(0) <0. If

a!~,. > 0, the safeguarding rule shows that a~,~ is eventually used as a trial

value, and thus either the search terminates at an ~~ or /?~k) = a~L~.

We have thus shown that after a finite number of trial values, either the

search terminates at one of the two bounds a~l ~ or am .x, or ~jk) > 0 and

~~k) < ~. Of course, in this last case Ik is a subset of [ an,., a~~X]. ❑

The most interesting case of Theorem 2.2 occurs when an interval Ik c

[a mzn~ amax ] is generated. In this case the safeguarding rules guarantee that

the length of the intervals {~k} converges to zero, and thus the sequence {ah}

converges to some a * in T( p).

We can rule out finite termination at one of the bounds by ruling out (2.3)

and (2.4). The simplest way to do this is to assume that am,,. satisfies

ij(a!m,n) <0 and *’(a ~,n) <0> (2.6)

and that an, ax satisfies

*(amaz) >0 or *’(amax) >0. (2.7)

Under these assumptions, Theorem 2.2 shows that an interval lk c
[a

mLn? ff?naz
] is generated after a finite number of trial values.
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Conditions (2.6) and (2.7) can be easily satisfied. For example, if am,, = O,

then (2.6) holds. Condition (2.7) holds if am .X is defined by ( 1.5) and if ~n,~ is

a strict lower bound for ~. Condition (2.7) also holds if @‘( a~~ ~) >0.

THEOREM 2.3. If the bounds an,. and a~~, satisfy (2.6) and (2.7), then

the search algorithm term inates in a finite number of steps with an ah s T( p),

or the iterates { ah} converge to some a * E T( p) with @’(a*) = O. If the search

algorithm does not terminate in a finite number of steps, then there is an

index k ~ such that the endpoints a~k’, aUck] of the interval Ik satisfy Q)k) < a+

< a~k~. Moreover, if $(a”) = O, then +’ changes sign on [ a~k), a“] for all

k > ko, while if @(a”) <0, then ~’ changes sign on [a/k], Q* I or [a”, a~k~]

for all k > ko.

PROOF. Assume that ak @ T(W) for all the iterates generated by the

search algorithm. Since the intervals Ik are uniformly bounded and their

lengths tend to zero, any sequence { ‘9h} with ~h = Ik must converge to a

common limit a*. Theorem 2.1 guarantees that there is a Ok ● (T(K) n Ik )

with @’(@k) = WC)‘(0). This implies that a * ● T( ~) and that

(h’(a*) = pfb’(o).

In particular, ~‘( a *) = O.

We define k ~ by noting that the continuity of ~‘ shows that there is a

k. >0 such that ~’(a) <0 for all a =Ik and all k > kO. Since @(a/k)) <0
(h) @ T( ~), we must have l~’(a~kJ)l > ~l@’(0)1. We also know thatand al

@’(ajk)) <0 for k > ko, and thus ~’(ajk)) < lA@’(0). Hence, ~’(afk)) < 0.

Condition (2. 1) on the endpoints implies that a~k ) < a~k ~, and in particular,
(h) ~ ~* ~ ~:h)al

INow consider the case where @(a*) = O. We cannot have @‘(a) s O on

[CYjk), a*], because this implies that ~(a~k’) > ~(a”) = O. Thus 4’( ~k) >0

for some j3k G [ a~k), a“]. Since ~’(ct~k)) <0, we have shown that ~’ changes

sign on [a\h), CY*].
Finally, consider the case where V( a *) <0. Assume that k ~ is such that

#( a~k)) <0 for all k > kO. If ~’(ajh)) >0, then ~’(a~k)) z w@’(0), and since

O‘( a~k’) <0, we have that a$k ) = T( p). This contradiction shows that

4‘( ajk)) <0. We have already shown that *‘( ajk’) <0, so ~‘ changes sign
(k)] if ~~( ~k) > 0 for some ~~ in [alk), aUon [a)k), a“] or [a”, CYU ‘k)]. This is

clear because if ~’(a) < 0 on [ajk), a~k)], then q$(afk)) > ~(a~h~). H

If the search algorithm does not terminate in a finite number of steps, then

Theorem 2.3 implies that ~‘ changes sign an infinite number of times, in the
sense that there is a monotone sequence { ~k} that converges to a * and such

that 4‘( ~k ) @‘( /3k, ~) <0. Theorem 2.3 thus justifies our claim that except for

pathological cases, the search algorithm terminates in a finite number of

iterations. Closely related results have been established by A1-Baali and

Fletcher [1984] and More and Sorensen [1984]. In these results, however, the

emphasis is on showing that the search algorithm eventually generates an ~h

that satisfies (1.1) and (1.2), provided ~ < q.
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3. SEARCH FOR A LOCAL MINIMIZER

