Fundamental Classes
10

* Write code using the following methods of the java.lang.Math class: abs(),
ceil(), floor(), max(), min(), random(), round(), sin(), cos(), tan(), sqrt().

® Describe the significance of the immutability of String objects.

® Describe the significance of wrapper classes, including making appropriate
selections in the wrapper classes to suit specified behavior requirements,
stating the result of executing a fragment of code that includes an instance of
one of the wrapper classes, and writing code using the following methods of
the wrapper classes (e.g., Integer, Double, etc.):
o doublevalue()

floatValue()

intValue()

TongValue()

parseXxx()

o getXxx()

toString()

o toHexString()

o o o g

O

¢ Understand the functionality inherited by all classes from the Object class,
which is at the top of any class hierarchy.

¢ Write code for manipulating immutable and dynamic strings, using the
facilities provided by the String and StringBuffer classes, respectively.

387

388

10.1

CHAPTER 10: FUNDAMENTAL CLASSES

Overview of the java.lang Package

The java.lang package is indispensable when programming in Java. It is automat-
ically imported into every source file at compile time. The package contains the
Object class that is the mother of all classes, and the wrapper classes (Boolean, Char-
acter, Byte, Short, Integer, Long, Float, Double) used to handle primitive values as
objects. It provides classes essential for interacting with the JVM (Runtime), for secu-
rity (SecurityManager), for loading classes (ClassLoader), for dealing with threads
(Thread), and for exceptions (Throwable). The java.lang package also contains classes
that provide the standard input, output, and error streams (System), string handling
(String, StringBuffer), and mathematical functions (Math).

Figure 10.1 shows the important classes that are discussed in detail in this chapter.

Figure 10.1 Partial Inheritance Hierarchy in the java.lang Package

Wrapper
classes

/\
| [[[
| Number ‘ | Math ‘ | String ‘ |Str1ngBuffer‘
/N
IE [I [I |
‘Boo]ean HCharacterH Byte H Short H Integer ” Long H Float H Double |

10.2 The Object Class

All classes extend the Object class, either directly or indirectly. A class declaration,
without the extends clause, implicitly extends the Object class (see Section 6.1,
p- 226). Thus, the Object class is always at the top of any inheritance hierarchy. The
Object class defines the basic functionality that all objects exhibit and that all
classes inherit. Note that this also applies for arrays, since these are genuine objects
in Java.

The Object class provides the following general utility methods (see Example 10.1
for usage of some of these methods):

int hashCode()

When storing objects in hash tables, this method can be used to get a hash
value for an object. This value is guaranteed to be consistent during the execu-
tion of the program. For a detailed discussion of the hashCode() method, see
Section 11.7 on page 461.

10.2: THE OBJECT CLASS 389

boolean equals(Object obj)

Object reference and value equality are discussed together with the == and !=
operators (see Section 3.10, p. 68). The equals() method in the Object class
returns true only if the two references compared denote the same object. The
equals() method is usually overridden to provide the semantics of object value
equality, as is the case for the wrapper classes and the String class. For a
detailed discussion of the equals() method, see Section 11.7 on page 461.

final Class getClass()

Returns the runtime class of the object, which is represented by an object of the
class java.lang.Class at runtime.

protected Object clone() throws CloneNotSupportedException

New objects that are exactly the same (i.e., have identical states) as the current
object can be created by using the clone() method, that is, primitive values and
reference values are copied. This is called shallow copying. A class can override
this method to provide its own notion of cloning. For example, cloning a com-
posite object by recursively cloning the constituent objects is called deep copying.

When overridden, the method in the subclass is usually declared public to
allow any client to clone objects of the class.

If the overriding clone() method relies on the clone() method in the Object
class, then the subclass must implement the Cloneable marker interface to indi-
cate that its objects can be safely cloned. Otherwise, the clone() method in the
Object class will throw a checked CloneNotSupportedException.

String toString()

If a subclass does not override this method, it returns a textual representation
of the object, which has the following format:

"<name of the class>@<hash code value of object>"

This method is usually overridden and used for debugging purposes. The
method call System.out.printIn(objRef) will implicitly convert its argument to
a textual representation using the toString() method. See also the binary string
concatenation operator +, discussed in Section 3.6 on page 62.

protected void finalize() throws Throwable

This method is discussed in connection with garbage collection (see Section
8.1, p. 324). It is called on an object just before it is garbage collected, so that
any cleaning up can be done. However, the default finalize() method in the
Object class does not do anything useful.

390 CHAPTER 10: FUNDAMENTAL CLASSES

In addition, the Object class provides support for thread communication in syn-
chronized code, through the following methods, which are discussed in Section 9.5
on page 370:

final void wait(Tong timeout) throws InterruptedException

final void wait(Tong timeout, int nanos) throws InterruptedException
final void wait() throws InterruptedException

final void notify()

final void notifyAl11(Q)

A thread invokes these method on the object whose lock it holds. A thread
waits for notification by another thread.

Example 10.1 Methods in the Object class

public class ObjectMethods {
public static void main(String[] args) {
// Two objects of MyClass.
MyClass objl = new MyClassQ);
MyClass obj2 = new MyClass();

// Two strings.
String strl = new String("WhoAmI");
String str2 = new String("WhoAmI");

// Method hashCode() overridden in String class.

// Strings with same content (i.e., are equal) have the same hash code.
System.out.printin("hash code for strl: " + strl.hashCode());
System.out.printin("hash code for str2: " + str2.hashCode() + "\n");

// Hash codes are different for different MyClass objects.
System.out.printin("hash code for MyClass objl: " + objl.hashCode());
System.out.printIn("hash code for MyClass obj2: " + obj2.hashCode()+"\n");

// Method equals() overridden in the String class.
System.out.printin("strl.equals(str2): " + strl.equals(str2));
System.out.printin("strl == str2 : " + (strl == str2) + "\n");

// Method equals() from the Object class called.
System.out.printin("objl.equals(obj2): " + objl.equals(obj2));
System.out.printin("objl == obj2 : " + (objl == obj2) + "\n");

// The runtime object that represents the class of an object.
Class rtStringClass = strl.getClassQ);

Class rtMyClassClass = objl.getClass(Q);

// The name of the class represented by the runtime object.
System.out.printin("Class for strl: " + rtStringClass);
System.out.printin("Class for objl: " + rtMyClassClass + "\n");

10.2: THE OBJECT CLASS 391

// The toString() method is overridden in the String class.

String textRepStr = strl.toString();

String textRepObj = objl.toString();

System.out.printin("Text representation of strl: " + textRepStr);
System.out.printin("Text representation of objl: " + textRepObj + "\n");

// Shallow copying of arrays.

MyClass[] arrayl = {new MyClass(), new MyClass(), new MyClass()};

MyClass[] array2 = (MyClass[]) arrayl.clone(); // Cast required.

// Array objects are different, but share the element objects.

System.out.printin("arrayl == array2 : " + (arrayl == array2));

for(int i = 0; i < arrayl.length; i++) {
System.out.printin("arrayl[" + i + "] == array2[" + i + "] : "

+ (arrayl[i] == array2[il]));
}

System.out.printin();

// Clone an object of MyClass.

MyClass obj3 = (MyClass) objl.clone();

System.out.printin("hash code for MyClass obj3: " + obj3.hashCode());
System.out.printin("objl == obj3 : " + (objl == obj3));

}
class MyClass implements Cloneable {

public Object clone() {
Object obj = null;

try { obj = super.clone();} // Calls overridden method.
catch (CloneNotSupportedException e) { System.out.printin(e);}
return obj;

}

Output from the program:

hash code for strl: -1704812257
hash code for str2: -1704812257

hash code for MyClass objl: 24216257
hash code for MyClass obj2: 20929799

strl.equals(str2): true
strl == str2 : false

objl.equals(obj2): false
objl == obj2 : false

Class for strl: class java.lang.String
Class for objl: class MyClass

Text representation of strl: WhoAmI
Text representation of objl: MyClass@17182cl

392

10.1

10.2

10.3

10.3

CHAPTER 10: FUNDAMENTAL CLASSES

arrayl == array2 : false

arrayl[0] == array2[0] : true
arrayl[1] == array2[1] : true
arrayl[2] == array2[2] : true

hash code for MyClass obj3: 16032330
objl == obj3 : false

Review Questions

What is the return type of the hashCode() method in the Object class?

Select the one correct answer.
(a) String

(b) int

(c) Tong

(d) Object

(e) Class

Which statement is true?

Select the one correct answer.

(a) If the references x and y denote two different objects, then the expression
x.equals(y) is always false.

(b) If the references x and y denote two different objects, then the expression
(x.hashCode() == y.hashCode()) is always false.

(c) The hashCode() method in the Object class is declared final.

(d) The equals() method in the Object class is declared final.

(e) All arrays have a method named clone.

Which exception can the clone() method of the Object class throw?

Select the one correct answer.

(a) CloneNotSupportedException
(b) NotCloneableException

(c) I1legalCloneException

(d) NoClonesATllowedException

The Wrapper Classes

Wrapper classes were introduced with the discussion of the primitive data types
(see Section 2.2, p. 28). Primitive values in Java are not objects. In order to manip-
ulate these values as objects, the java.lang package provides a wrapper class for
each of the primitive data types. All wrapper classes are final. The objects of all
wrapper classes that can be instantiated are immutable, that is, their state cannot be
changed.

10.3: THE WRAPPER CLASSES 393

Although the Void class is considered a wrapper class, it does not wrap any primi-
tive value and is not instantiable (i.e., has no public constructors). It just denotes
the Class object representing the keyword void. The Void class will not be discussed
further in this section.

In addition to the methods defined for constructing and manipulating objects of
primitive values, the wrapper classes also define useful constants, fields, and con-
version methods.

Figure 10.2 Converting Values between Primitive, Wrapper, and String Types
string
String str;
str = Wapper Type.toString(v); // (6a) str = ref.toString(); //(3)
str = String.valueOf(v); // (6b)
str = "" + v; // (6c)
ref = new Wapper Type(str); // (2a

v = W apper Type.parseType(str); // (5) ref = Wapper Type.valueOf(str); // (2b

primitive value object

type v; < » W apper Type ref;

v = ref.typevalueQ; // (4) ref = new WapperType(v); // (1
typeis: W apper Type is: Comments:
booTlean Boolean (1) For boolean type, can also use Boolean.valueOf (boolean b).
char Character (2a) Not for Character type. Can throw NumberFormatException.
byte Byte (2b) Not for Character type. Can throw NumberFormatException.
short Short (5) For numeric wrapper types only. Can throw NumberFormatException.
int Integer (6b) Not for byte and short primitive types.
Tong Long
float Float
doubTe Double

Common Wrapper Class Constructors

The Character class has only one public constructor, taking a char value as parame-
ter. The other wrapper classes all have two public one-argument constructors: one
takes a primitive value and the other takes a string.

WrapperType(type v)
WrapperType(String str)

394

CHAPTER 10: FUNDAMENTAL CLASSES

Converting Primitive Values to Wrapper Objects

A constructor that takes a primitive value can be used to create wrapper objects.
See (1) in Figure 10.2.

Character charObjl
Boolean bool10bjl
Integer intObjl
Double doubleObjl

new Character('\n");
new Boolean(true);
new Integer(2003);
new Double(3.14);

Converting Strings to Wrapper Objects

A constructor that takes a String object representing the primitive value, can also
be used to create wrapper objects. The constructors for the numeric wrapper types
throw an unchecked NumberFormatException if the String parameter does not parse
to a valid number. See (2a) in Figure 10.2.

Boolean boo10bj2
Boolean boo10bj3
Integer intObj2
Double doubleObj2
Long TongObjl

new Boolean("TrUe"); // case ignored: true
new Boolean("XX"); // false

new Integer('2003");

new Double("3.14");

new Long("3.14"); // NumberFormatException

Common Wrapper Class Utility Methods

Converting Strings to Wrapper Objects

Each wrapper class (except Character) defines the static method value0Of(String s)
that returns the wrapper object corresponding to the primitive value represented
by the String object passed as argument (see (6a) in Figure 10.2). This method for
the numeric wrapper types also throws a NumberFormatException if the String
parameter is not a valid number.

static WrapperType valueOf(String s)
Boolean bool0bj4

Integer intObj3
Double doubleObj3

Boolean.valueOf("false™);
Integer.valueOf("1949");
Double.valueOf("-3.0");

In addition to the one-argument valueOf() method, the integer wrapper types
define an overloaded static valueOf() method that can take a second argument.
This argument specifies the base (or radix) in which to interpret the string repre-
senting the signed integer in the first argument:

static WrapperType valueOf(String s, int base)
Byte byteObjl Byte.valueOf("1010", 2); // Decimal value 10

Short shortObj2 = Short.valueOf("012", 8); // Not "\012". Decimal value 10.
Integer intObj4 Integer.valueOf("-a", 16); // Not "-Oxa". Decimal value -10.
Long Tong0Obj2 = Long.valueOf("-a", 16); // Not "-Oxa". Decimal value -10L.

10.3: THE WRAPPER CLASSES 395

Converting Wrapper Objects to Strings

Each wrapper class overrides the toString() method from the Object class. The
overriding method returns a String object containing the string representation of
the primitive value in the wrapper object (see (3) in Figure 10.2).

String toString()

String charStr = charObjl.toString(); // "\n"
String boolStr = bool0bj2.toString(); // "true"
String intStr = intObjl.toString(); // "2003"

String doubleStr = doubleObjl.toString(); // "3.14"

Converting Primitive Values to Strings

Each wrapper class defines a static method toString(type v) that returns the string
corresponding to the primitive value of type passed as argument (see (6a) in Figure
10.2).

static String toString(type v)

String charStr2 Character.toString('\n"'); // "\n"

String boolStr2 = Boolean.toString(true); // "true"
String intStr2 = Integer.toString(2003); // Base 10. "2003"
String doubleStr2 = Double.toString(3.14); // "3.14"

For integer primitive types, the base is assumed to be 10. For floating-point num-
bers, the textual representation (decimal form or scientific notation) depends on
the sign and the magnitude (absolute value) of the number. The NaN value, posi-
tive infinity and negative infinity will result in the strings "NaN", "Infinity",
and "-Infinity", respectively.

In addition, the wrapper classes Integer and Long define overloaded toString()
methods for converting integers to string representation in decimal, binary, octal,
and hexadecimal notation (see p. 398).

Converting Wrapper Objects to Primitive Values

Each wrapper class defines a typeValue () method which returns the primitive value
in the wrapper object (see (4) in Figure 10.2).

type typeValue()

char ¢ = charObjl.charValueQ); // "\n'
boolean b = bool10bj2.booleanValue(); // true
int i = intObjl.intValue(Q; // 2003
double d = doubleObjl.doubleValue(); // 3.14

In addition, each numeric wrapper class defines typevalue() methods for convert-
ing the primitive value in the wrapper object to a value of any numeric primitive
data type. These methods are discussed below.

396

CHAPTER 10: FUNDAMENTAL CLASSES

Wrapper Comparison, Equality, and Hashcode
Each wrapper class (except Boolean) defines the following method:

int compareTo(WrapperType obj2)

that returns a value which is less than, equal to, or greater than zero, depending on
whether the primitive value in the current WrapperType object is less than, equal to,
or greater than the primitive value in the WrapperType object denoted by argument
obj2.

Each wrapper class (except Boolean) also implements the Comparable interface (see
Section 11.6, p. 453), which defines the following method:

int compareTo(Object obj2)

This method is equivalent to the compareTo(WrapperType) method when the current
object and the object denoted by the argument obj2 have the same WrapperType. Oth-
erwise, a ClassCastException is thrown.

// Comparisons based on objects created above

Character charObj2 = new Character('a');

int resultl = charObjl.compareTo(charObj2); // <0

int result2 = intObjl.compareTo(intObj3); // >0

int result3 = doubleObjl.compareTo(doubleObj2); // ==

int result4 = doubleObjl.compareTo(intObjl); // ClassCastException

Each wrapper class overrides the equals() method from the Object class. The over-
riding method compares two wrapper objects for object value equality.

boolean equals(Object obj2)

// Comparisons based on objects created above

boolean charTest = charObjl.equals(charObj2); // false
boolean boolTest = boolObj2.equals(Boolean.FALSE); // false
boolean intTest intObjl.equals(intObj2); // true

boolean doubleTest = doubleObjl.equals(doubleObj2); // true

Each wrapper class overrides the hashCode() method in the Object class. The over-
riding method returns a hash value based on the primitive value in the wrapper
object.

int hashCode()

int index = charObjl.hashCode();

Numeric Wrapper Classes

The numeric wrapper classes Byte, Short, Integer, Long, Float, and Double are all sub-
classes of the abstract class Number (see Figure 10.1).