Theorem 2.3 guarantees finite termination at an ah that satisfies (1.1) and

(1.2), provided q > IL. In this section we modify the search algorithm and
show that under reasonable conditions we can guarantee that the modified

search algorithm generates an a~ that satisfies (1.1) and (1.2) for any q > 0.

A difficulty with setting q < p is that even if T( ~) is not empty, there may

not be an a > 0 that satisfies (1.1) and (1.2). We illustrate this point with a

minor modification of an example of A1-Baali and Fletcher [1984]. Define

(3.1)

where q < w < p. The solid plot in Figure 1 is the function ~ with m = O.1;

the dashed plot is the function 1(a) = +(0) + ~@ ’(0)a with p = 0.25. A

computation shows that ~ is continuously differentiable and that

for all a >0. Moreover, if p < ~, then

[

l–p 1–(7
T(/-L)= — 1l–a’2(p– a)”

Thus 2’(p) is a nonempty interval with a = 1 in the interior. In Figure 1 we

have set a = 0.1 and ~ = 0.25, and thus 2’(p) = [5/6, 3].

We now show that if during the search for T(~) we compute a trial value

a~ such that $( CYk) s O and ~‘( ak ) > 0, then a~ belongs to 2’( p) or we have

identified an interval that contains points that satisfy the sufficient decrease

condition (1. 1) and the curvature condition (1.2).

THEOREM 3.1. Assume that the bounds an,, ~ and a~~ ~ satisfy (2.6) and

(2.7). Let { ak) be the sequence generated by the search algorithm, and let ajk)

and a~k ) be the endpoints of the interval Ik generated by the search algorithm.

If ak is the first iterate that satisfies

then a~k) < a~k). Moreover, ah = I!’( ~) or @’(ak) > 0. If @’(ak) > 0, then the

interval

contains an a * that satisfies (1.1)and 4’( a *) = O. Moreover, any a G I“ with

@(a ) < +( ah ) also satisfies (1.1).

PROOF. We first claim that v‘( afk)) <0. If this is not the case, then

*‘( al) >0 for some index j < k, because a~h ) is a previous iterate. However,
this contradicts the assumption that ak is the first iterate that satisfies (3.2).
This proves that +‘( CE}h)) < 0.

Since @‘( a~k’) <0, assumptions (2.1) imply that a}k ) < a~k’. This implies,

in particular, that ak > CYjk’, so 1 * is well defined.
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Fig. 1 Solid plot is ~, defined by (3.1). Dashed plot is 1(a) = O(O)+ LLO‘(0)a.

If ~’(a~) >0 and ~’(a~) <0, then it is clear that l~’(a~)l < I.Ll@’(0)1. Since

$( ah) <0, this implies that ah ● T( I-L).
Now assume that @‘( a~ ) >0, and let a* be a global minimizer of @ on 1*.

Since @‘( a~ ) >0 and a* is a minimizer, a * + ah. Similarly, since we proved

above that @‘( a)~)) < 0 and since a * is a minimizer, a * # a[k).

We have shown that a* is in the interior of l“. Hence, @‘( a”) = O, as

desired. We complete the proof by noting that if +(a) < O( ak ) for some

a ● 1’, then

The second inequality holds because cr~ satisfies (1.1), while the third in-

equality holds because a < ah. Hence, any a = 1“ with +(a) < @(ah) also

satisfies (1.1). ❑

There is no guarantee that the search algorithm will generate an iterate a~

such that +( ah ) < 0 and @‘( a~ ) > 0. For example, if @ is the function shown

in Figure 1, then @‘(a) < 0 for all a. Even if @ has a minimizer a * that

satisfies the sufficient decrease condition, the search algorithm may not find

any points that satisfy (1. 1) and (1.2), and instead will converge to a point in

T( ~). We illustrate this point with the function

I#(a)= –(a:;2) –pa’, (3.3)

with ~ = 0.03. In Figure 2 the set 2“( ~) is highlighted; the set of a that

satisfies (1. 1) and (1.2) is larger than T( ~) if q > ~, and smaller than T( p) if

q < ~. Theorem 2.3 guarantees finite termination at an ak ● T( p), but a~

may not be near the minimizer a*.