10.3: THE WRAPPER CLASSES 397

Each numeric wrapper class defines an assortment of constants, including the min-
imum and maximum value of the corresponding primitive data type:

<wrapper class name> .MIN_VALUE
<wrapper class name> .MAX_VALUE

The following code retrieves the minimum and maximum values of various
numeric types:

byte minByte = Byte.MIN_VALUE; // -128
int maxInt = Integer.MAX_VALUE; // 2147483647
double maxDouble = Double.MAX_VALUE; // 1.7976931348623157e+308

Converting any Numeric Wrapper Object to any Numeric Primitive Type

Each numeric wrapper class defines the following set of typevalue() methods for
converting the primitive value in the wrapper object to a value of any numeric
primitive type:

byte byteValue()
short shortValue()
int intValue()
Tong TlongValue()
float floatValue()
double doublevValue()

See also (4) in Figure 10.2.

The following code shows converting of values in numeric wrapper objects to any
numeric primitive type.

Byte byteObj2 new Byte((byte) 16); // Cast mandatory

Integer intObj5 new Integer(42030);

Double doubleObj4 = new Double(Math.PI);

short shortVal = intObj5.shortValue(Q); // (D
Tong Tongval = byteObj2.longValue();
int intval doubTeObj4.intValue(); // (2) Truncation

double doubleVal = intObj5.doublevValue();

Notice the potential for loss of information at (1) and (2) above, when the primitive
value in a wrapper object is converted to a narrower primitive data type.

Converting Strings to Numeric Values

Each numeric wrapper class defines a static method parseType(String s), which
returns the primitive numeric value represented by the String object passed as
argument. The Type in the method name parseType stands for the name of a
numeric wrapper class, except for the name of the Integer class which is abbrevi-
ated to Int. These methods throw a NumberFormatException if the String parameter is
not a valid argument (see (5) in Figure 10.2.)

398

CHAPTER 10: FUNDAMENTAL CLASSES

type parseType(String s)

byte valuel = Byte.parseByte("16");

int value2 = Integer.parseInt("2010"); // parselnt, not parselnteger.
int value3 = Integer.parseInt("7UP"); // NumberFormatException
double value4 = Double.parseDouble("3.14");

For the integer wrapper types, the overloaded static method parseType() can, in
addition, take a second argument, which can specify the base in which to interpret
the string representing the signed integer in the first argument:

type parseType(String s, int base)

byte value6 = Byte.parseByte("1010", 2); // Decimal value 10

short value7 = Short.parseShort("012", 8); // Not "\012". Decimal value 10.
int value8 = Integer.parseInt("-a", 16); // Not "-0xa". Decimal value -10.
Tong value9 = Long.parselLong("-a", 16); // Not "-Oxa". Decimal value -10L.

Converting Integer Values to Strings in different Notations

The wrapper classes Integer and Long provide static methods for converting inte-
gers to string representation in decimal, binary, octal, and hexadecimal notation.
Some of these methods from the Integer class are listed here, but analogous meth-
ods are also defined in the Long class. Example 10.2 demonstrates use of these
methods.

static String toBinaryString(int 1)
static String toHexString(int 1)
static String toOctalString(int i)

These three methods return a string representation of the integer argument as
an unsigned integer in base 2, 16, and 8, respectively, with no extra leading
zeroes.

static String toString(int i, int base)
static String toString(int i)

The first method returns the minus sign '-' as the first character if the integer
i is negative. In all cases, it returns the string representation of the magnitude
of the integer i in the specified base.

The last method is equivalent to the method toString(int i, int base), where
the base has the value 10, that is, returns the string representation as a signed
decimal. (see also (6a) in Figure 10.2).

Example 10.2 String Representation of Integers

public class IntegerRepresentation {
public static void main(String[] args) {
int positivelnt = +41; // 051, 0x29
int negativelnt = -41; // 037777777727, -051, Oxffffffd7, -0x29

10.3: THE WRAPPER CLASSES

}

System.out.printIn("String representation for decimal value:
+ positivelnt);
integerStringRepresentation(positivelnt);
System.out.printIn("String representation for decimal value:
+ negativelnt);
integerStringRepresentation(negativelnt);

}

public static void integerStringRepresentation(int i) {
System.out.printIn(" Binary:\t\t" + Integer.toBinaryString(i));
System.out.printIn(" Hex:\t\t" + Integer.toHexString(i));
System.out.printin(" Octal:\t\t" + Integer.toOctalString(i));

System.out.printIn(" Decimal:\t" + Integer.toString(i));
System.out.printin(" Using toString(int i, int base) method:");
System.out.printIn(" Base 2:\t\t" + Integer.toString(i, 2));
System.out.printIn(" Base 16:\t" + Integer.toString(i, 16));
System.out.printin(" Base 8:\t\t" + Integer.toString(i, 8));
System.out.printIn(" Base 10:\t" + Integer.toString(i, 10));

Output from the program:

String representation for decimal value: 41

Binary: 101001
Hex: 29
Octal: 51

Decimal: 41
Using toString(int i, int base) method:

Base 2: 101001
Base 16: 29
Base 8: 51

Base 10: 41

String representation for decimal value: -41

Binary: 1111171713311111717123311111171010111
Hex: ffffffd7

Octal: 37777777727

Decimal: -41

Using toString(int i, int base) method:

Base 2: -101001

Base 16: -29

Base 8: -51

Base 10: -41

Character Class

399

The Character class defines a myriad of constants, including the following which
represent the minimum and the maximum value of the char type (see Section 2.2,

p- 29):

Character.MIN_VALUE
Character.MAX_VALUE

400

10.4

10.5

CHAPTER 10: FUNDAMENTAL CLASSES

The Character class also defines a plethora of static methods for handling various
attributes of a character, and case issues relating to characters, as defined by
Unicode:

static int getNumericValue(char ch)
static boolean isLowerCase(char ch)
static boolean isUpperCase(char ch)
static boolean isTitleCase(char ch)
static boolean isDigit(char ch)

static boolean isLetter(char ch)

static boolean isLetterOrDigit(char ch)
static char toUpperCase(char ch)
static char toLowerCase(char ch)
static char toTitleCase(char ch)

The following code converts a lowercase character to an uppercase character:

char ch = 'a';
if (Character.isLowerCase(ch)) ch = Character.toUpperCase(ch);

Boolean Class

The Boolean class defines the following wrapper objects to represent the primitive
values true and false, respectively:

Boolean.TRUE
Boolean.FALSE

Review Questions

Which of the following are wrapper classes?

Select the three correct answers.
(a) java.lang.Void

(b) java.lang.Int

(c) java.lang.Boolean

(d) java.lang.Long

(e) java.lang.String

Which of the following classes do not extend the java.lang.Number class?

Select the two correct answers.

(a) java.lang.Float
(b) java.lang.Byte

(c) java.lang.Character
(d) java.lang.Boolean
(e) java.lang.Short

10.4: THE MATH CLASS 401

10.6

10.7

10.8

10.9

10.4

Which of these classes define immutable objects?

Select the three correct answers.

(a) Character
(b) Byte

(c) Thread
(d) Short

(e) Object

Which of these classes have a one-parameter constructor taking a string?

Select the two correct answers.
(a) Void

(b) Integer

(c) Boolean

(d) Character

(e) Object

Which of the wrapper classes have a booleanvalue() method?

Select the one correct answer.

(a) All wrapper classes.

(b) All wrapper classes except Void.

(c) All wrapper classes that also implement the compareTo() method.
(d) All wrapper classes extending Number.

(e) Only the class Boolean.

Which statements are true about wrapper classes?

Select the two correct answers.

(a) Stringisa wrapper class.

(b) Double has a compareTo() method.
(c) Character has a intValue() method.
(d) Byte extends Number.

The Math Class

The final class Math defines a set of static methods to support common mathemat-
ical functions, including functions for rounding numbers, performing trigonome-
try, generating pseudo random numbers, finding maximum and minimum of two
numbers, calculating logarithms and exponentiation. The Math class cannot be
instantiated. Only the class name Math can be used to invoke the static methods.

402

CHAPTER 10: FUNDAMENTAL CLASSES

The final class Math provides constants to represent the value of e, the base of the
natural logarithms, and the value & (pi), the ratio of the circumference of a circle to
its diameter:

Math.E
Math.PI

Miscellaneous Rounding Functions

static int abs(int 1)
static long abs(long 1)
static float abs(float f)
static double abs(double d)

The overloaded method abs () returns the absolute value of the argument. For
a non-negative argument, the argument is returned. For a negative argument,
the negation of the argument is returned.

static int min(int a, int b)
static long min(long a, long b)
static float min(float a, float b)
static double min(double a, double b)

The overloaded method min() returns the smaller of the two values a and b for
any numeric type.

static int max(int a, int b)
static long max(Tong a, Tong b)
static float max(float a, float b)
static double max(double a, double b)

The overloaded method max() returns the greater of the two values a and b for
any numeric type.

The following code illustrates the use of these methods from the Math class:

Tong 11 = Math.abs(2010L); // 2010L

double dd = Math.abs(-Math.PI); // 3.141592653589793
double d1 = Math.min(Math.PI, Math.E); // 2.718281828459045
Tong ml = Math.max(1984L, 2010L); // 2010L

int il = (int) Math.max(3.0, 4); // Cast required.

Note the cast required in the last example. The method with the signature max(dou-
ble, double) is executed, with implicit conversion of the int argument to a double.
Since this method returns a double, it must be explicitly cast to an int.

static double ceil(double d)

The method ceil() returns the smallest double value that is greater than or equal
to the argument d, and is equal to a mathematical integer.

10.4: THE MATH CLASS

Table 10.1

static double floor(double d)

403

The method floor() returns the largest double value that is less than or equal to
the argument d, and is equal to a mathematical integer.

static int

round(float f)
static long round(double d)

The overloaded method round() returns the integer closest to the argument.
This is equivalent to adding 0.5 to the argument, taking the floor of the result,
and casting it to the return type. This is not the same as rounding to a specific
number of decimal places, as the name of the method might suggest.

If the fractional part of a positive argument is less than 0.5, then the result
returned is the same as Math. floor(). If the fractional part of a positive argu-
ment is greater than or equal to 0.5, then the result returned is the same as
Math.ceil(Q).

If the fractional part of a negative argument is less than or equal to 0.5, then the
result returned is the same as Math.ceil1(). If the fractional part of a negative
argument is greater than 0.5, then the result returned is the same as
Math.fToor().

It is important to note the result obtained on negative arguments, keeping in mind
that a negative number whose absolute value is less than that of another negative
number, is actually greater than the other number (e.g., —3.2 is greater than —4.7).

Compare also the results returned by these methods, shown in Table 10.1.

double upPI = Math.ceil(Math.PI); // 4.0

double downPI = Math.floor(Math.PI); // 3.0

Tong roundPI = Math.round(Math.PI); // 3L

double upNegPI = Math.ceil(-Math.PI); // -3.0

double downNegPI = Math.floor(-Math.PI); // -4.0

Tong roundNegPI = Math.round(-Math.PI); // -3L

Applying Rounding Functions

Argument: 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0
ceil: 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
floor: 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0
round: 7 7 7 7 7 8 8 8 8 8 8
Argument: -7.0 | -7.1 | -7.2 -7.3 | -7.4 | -7.5 -7.6 | -7.7 | -7.8 | -7.9 | -8.0
ceil: -7.0 -7.0 -70 -70 -70 -70 -7.0 -7.0 -7.0 -7.0 -8.0
floor: -7.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0 -8.0
round: -7 -7 -7 -7 -7 -7 -8 -8 -8 -8 -8

404

CHAPTER 10: FUNDAMENTAL CLASSES

Exponential Functions

static double pow(double d1, double d2)
The method pow() returns the value of d1 raised to the power of d2 (i.e., d1%).

static double exp(double d)

The method exp() returns the exponential number e raised to the power of d
(i.e., e9).

static double log(double d)
The method Tog() returns the natural logarithm (base ¢) of d (i.e., log,d).

static double sqrt(double d)

The method sqrt() returns the square root of d (i.e., d’-°). For a NaN or a negative
argument, the result is a NaN (see Section 3.5, p. 52).

Some examples of exponential functions:

double r = Math.pow(2.0, 4.0); // 16.0

double v = Math.exp(2.0); // 7.38905609893065
double 1 = Math.Tog(Math.E); // 0.9999999999999981
double c = Math.sqrt(3.0%3.0 + 4.0%4.0); // 5.0

Trigonometry Functions

static double sin(double d)

The method sin() returns the trigonometric sine of an angle d specified in
radians.

static double cos(double d)

The method cos() returns the trigonometric cosine of an angle d specified in
radians.

static double tan(double d)

The method tan() returns the trigonometric tangent of an angle d specified in
radians.

static double toRadians(double degrees)

The method toRadians() converts an angle in degrees to its approximation in
radians.

static double toDegrees(double radians)

The method toRadians() converts an angle in radians to its approximation in
degrees.

10.4: THE MATH CLASS

Some examples of trigonometry functions:

double
double

double
double

double
double

double
double

double
double

Math.toDegrees(Math.PI/4.0);

= Math.toDegrees(Math.PI/2.0);

Math.toRadians(degl);
Math.toRadians(deg?2);

degl =
deg2

radl =
rad2 =

rl =

r2 = Math.si
r3 = Math.
r4 = Math.
r5 = Math.
ré = Math.

Math.sin(Math.PI/2.0);

n(Math.PI*2);

cos(Math.PI);
cos(Math.toRadians(360.0));

tan(Math.toRadians(90.0));
tan(Math.toRadians(45.0));

405

// 45 degrees
// 90 degrees

// 0.7853981633974483
// 1.5707963267948966

// 1.0
// -2.4492935982947064E-16 (0.0)

// -1.0
// 1.0

// 1.633123935319537E16 (infinity)
// 0.9999999999999999 (1.0)

Expected mathematical values are shown in parentheses.

Pseudorandom Number Generator

static double random()

The method random() returns a random number greater than or equal to 0.0 and
less than 1.0, where the value is selected randomly from the range according
to a uniform distribution.

An example of using the pseudorandom number generator is as follows:

for (int i =0; i < 10; i++)
System.out.printin((int) (Math.random()*10)); // int values in range [0 .. 9].

The loop will generate a run of ten pseudorandom integers between 0 (inclusive)
and 10 (exclusive).

Review Questions

10.10 Given the following program, which lines will print 11 exactly?

class MyClass {
public static void main(String[] args) {

double

System.
System.
System.
System.
System.

VvV =

out.
out.
out.
out.
out.

10.5;

println(Math.ceil(v));
printin(Math.round(v));
printin(Math.floor(v));

/7)
/1 (@)
/7 (3)

printIn((int) Math.ceil(v)); // (4)
printIn((int) Math.floor(v)); // (5)

406

10.11

10.12

10.13

10.14

CHAPTER 10: FUNDAMENTAL CLASSES

Select the two correct answers.

(a) The line labeled (1).
(b) The line labeled (2).
(¢) The line labeled (3).
(d) The line labeled (4).
(e) The line labeled (5).

Which method is not defined in the Math class?

Select the one correct answer.

(a) double tan2(double)
(b) double cos(double)

(c) int abs(int a)

(d) double ceil(double)

(e) float max(float, float)

What is the return type of the method round(float) from the Math class?

Select the one correct answer.
(a) int

(b) float

(c) double

(d) Integer

(e) Float

What is the return type of the method ceil(double) from the Math class?

Select the one correct answer.
(a) int

(b) float

(c) double

(d) Integer

(e) Double

What will the following program print when run?

public class Round {
public static void main(String[] args) {
System.out.printin(Math.round(-0.5) + " " + Math.round(0.5));
}
Y
Select the one correct answer.
(@) 00
(b) 01
(c) -10
d -11
(e) None of the above.