We now develop a search procedure that determines an ak near the

minimizer a*, provided 4( a~ ) <0 and @‘(ah) >0 for some iterate. Theorem
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Fig. 2. Solid plot is ~, defined by (3.3). Dashed plot is 1(a) = q5(0)+ ,ucj‘(0)a.

3.1 is one of the ingredients; we also need to show that the interval 1*

specified by this result satisfies the assumptions of the following result:

THEOREM 3.2. Let I be a closed interval with endpoints al and aU. If the

endpoints satisfy

@(al) s @(au), o’(~1)(% – %) <0,

then there is an a’ in I with ~(a*) < O( al) and @’(a*) = O.

PROOF. The proof of this result is almost immediate. If a* is the global

minimizer of + on 1, then the assumptions on al and au guarantee that a *

is in the interior of 1 and thus +’(a *) = O. ❑

The interval 1“ specified by Theorem 3.1 satisfies the assumptions of

Theorem 3.2, because the derivative of ~ has the proper sign at the end-

points. We have assumed that @‘( ak ) >0. Moreover, in Theorem 3.1 we have

established that aj ~) < a~h), and thus assumptions (2.1) on the endpoints of

1~ imply that v‘( a}~)) <0. Hence, ~‘( a~~)) <0. These two results show that

1* has the desired properties.

We now need to modify the updating algorithm so that we can guarantee

finite termination at an iterate that satisfies the sufficient decrease condition
(1.1) and the curvature condition (1.2). The modification is simple; we just

replace 4 by @ in the updating algorithm.

Modified Updating Algorithm. Given a trial value at in I, the endpoints
a; and a; of the updated interval 1+ are determined as follows:

Case a: If @(at) > ~(al), then a:= al and a:= at.

Case b: If ~(a~) s @(al) and @’(af)(al – at) ~ O, then a;= cq and a;= aU.

Case c: If @(at) s ~(al) and +’(a~)(al – at) <0, then a:= at and a;= al.
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We have shown that the interval 1“ specified by Theorem 3.1 satisfies the

assumptions of Theorem 3.2. Moreover, a short computation shows that if 1 is

any interval that satisfies the assumptions of Theorem 3.1, then the modified

updating algorithm preserves these assumptions.

Our implementation of the search algorithm of Section 2 uses the modified

updating algorithm in an obvious manner: If some iterate ak satisfies (J( CYk)
<0 and @‘(ah) > 0, then the modified updating algorithm is used on that

iteration and on all further iterations.

THEOREM 3.3. Assume that the bounds a~,~ and a~~, satisfy (2.6) and

(2.7). If the modified search algorithm generates an iterate such that @(ah) s O
and ~‘( cY~) > 0, then the modified search terminates at an ah that satisfies

(1.1)and (1.2).

PROOF. If the search algorithm generates an ak with V( ak ) s O and

@’(ah) >0, then Theorem 3.1 shows that ah > a$k), and thus the modified

updating algorithm sets

,+, = [%@)>%]I

because Case U2 does not hold. Moreover, Theorem 3.1 guarantees that any
a ~ Ih + ~ with 4(a) < #1(a~ ) satisfies (1.1). This implies that for any iteration

j > k the endpoint a}~) satisfies (1.1). We also know that any sequence { ~~}

with Oh ● 1~ must converge to a common limit a*. Since Theorem 3.2 shows

that there is a 6h ● 1~ such that @’(0~) = O, we obtain that 4’( a *) = O.

Hence, af~) satisfies (1.2) for all j > k sufficiently large. This proves that the

modified search terminates at an iterate that satisfies (1.1) and (1.2). ❑

4. TRIAL VALUE SELECTION

Given the endpoints al and aU of the interval 1, and a trial value af in 1, the

updating algorithm described in the preceding section produces an interval

1+ that contains acceptable points. We now specify the new trial value a; in

I+.