10.5: THE STRING CLASS 407

10.15

10.5

Which statements are true about the expression ((int) (Math. random()*4))?

Select the three correct answers.

(a) It may evaluate to a negative number.

(b) It may evaluate to the number 0.

(c) The probability of it evaluating to the number 1 or the number 2 is the same.
(d) It may evaluate to the number 3.

(e) It may evaluate to the number 4.

The String Class

Handling character strings is supported through two final classes: String and
StringBuffer. The String class implements immutable character strings, which are
read-only once the string has been created and initialized, whereas the String-
Buffer class implements dynamic character strings.

Character strings implemented using these classes are genuine objects, and the char-
acters in such a string are represented using 16-bit characters (see Section 2.1, p. 23).

This section discusses the class String that provides facilities for creating, initializ-
ing, and manipulating character strings. The next section discusses the String-
Buffer class.

Creating and Initializing Strings

String Literals Revisited

The easiest way of creating a String object is using a string literal:
String strl = "You cannot change me!";

A string literal is a reference to a String object. The value in the String object is the
character sequence enclosed in the double quotes of the string literal. Since a string
literal is a reference, it can be manipulated like any other String reference. The ref-
erence value of a string literal can be assigned to another String reference: the
reference strl will denote the String object with the value "You cannot change me!"
after the assignment above. A string literal can be used to invoke methods on its
String object:

int len = "You cannot change me!".length(); // 21

The compiler optimizes handling of string literals (and compile-time constant
expressions that evaluate to strings): only one String object is shared by all string-
valued constant expressions with the same character sequence. Such strings are
said to be interned, meaning that they share a unique String object if they have the
same content. The String class maintains a private pool where such strings are
interned.

String str2 = "You cannot change me!";

408

CHAPTER 10: FUNDAMENTAL CLASSES

Both String references strland str2 denote the same String object, initialized with
the character string: "You cannot change me!". So does the reference str3 in the fol-
lowing code. The compile-time evaluation of the constant expression involving the
two string literals, results in a string that is already interned:

String str3 = "You cannot" + " change me!"; // Compile-time constant expression

In the following code, both the references canl and can2 denote the same String
object that contains the string "7Up":

String canl = 7 + "Up"; // Value of compile-time constant expression: "7Up"
String can2 = "7Up"; // "7Up"

However, in the code below, the reference can4 will denote a new String object that
will have the value "7Up" at runtime:

String word = "Up";
String can4 = 7 + word; // Not a compile-time constant expression.

The sharing of String objects between string-valued constant expressions poses no
problem, since the String objects are immutable. Any operation performed on one
String reference will never have any effect on the usage of other references denot-
ing the same object. The String class is also declared final, so that no subclass can
override this behavior.

String Constructors

The String class has numerous constructors to create and initialize String objects
based on various types of arguments. The following shows two of them:
String(String s)
This constructor creates a new String object, whose contents are the same as
those of the String object passed as argument.
String()

This constructor creates a new String object, whose content is the empty string,

Note that using a constructor creates a brand new String object, that is, using a con-
structor does not intern the string. A reference to an interned string can be obtained
by calling the intern() method in the String class—in practice, there is usually no
reason to do so.

In the following code, the String object denoted by str4 is different from the String
object passed as argument:

String str4 = new String("You cannot change me!");

Constructing String objects can also be done from arrays of bytes, arrays of char-
acters, or string buffers:

byte[] bytes = {97, 98, 98, 97};
char[] characters = {'a', 'b', 'b', 'a'};

10.5: THE STRING CLASS 409

StringBuffer strBuf = new StringBuffer("abba");

//...

String byteStr = new String(bytes); // Using array of bytes: "abba"
String charStr = new String(character); // Using array of chars: "abba"
String buffStr = new String(strBuf); // Using string buffer: "abba"

In Example 10.3, note that the reference strl does not denote the same String object
as references str4 and str5. Using the new operator with a String constructor always
creates a new String object. The expression "You cannot" + words is not a constant
expression and, therefore, results in a new String object. The local references str2
and str3 in the main() method and the static reference strl in the Auxiliary class all
denote the same interned string. Object value equality is hardly surprising
between these references. It might be tempting to use the operator == for object
value equality of string literals, but this is not advisable.

Example 10.3 String Construction and Equality

public class StringConstruction {
static String strl = "You cannot change me!"; // Interned
public static void main(String[] args) {

String emptyStr = new String(); /1"
System.out.printin("emptyStr: " + emptyStr);

String str2 = "You cannot change me!"; // Interned
String str3 = "You cannot" + " change me!"; // Interned
String str4 = new String("You cannot change me!"); // New String object
String words = " change me!";
String str5 = "You cannot" + words; // New String object
System.out.printin("strl == str2: "oy

(strl == str2)); // (1) true
System.out.printin("strl.equals(str2): "t

strl.equals(str2)); // (2) true
System.out.printin("strl == str3: "t

(strl == str3)); // (3) true
System.out.printin("strl.equals(str3): "ot

strl.equals(str3)); // (4) true
System.out.printin("strl == str4: "ot

(strl == str4)); // (5) false
System.out.printin("strl.equals(str4): "o

strl.equals(strd)); // (6) true
System.out.printin("strl == str5: "o

(strl == str5)); // (7) false
System.out.printin("strl.equals(str5): "t

strl.equals(str5)); // (8) true

410

CHAPTER 10: FUNDAMENTAL CLASSES

System.out.printin("strl == Auxiliary.strl: "t
(strl == Auxiliary.strl)); // (9) true
System.out.printin("strl.equals(Auxiliary.strl): " +
strl.equals(Auxiliary.strl)); // (10) true

System.out.printin("\"You cannot change me!\".length(Q): " +
"You cannot change me!".Tength());// (11) 21

}
}
class Auxiliary {

static String strl = "You cannot change me!"; // Interned
}

Output from the program:

emptyStr:
strl == str2: true
strl.equals(str2): true
strl == str3: true
strl.equals(str3): true
strl == str4: false
strl.equals(str4): true
strl == str5: false
strl.equals(str5): true
strl == Auxiliary.strl: true

strl.equals(Auxiliary.strl): true
"You cannot change me!".length(): 21

Reading Characters from a String

char charAt(int index)

A character at a particular index in a string can be read using the charAt()
method. The first character is at index 0 and the last one at index one less than
the number of characters in the string. If the index value is not valid, a
StringIndexOutOfBoundsException is thrown.

void getChars(int srcBegin, int srcknd, char[] dst, int dstBegin)

This method copies characters from the current string into the destination
character array. Characters from the current string are read from index srcBe-
gin to the index srcEnd-1, inclusive. They are copied into the destination array,
starting at index dstBegin and ending at index dstbegin+(srcEnd-srcBegin)-1.
The number of characters copied is (srcknd-srcBegin). An IndexOutOfBoundsEx-
ception is thrown if the indices do not meet the criteria for the operation.

int length()

This method returns the number of characters in a string.

10.5: THE STRING CLASS

411

Example 10.4 uses these methods at (3), (4), (5), and (6). The program prints the fre-
quency of a character in a string and illustrates copying from a string into a char-
acter array.

Example 10.4 Reading Characters from a String

public class ReadingCharsFromString {
public static void main(String[] args) {

}

int[] frequencyData = new int [Character.MAX_VALUE];// (1)
String str = "You cannot change me!"; // (@)

// Count the frequency of each character in the string.
for (int i = 0; i < str.lengthQ); i++) // (3)
try {
frequencyData[str.charAt(i)]++; // (4
} catch(StringIndexOutOfBoundsException e) {
System.out.printin("Index error detected: "+ i +" not in range.");

// Print the character frequency.
System.out.printin("Character frequency for string: \"" + str + "\"");
for (int i = 0; i < frequencyData.length; i++)
if (frequencyData[i] != 0)
System.out.printin((char)i + " (code "+ i +"): " +
frequencyData[i]);

System.out.printIn("Copying into a char array:");

char[] destination = new char [str.length()];

str.getChars(0, 7, destination, 0); // (5) "You can"

str.getChars(10, str.length(), destination, 7); // (6) " change me!"

// Print the character array.

for (int i =0; i <7 + (str.length(Q) - 10); 1i++)
System.out.print(destination[i]);

System.out.printin();

Output from the program:

Character Frequency for string: "You cannot change me!"

(code
I (code
(code
(code
(code
(code
(code
(code
(code
n (code
o (code
t (code
u (code
Copying
You can

S mnNn o <

32): 3
33): 1
89): 1
97): 2
99): 2
101):
103):
104):
109):
110):
111):
116):
117):
into a char array:
change me!

PRNWRR RN

412

CHAPTER 10: FUNDAMENTAL CLASSES

In Example 10.4, the frequencyData array at (1) stores the frequency of each charac-
ter that can occur in a string. The string in question is declared at (2). Since a char
value is promoted to an int value in arithmetic expressions, it can be used as an
index in an array. Each element in the frequencyData array functions as a frequency
counter for the character corresponding to the index value of the element:

frequencyData[str.charAt(i)]++; /! (@)

The calls to the getChars () method at (5) and (6) copy particular substrings from the
string into designated places in the destination array, before printing the whole
character array.

Comparing Strings
Characters are compared based on their integer values.
boolean test = 'a' < 'b'; // true since 0x61 < 0x62

Two strings are compared lexicographically, as in a dictionary or telephone direc-
tory, by successively comparing their corresponding characters at each position in
the two strings, starting with the characters in the first position. The string "abba"
is less than "aha", since the second character 'b' in the string "abba" is less than the
second character 'h' in the string "aha". The characters in the first position in each
of these strings are equal.

The following public methods can be used for comparing strings:

boolean equals(Object obj)
boolean equalsIgnoreCase(String str2)

The String class overrides the equals() method from the Object class. The
String class equals() method implements String object value equality as two
String objects having the same sequence of characters. The equalsIgnoreCase()
method does the same, but ignores the case of the characters.

int compareTo(String str2)
int compareTo(Object obj)

The first compareTo() method compares the two strings and returns a value
based on the outcome of the comparison:

e the value 0, if this string is equal to the string argument

® a value less than 0, if this string is lexicographically less than the string
argument

® a value greater than 0, if this string is lexicographically greater than the
string argument

The second compareTo() method (required by the Comparable interface) behaves
like the first method if the argument obj is actually a String object; otherwise,
it throws a ClassCastException.

10.5: THE STRING CLASS 413

Here are some examples of string comparisons:

String strA
String strB

new String("The Case was thrown out of Court™);
new String("the case was thrown out of court™);

boolean bl
boolean b2

strA.equals(strB); // false
strA.equalsIgnoreCase(strB); // true

String strl = new String("abba");
String str2 = new String("aha");

int compVall = strl.compareTo(str2); // negative value => strl < str2

Character Case in a String

String toUpperCase()
String toUpperCase(Locale locale)

String toLowerCase()
String tolLowerCase(Locale Tocale)

Note that the original string is returned if none of the characters need their case
changed, but a new String object is returned if any of the characters need their
case changed. These methods delegate the character-by-character case conver-
sion to corresponding methods from the Character class.

These methods use the rules of the (default) locale (returned by the method
Locale.getDefault()), which embodies the idiosyncrasies of a specific geograph-
ical, political, or cultural region regarding number/date/currency formats,
character classification, alphabet (including case idiosyncrasies), and other
localizations.

Example of case in strings:

String strA = new String("The Case was thrown out of Court");
String strB = new String("the case was thrown out of court");

String strC = strA.toLowerCase(); // Case conversion => New String object:

// "the case was thrown out of court"
String strD = strB.toLowerCase(); // No case conversion => Same String object
String strk = strA.toUppperCase(); // Case conversion => New String object:

// "THE CASE WAS THROWN OUT OF COURT"

boolean testl = strC == strA; // false
boolean test2 = strD == strB; // true
boolean test3 = strE == strA; // false

Concatenation of Strings

Concatenation of two strings results in a string that consists of the characters of the
first string followed by the characters of the second string. The overloaded opera-
tor + for string concatenation is discussed in Section 3.6 on page 62. In addition, the
following method can be used to concatenate two strings:

String concat(String str)

414

CHAPTER 10: FUNDAMENTAL CLASSES

The concat() method does not modify the String object on which it is invoked, as
String objects are immutable. Instead the concat() method returns a reference to a
brand new String object:

String billboard = "Just";

billboard.concat(" lost in space."); // (1) Returned reference value not stored.
System.out.printin(billboard); // (2) "Just"

billboard = billboard.concat(" grooving").concat(" in heap."); // (3) Chaining.
System.out.printin(billboard); // (4) "Just grooving in heap."

At (1), the reference value of the String object returned by the method concat() is
not stored. This String object becomes inaccessible after (1). We see that the refer-
ence billboard still denotes the string literal "Just" at (2).

At (3), two method calls to the concat() method are chained. The first call returns a
reference value to a new String object whose content is "Just grooving". The second
method call is invoked on this String object using the reference value that was
returned in the first method call. The second call results in yet another String object
whose content is "Just grooving in heap." The reference value of this String object
is assigned to the reference billboard. Because String objects are immutable, the
creation of the temporary String object with the content "Just grooving" is inevita-
ble at (3).

The compiler uses a string buffer to avoid this overhead of temporary String
objects when applying the string concatenation operator (p. 424).

A simple way to convert any primitive value to its string representation is by con-
catenating it with the empty string (""), using the string concatenation operator (+)
(see also (6¢) in Figure 10.2):

String strRepresentation = "" + 2003; // "2003"

Some more examples of string concatenation follow:

String motto = new String("Program once™); // Q)
motto += ", execute everywhere."; // ()
motto = motto.concat(" Don't bet on it!"); // (3

Note that a new String object is assigned to the reference motto each time in the
assignment at (1), (2), and (3). The String object with the contents "Program once"
becomes inaccessible after the assignment at (2). The String object with the con-
tents "Program once, execute everywhere." becomes inaccessible after (3). The refer-
ence motto denotes the String object with the following contents after execution of
the assignment at (3):

"Program once, execute everywhere. Don't bet on it!"

Searching for Characters and Substrings

The following overloaded methods can be used to find the index of a character, or
the start index of a substring in a string. These methods search forward toward the
end of the string. In other words, the index of the first occurrence of the character
or substring is found. If the search is unsuccessful, the value -1 is returned.

10.5: THE STRING CLASS 415

int indexO0f(int ch)

Finds the index of the first occurrence of the argument character in a string.

int index0f(int ch, int fromIndex)

Finds the index of the first occurrence of the argument character in a string,
starting at the index specified in the second argument. If the index argument
is negative, the index is assumed to be 0. If the index argument is greater than
the length of the string, it is effectively considered to be equal to the length of
the string—returning the value -1.

int index0f(String str)

Finds the start index of the first occurrence of the substring argument in a
string.

int index0f(String str, int fromIndex)

Finds the start index of the first occurrence of the substring argument in a
string, starting at the index specified in the second argument.

The String class also defines a set of methods that search for a character or a sub-
string, but the search is backward toward the start of the string. In other words, the
index of the last occurrence of the character or substring is found.

int TastIndexOf(int ch)

int TastIndexOf(int ch, int fromIndex)
int TastIndexOf(String str)

int lastIndexOf(String str, int fromIndex)

The following method can be used to create a string in which all occurrences of a
character in a string have been replaced with another character:

String replace(char oldChar, char newChar)

Examples of search methods:

String funStr = "Java Jives";

// 0123456789

String newStr = funStr.replace(']', 'W'); // "Wava Wives"
int jIndla = funStr.index0f(']'); // 0
int jIndlb = funStr.index0f(']', 1); //5
int jInd2a = funStr.lastIndexOf(']"); // 5
int jInd2b = funStr.lastIndex0f(']', 4); // 0
String banner = "One man, One vote";

// 01234567890123456

int subIndla = banner.index0f("One"); // 0
int subIndlb = banner.index0f("One", 3); // 9
int subInd2a = banner.lastIndexOf("One"); // 9

int subInd2b
int subInd2c
int subInd2d

banner.lastIndexOf("One", 10); // 9
banner.lastIndexOf("One", 8); // O
banner.lastIndexOf("One", 2); // 0O

416 CHAPTER 10: FUNDAMENTAL CLASSES

Extracting Substrings
String trimQ)

This method can be used to create a string where white space (in fact all char-
acters with values less than or equal to the space character '\u0020') from the
front (leading) and the end (trailing) of a string has been removed.