We assume that in addition to the endpoints al and aU, and the trial point

at, we have function values fl, fu, ft and derivatives g,, gU, g~. The function

values fl, fu, ft and derivatives gl, gU, g~ can be obtained from either the
function @ or the auxiliary function *. The function and derivative values are

obtained from the auxiliary function @ until some iterate satisfies the test

+( ah) <0 and @’(ak) z O. Once this testis satisfied, @ is used.
We have divided the trial value selection into four cases. In the first two

cases, we choose al by interpolating the function values at al and at so that

the trial value a; lies between al and at. We define a; in terms of aC (the

minimizer of the cubic that interpolates fl, ft, gl, and gf), a~ (the minimizer

of the quadratic that interpolates fl, ft, and gl ), and as (the minimizer of the

quadratic that interpolates fl, gl, and g~).
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Case 1: f, > ft. In this case compute aC and a~ and set

{

o! c> if]ac–all<laq– all,
+_Cl!t —

+(aq + a.), otherwise.

Both aC and a~ lie in I+, so they are both candidates for a;. We desire a

choice that is close to al, since this is the point with the lowest function

value. Both aq and aC are relatively close to al, because

Thus, for the above choice of a~,

A choice close to al is clearly desirable when ft is much larger than fl. In

this case the quadratic step is closer to al than to aC, but usually abnormally

so. Indeed, if a~( ft ) is the value of a~ as a function of ft, then

lim a~(ft) = al.
f,+~

On the other hand, a computation shows that

lim aC(f,) = al + ~(au – at).
f,+=

Thus, the midpoint of aC and a~ is a reasonable compromise.

Case 2: f, s fl and gtgl <0. In this case compute ae and as, and set

+= (o! c> if [aC – atl 2 Ias — atl,
fft (1S9 otherwise.

Both aC and CY$lie in I+, so they are both candidates for a;. Since gfgl < 0,

a minimizer lies between al and cq. Choosing the step that is farthest from

af tends to generate a step that straddles a minimizer, and thus the next

step is also likely to fall into this case.

In the next case, we choose a: by extrapolating the function values at al

and cq, so the trial value a: lies outside of the interval with at and al as

endpoints. We define a; in terms of a, (the minimizer of the cubic that

interpolates fl, ft, gz, and g~ ) and a, (the minimizer of the quadratic that
interpolates g~ and g~).

Case 3: ft s fl, gtgl 20, and lg~l < Igll. In this case the cubic that inter-
polates the function values fl and ft and the derivatives gl and g~ may not
have a minimizer. Moreover, even if the minimizer aC exists, it maybe in the

wrong direction. For example, we may have af > al, but aC < at. On the

other hand, the secant step as always exists and is in the right direction.
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If the cubic tends to infinity in the direction of the step and the minimum of

the cubic is beyond at, set

+_ (a c> iflaC– atl < la. – atl,
at — a,57 otherwise.

Otherwise, set a;= as. This choice is based on the observation that during

extrapolation it is sensible to be cautious and to choose the step closest to at.

The trial value a~ defined above may be outside of the interval with at

and aU as endpoints, or it may be in this interval but close to aU. Either

situation is undesirable, so we redefine a; by setting

+_

{

min{at + ~(au – at), a:}, ifat> al,
at — max{a~+ 8(aU – at), a:}, otherwise,

for some 8<1. In our algorithm we use 8 = 0.66.

In the last case, the information available at al and at indicates that the

function is decreasing rapidly in the direction of the step, but there does not

seem to be a good way to choose a: from the available information.

Case 4: f~ < fz, gtgl >0, and Igtl > Igll. In this case we choose a: as the
minimizer of the cubic that interpolates fu, ft, gu, and g~.

5. NUMERICAL RESULTS

The set of test problems that we use to illustrate the behavior of the search

algorithm includes convex and general functions. The first three functions

have regions of concavity, while the last three functions are convex. In all

cases the functions have a unique minimizer. Our numerical results were

done in double precision on an IPX Sparcstation.

The region of concavity of the first function in the test set is to the right of

the minimizer, while the second function is concave to the left of the mini-
mizer. The first function is defined by

+(a)= -(a,:b) (5.1)

with P = 2, while the second function is defined by

d(a) = (a+/3)5-2(a+/?)4 (5.2)

with ~ = 0.004. Plots for these two functions appear in Figures 3 and 4.