String substring(int startIndex)
String substring(int startIndex, int endIndex)

The String class provides these overloaded methods to extract substrings from
a string. A new String object containing the substring is created and returned.
The first method extracts the string that starts at the given index startIndex and
extends to the end of the string. The end of the substring can be specified by
using a second argument endIndex that is the index of the first character after
the substring, that is, the last character in the substring is at index endIndex-1.
If the index value is not valid, a StringIndexOutOfBoundsException is thrown.

Examples of extracting substrings:

String utopia = "\t\n Java Nation \n\t ";

utopia = utopia.trim(); // "Java Nation"
utopia = utopia.substring(5); // "Nation"
String radioactive = utopia.substring(3,6); // "ion"

Converting Primitive Values and Objects to Strings

The String class overrides the toString() method in the Object class and returns the
String object itself:

String toString()

The String class also defines a set of static overloaded value0f() methods to convert
objects and primitive values into strings.

static String valueOf(Object obj)
static String valueOf(char[] character)
static String valueOf(boolean b)
static String valueOf(char c)

All these methods return a string representing the given parameter value. A
call to the method with the parameter obj is equivalent to obj.toString(). The
booTlean values true and false are converted into the strings "true" and "false".
The char parameter is converted to a string consisting of a single character.

10.5: THE STRING CLASS 47

10.16

10.17

static String valueOf(int i)
static String valueOf(long 1)
static String valueOf(float f)
static String valueOf(double d)

The static valueOf() method that accepts a primitive value as argument is
equivalent to the static toString() method in the corresponding wrapper class
for each of the primitive data types (see also (6a) and (6b) in Figure 10.2 on
p- 393).

Note that there are no value0f() methods that accept a byte or a short.

Examples of string conversions:

String anonStr = String.valueOf("Make me a string."); // "Make me a string."
String charStr = String.valueOf(new char[] {'a', 'h', 'a'});// "aha"
String boolTrue = String.valueOf(true); // "true"
String doubleStr = String.valueOf(Math.PI); // "3.141592653589793"

Other miscellaneous methods exist for reading the string characters into an array
of characters (toCharArray()), converting the string into an array of bytes
(getBytes()), and searching for prefixes (startsWith()) and suffixes (endswith()) of
the string. The method hashCode() can be used to compute a hash value based on
the characters in the string.

Review Questions

Which of the following operators cannot be used in conjunction with a String
object?

Select the two correct answers.

(a) +
(b) -
(@ +=
(d -
(e) &

Which expression will extract the substring "kap" from a string defined by String
str = "kakapo"?

Select the one correct answer.
(a) str.substring(2, 2)
(b) str.substring(2, 3)
(c) str.substring(2, 4)
(d) str.substring(2, 5)
(e) str.substring(3, 3)

418

10.18

10.19

10.20

10.21

CHAPTER 10: FUNDAMENTAL CLASSES

What will be the result of attempting to compile and run the following code?

class MyClass {
public static void main(String[] args) {

String strl = "strl";
String str2 = "str2";
String str3 = "str3";

strl.concat(str2);
System.out.printin(str3.concat(strl));

}
Select the one correct answer.

(@) The code will fail to compile since the expression str3.concat(strl) will not
result in a valid argument for the printin() method.

(b) The program will print str3strlstr2 when run.

(c) The program will print str3 when run.

(d) The program will print str3strl when run.

(e) The program will print str3str2 when run.

What function does the trim() method of the String class perform?

Select the one correct answer.

(a) It returns a string where the leading white space of the original string has
been removed.

(b) It returns a string where the trailing white space of the original string has
been removed.

(c) It returns a string where both the leading and trailing white space of the ori-
ginal string has been removed.

(d) It returns a string where all the white space of the original string has been
removed.

(e) None of the above.

Which statements are true?

Select the two correct answers.

(a) String objects are immutable.

(b) Subclasses of the String class can be mutable.

(c) All wrapper classes are declared final.

(d) All objects have a public method named clone().

(e) The expression ((new StringBuffer()) instanceof String) is always true.

Which of these expressions are legal?

Select the four correct answers.

(a) "co".concat("o1"™)
(b) ("co" + "o1™)

10.5: THE STRING CLASS 419

10.22

10.23

10.24

10.25

(C) (lcl + vol + vol + l‘ll)
(d) ("co" + new String('o' + '1'))
(e) ("co" + new String("co™))

What will be the result of attempting to compile and run the following code?

public class RefEq {
public static void main(String[] args) {

String s = "ab" + "12";

String t = "ab" + 12;

String u = new String("abl12");
System.out.printin((s==t) + " " + (s==u));

}

Select the one correct answer.

(a) The code will fail to compile.

(b) The program will print false false when run.
(c) The program will print false true when run.
(d) The program will print true false when run.
(e) The program will print true true when run.

Which of these parameter lists have a corresponding constructor in the String
class?

Select the three correct answers.
(@ O

(b) (int capacity)

(c) (char[] data)

(d) (String str)

Which method is not defined in the String class?

Select the one correct answer.
(@) trimQ

(b) Tength()

(c) concat(String)

(d) hashCode()

(e) reverse()

Which statement concerning the charAt() method of the String class is true?

Select the one correct answer.

(a) The charAt() method takes a char value as an argument.

(b) The charAt() method returns a Character object.

(c) The expression ("abcdef").charAt(3) is illegal.

(d) The expression "abcdef".charAt(3) evaluates to the character 'd'.
(e) The index of the first character is 1.

420

10.26

10.27

10.6

CHAPTER 10: FUNDAMENTAL CLASSES

Which expression will evaluate to true?

Select the one correct answer.

(a) "hello: there!".equals("hello there")

(b) "HELLO THERE".equals("hello there")

(¢) ("hello".concat("there")).equals("hello there")
(d) "Hello There".compareTo("hello there") == 0

(e) "Hello there".toLowerCase().equals("hello there")

What will the following program print when run?

public class Search {
public static void main(String[] args) {
String s = "Contentment!";
int middle = s.length()/2;
String nt = s.substring(middle-1, middle+l);
System.out.printin(s.lastIndex0f(nt, middle));
}
}s

Select the one correct answer.
(a) 2

(b) 4
(¢) 5
(d) 7
(e) 9
H 1

The StringBuffer Class

In contrast to the String class, which implements immutable character strings, the
StringBuffer class implements mutable character strings. Not only can the charac-
ter string in a string buffer be changed, but the capacity of the string buffer can also
change dynamically. The capacity of a string buffer is the maximum number of
characters that a string buffer can accommodate before its size is automatically
augmented.

Although there is a close relationship between objects of the String and
StringBuffer classes, these are two independent final classes, both directly extend-
ing the Object class. Hence, String references cannot be stored (or cast) to String-
Buffer references and vice versa. Both String and StringBuffer are thread-safe.
String buffers are preferred when heavy modification of character strings is
involved.

The StringBuffer class provides various facilities for manipulating string buffers:
¢ constructing string buffers

¢ changing, deleting, and reading characters in string buffers

10.6: THE STRINGBUFFER CLASS 421

® constructing strings from string buffers
* appending, inserting, and deleting in string buffers

¢ controlling string buffer capacity

Constructing String Buffers

The final class StringBuffer provides three constructors that create and initialize
StringBuffer objects and set their initial capacity.

StringBuffer(String s)

The contents of the new StringBuffer object are the same as the contents of the
String object passed as argument. The initial capacity of the string buffer is set
to the length of the argument string, plus room for 16 more characters.

StringBuffer(int Tength)

The new StringBuffer object has no content. The initial capacity of the string
buffer is set to the value of the argument length, which cannot be less than 0.

StringBuffer()

This constructor also creates a new StringBuffer object with no content. The
initial capacity of the string buffer is set for 16 characters.

Examples of StringBuffer object creation and initialization:

StringBuffer strBufl = new StringBuffer("Phew!"); // "Phew!", capacity 21
StringBuffer strBuf2 = new StringBuffer(10); // """, capacity 10
StringBuffer strBuf3 = new StringBuffer(); // """, capacity 16

Reading and Changing Characters in String Buffers

int length()

Returns the number of characters in the string buffer.

char charAt(int index)
void setCharAt(int index, char ch)

These methods read and change the character at a specified index in the string
buffer, respectively. The first character is at index 0 and the last one at index
one less than the number of characters in the string buffer. A StringIndexOut0f-
BoundsException is thrown if the index is not valid.