The third function in the test set was suggested by Paul Plassmann. This

function is defined in terms of the parameters 1 and ~ by

2(1–6) 1’T
Cj(a) = @o(a) + ~m

(1
sin —CY ,

2
(5.3)
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where

The parameter ~ controls the size of ~ ‘(0) = – ~. This parameter also

controls the size of the interval where (1.2) holds because I@‘(a )1 z @ for

Ia – 11 z /3, and thus (1.2) can hold only for Ia – 11< ~. The parameter 1

controls the number of oscillations in the function for Ia – 1I z ~, because in
that interval 4“ ( a ) is a multiple of sin((lw/2) a ). Note that if 1 is odd, then

~’(l) = O, and that if 1 = 4ii – 1 for some integer k z 1, then ~“(l) >0. Also

note that @ is convex for Ia – 1 I < ~ if

We have chosen B = 0.01 and 1 = 39. A plot of this function with these

parameter settings appears in Figure 5.
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0.01 and 1 = 39.

The other three functions in

functions are defined in terms

‘w
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the test set are from Yanai et al. [ 1981]. These

of parameters ~1 and ~z by

(fxa) = wl)[(l -d’ +(3;]”2+W,)[a’+fy]’”> (5.4)

where

103)=(l+@)1’2-B.

These functions are convex, but different choices of El and ~2 lead to

functions with quite different characteristics. This can be seen clearly in

Figures 6–8.

In Tables I–VI we present numerical results for different values of aO. We

have used aO = 10’ for i = ~ 1, +3. This illustrates the behavior of the

algorithm from different starting points. We are particularly interested in the

behavior from the remote starting points a. = 10 i 3.

In our numerical results, we have used different values of K and q in order

to illustrate different features of the problems and the search algorithm. In

many problems we have used q = 0,1 because this value is typical of those

used in an optimization setting. We comment on what happens for other

values of ~ and q. The general trend is for the number of function evalua-

tions to decrease if p is decreased or if q is increased. The reason for this

trend is that as K is decreased or q is increased, the measure of the set of

acceptable values of a increases.

An interesting feature of the numerical results for the function in Figure 3

is that values of a much larger than a * = 1.4 can satisfy (1.1) and (1.2). This
should be clear from Figure 3 and from the results in Table I. These results

show that if we use ~ = 0.001 and q = 0.1, then the starting point a. = 10

satisfies (1. 1) and (1.2), and thus the search algorithm exits with a.. Simi-

larly, the search algorithm exits with a~ = 37 when the starting point is

a!o = 10+3.
We can avoid termination at points far away from the minimizer a * by

increasing w or decreasing q. If we increase p and set w = q = 0.1, then the

algorithm terminates with aa = 1.6 when a. = 10 and with a~ = 1.6 when

a. = 10+3. There is no change in the behavior of the algorithm from the other
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two starting points. If we decrease q by setting q = 0.001 but leave K

unchanged at ~ = 0.1, then the final iterate am is near a * for all starting

points. For q = 0.001 the search algorithm needs 6 function evaluations for

a. = 10 and ten function evaluations for a. = 10+3. The number of function

evaluations for a. = 10’3 and a. = 10-1 is, respectively, 8 and 4. This

increase in the number of function evaluations is to be expected because now

the set of acceptable a is smaller.
Another interesting feature of the results in Table I is that the six function

evaluations needed for a. = 10 3 could have been predicted from the nature
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Table I. Results for Function in Figure 3 with

w = 0.001 and q = 0.1

ffO Info m ffm +’(%)

IO-3
1 6 1.4 –9.2 10-3

1o-1 1 3 1.4 4.710-3

10+1 1 1 10 9.410-3

10+3 1 4 37 7.310-4

Table II. Results for Function in Figure 4

with w = ~ = 0.1

Q’o Info m fJ’in o’(%)

IO-3 1 12 1.6 7.110-9
10-1 1 8 1.6 1010-10

10+1 1 8 1.6 –5.0 10-9
~o+3

1 11 1.6 –2.3 10-8

Table III. Results for Function in Figure 5

with p = q = 0.1

~n Info m a. O’(a-)

10-3
1 12 1.0 –5.1 10-5

~o-l
1 12 1.0 –1.910-4

~o+l 1 10 1.0 –2.0 10-6
10+3 1 13 1.0 –1.6 10-5

Table IV. Results for Function in Figure 6

with w = q = 0.001

~o Info m % +’(am)

10-3 1 4 0.08 –6.9 10-5
1o-1 1 1 0.10 –4.9 10-5
~o+l 1 3 0.35 –2.9 10-6
~o+3 1 4 0.83 1.610-5

Table V. Results for Function in Figure 7

with w = q = 0.001

ffO Info m ~. @’(ff~)

10-3 1 6 0.075 1.910-4
1o-1

1 3 0.078 7.410-4
~o+l

1 7 0.073 –2.6 10-4
~o+3 1 8 0.076 4.510-4
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Table VI. Results for Function in Figure 8
with w = v = 0.001

~o Info m a. @’(am)

~o-3 1 13 0.93 5.210-4
1o-1 1 11 0.93 8.410-5
~o+l 1 8 0.92 –2.4 10-4
~o+3 1 11 0.92 –3.2 10-4

of the extrapolation process. This can be explained by noting that in a typical

situation the extrapolation process generates iterates by setting a;= at +
a(a~ – al) with 8 = 4, and thus

a!~ = 0.005, OJ~= 0.021, as = 0.085, a4 = 0.341, ab ‘= 1.365

until the minimizer is bracketed or until one of these iterates satisfies the

termination conditions. This implies, for example, that if the minimizer is
~ * = 14 then either one of the above iterates satisfies (1.1) and (1.2), or at

least S;X ‘function evaluations are required before the search algorithm exits.

The number of function evaluations needed to find an acceptable a is

usually dependent on the measure of the set of acceptable a. From this point

of view, the only difficult test problems are those based on the functions in

Figures 4 and 5, because for these functions the set of acceptable a is small.

The choice of /3 = 0.004 for the function in Figure 4 guarantees that this

function has a large region of concavity, but also forces @‘(O) to be quite small

(approximately – 510-7 ). AS a consequence, (1.2) is quite restrictive for any

q < 1. Similar remarks apply to the numerical results for the fu]mction in
Figure 5. This is a difficult test problem, because information based on

derivatives is unreliable as a result of the oscillations in the function.

Moreover, as already noted, (1.2) can hold only for Ia – 11<0.

In Table II we present the numerical results for the function in Figure 4. In

this table we have used p = q = 0.1, but these results remain unchanged if

we set q = 0.1 and choose any p < q.

The number of function evaluations in Table II compares favorably with a

search algorithm based on bisection. Given the starting value a(o = 10, a

search algorithm based on bisection requires 48 function evaluations to

determine an acceptable a, because in this problem the set of acceptable a is

an interval of approximate length 2.5 10 – 9. The comparison is even more

favorable for the starting point a. = 10+3, because in this case a bisection

algorithm requires 107 function evaluations.

For the function in Figure 5, the set of acceptable a is an interval of length

10-3, so a bisection algorithm requires 10 function evaluations for the

starting value a. = 10, and SO function evaluations for ao = 10+3” ‘[f ‘e ‘ow

compare this information with the numerical results in Table III, we see that

the search algorithm of this paper performs better than an algorithm based

on bisection. This is surprising because for this function the irdformation

provided by ~‘ is unreliable.
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The numerical results for the problems based on function (5.4) appear in

Tables IV-VI. In all these tables we have chosen p = q = 0.001. Although

these choices are not typical of those found in an optimization environment,

they lead to more interesting results.

If we compare the results in these three tables, we notice that for a given

starting point, the number of function evaluations sometimes differs consid-

erably. The results in Table V are typical of those that occur for q = 0.001. In

examining the results in Table V, allowances must be made for the fact that

the starting points are not distributed symmetrically around the minimizer

a’ == 0.074. In particular, the small number of function evaluations for

a. = 0.1 is mainly due to the fact that in this case a. is close to a*.

The number of function evaluations in Table IV is lower because the set of

acceptable a is unusually large. In particular, note that the value am

returned by the search algorithm is not close to the minimizer a * = ~ of the

function in Figure 6.

The number of function evaluations in Table VI is higher because in this

problem it is difficult to determine an iterate ah such that ~‘( ah ) >0 and ak

satisfies the sufficient decrease condition. Recall that once such an iterate is

determined, we know that the problem has a minimizer that satisfies the

sufficient decrease condition.

In an optimization setting, we would not tend to use q = 0.001, and then

the number of function evaluations needed to obtain an acceptable a would

decrease considerably. Consider, for example, the results for the function in

Figure 8 with ~ = 0.001 and q = 0.1. For these settings, the number of

function evaluations needed to obtain an acceptable a from the starting

points a. = 10’ for i = –3, – 1, 1, and 3 would be, respectively, 2, 1, 3, and

4. Similar results would be obtained for the functions in Figures 6 and 7.
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