The following is an example of reading and changing string buffer contents:

StringBuffer strBuf = new StringBuffer("Jaw"); // "Jawv", capacity 20
strBuf.setCharAt(strBuf.length()-1, strBuf.charAt(1)); // "Java"

422

CHAPTER 10: FUNDAMENTAL CLASSES

Constructing Strings from String Buffers

The StringBuffer class overrides the toString() method from the Object class. It
returns the contents of a string buffer in a String object.

String fromBuf = strBuf.toString(); // "Java"

Since the StringBuffer class does not override the equals() method from the Object
class, contents of string buffers should be converted to String objects for string
comparison.

Appending, Inserting, and Deleting Characters in String Buffers

Appending, inserting, and deleting characters automatically results in adjustment
of the string buffer’s capacity, if necessary. The indices passed as arguments in the
methods must be equal to or greater than 0. A StringIndexOutOfBoundsException is
thrown if an index is not valid.

Appending Characters to a String Buffer

The overloaded method append() can be used to append characters at the end of a
string buffer.

StringBuffer append(Object obj)

The obj argument is converted to a string as if by the static method call
String.valueOf(obj), and this string is appended to the current string buffer.

StringBuffer append(String str)

StringBuffer append(char[] str)

StringBuffer append(char[] str, int offset, int Ten)
StringBuffer append(char c)

These methods allow characters from various sources to be appended at the
end of the current string buffer.

StringBuffer append(boolean b)
StringBuffer append(int i)
StringBuffer append(long 1)
StringBuffer append(float f)
StringBuffer append(double d)

These methods convert the primitive value of the argument to a string by
applying the static method String.value0f() to the argument, before append-
ing the result to the string buffer:

Inserting Characters in a String Buffer

The overloaded method insert() can be used to insert characters at a given posi-
tion in a string buffer.

10.6: THE STRINGBUFFER CLASS 423

StringBuffer insert(int offset, Object obj)
StringBuffer insert(int offset, String str)
StringBuffer insert(int offset, char[] str)
StringBuffer insert(int offset, char c)
StringBuffer insert(int offset, boolean b)
StringBuffer insert(int offset, int 1)
StringBuffer insert(int offset, Tong 1)
StringBuffer insert(int offset, float f)
StringBuffer insert(int offset, double d)

The argument is converted, if necessary, by applying the static method
String.valueOf(). The offset argument specifies where the characters are to be
inserted and must be greater than or equal to 0.

Deleting Characters in a String Buffer

The following methods can be used to delete characters from specific positions in
a string buffer:

StringBuffer deleteCharAt(int index)
StringBuffer delete(int start, int end)

The first method deletes a character at a specified index in the string buffer,
contracting the string buffer by one character. The second method deletes a
substring, which is specified by the start index (inclusive) and the end index
(exclusive).

Among other miscellaneous methods included in the class StringBuffer is the fol-
lowing method, which reverses the contents of a string buffer:

StringBuffer reverse()

Examples of appending, inserting, and deleting in string buffers:

StringBuffer buffer = new StringBuffer("banana split"); // "banana split"

buffer.delete(4,12); // "bana"
buffer.append(42); // "bana42"
buffer.insert(4,"na"); // "banana42"
buffer.reverse(); // "24ananab"
buffer.deleteCharAt(buffer.length()-1); // "24anana"
buffer.append('s'); // "24ananas"

All the previous methods modify the contents of the string buffer and also return
a reference value denoting the string buffer. This allows chaining of method calls.
The method calls invoked on the string buffer denoted by the reference buffer can
be chained as follows, giving the same result:

buffer.delete(4,12).append(42).insert(4,"na").reverse().
deleteCharAt(buffer.length()-1).append('s"); // "24ananas"

The method calls in the chain are evaluated from left to right, so that the previous
chain of calls is interpreted as follows:

(((((buffer.delete(4,12)).append(42)) .insert(4,"na")).reverse()).
deleteCharAt(buffer.length()-1)).append('s'); // "24ananas"

424

CHAPTER 10: FUNDAMENTAL CLASSES

Each method call returns the reference value of the modified string buffer. This
value is used to invoke the next method. The string buffer remains denoted by the
reference buffer.

The compiler uses string buffers to implement the string concatenation, +. The fol-
lowing example code of string concatenation

String strl = 4 + "U" + "Only"; // (1) "4U0OnTy"
is equivalent to the following code using one string buffer:

String str2 = new StringBuffer().
append(4) .append("U") .append("Only") .toString(); // (2)

The code at (2) does not create any temporary String objects when concatenating
several strings, since a single StringBuffer object is modified and finally converted
to a String object.

Controlling String Buffer Capacity
int capacity()

Returns the current capacity of the string buffer, that is, the number of charac-
ters the current buffer can accommodate without allocating a new, larger array
to hold characters.

void ensureCapacity(int minCapacity)

Ensures that there is room for at least minCapacity number of characters. It
expands the string buffer, depending on the current capacity of the buffer.

void setlLength(int newLength)

This method ensures that the actual number of characters, that is, length of the
string buffer, is exactly equal to the value of the newLength argument, which
must be greater than or equal to 0. This operation can result in the string being
truncated or padded with null characters ('\u0000").

This method only affects the capacity of the string buffer if the value of the
parameter newLength is greater than current capacity.

One use of this method is to clear the string buffer:
buffer.setLength(0); // Empty the buffer.

Review Questions

10.28 What will be the result of attempting to compile and run the following program?

pubTlic class MyClass {
public static void main(String[] args) {
String s = "hello";
StringBuffer sb = new StringBuffer(s);
sb.reverse();

10.6: THE STRINGBUFFER CLASS 425

10.29

10.30

10.31

if (s == sb) System.out.printin("a");
if (s.equals(sb)) System.out.printin("b™);

n.n

if (sb.equals(s)) System.out.printin("c");

}

Select the one correct answer.

(a) The code will fail to compile since the constructor of the String class is not
called properly.

(b) The code will fail to compile since the expression (s == sb) is illegal.

(c) The code will fail to compile since the expression (s.equals(sh)) is illegal.

(d) The program will print c when run.

(e) The program will throw a ClassCastException when run.

What will be the result of attempting to compile and run the following program?

pubTlic class MyClass {
public static void main(String[] args) {
StringBuffer sb = new StringBuffer("have a nice day");
sb.setLength(6);
System.out.printin(sh);

}
Select the one correct answer.

(a) The code will fail to compile since there is no method named setLength in the
StringBuffer class.

(b) The code will fail to compile since the StringBuffer reference sb is not a legal
argument to the printin() method.

(c) The program will throw a StringIndexOutOfBoundsException when run.

(d) The program will print have a nice day when run.

(e) The program will print have a when run.

(f) The program will print ce day when run.

Which of these parameter lists have a corresponding constructor in the StringBuffer
class?

Select the three correct answers.
(@ O

(b) (int capacity)

(c) (char[] data)

(d) (String str)

Which method is not defined in the StringBuffer class?

Select the one correct answer.
(a) trimQ

(b) Tength()

(c) append(String)

(d) reverse()

(e) setLength(int)

426

CHAPTER 10: FUNDAMENTAL CLASSES

10.32 What will be the result of attempting to compile and run the following code?

10.1

10.2

public class StringMethods {
public static void main(String[] args) {
String str = new String("eenny");
str.concat(" meeny");
StringBuffer strBuf = new StringBuffer(" miny");
strBuf.append(" mo");
System.out.printin(str + strBuf);

}

Select the one correct answer.

(@) The code will fail to compile.

(b) The program will print eenny meeny miny mo when run.
(c) The program will print meeny miny mo when run.

(d) The program will print eenny miny mo when run.

(e) The program will print eenny meeny miny when run.

Chapter Summary

The following information was included in this chapter:

discussion of the Object class, which is the most fundamental class in Java

discussion of the wrapper classes, which not only allow primitive values to be
treated as objects, but also contain useful methods for converting values

discussion of the Math class, which provides an assortment of mathematical
functions

discussion of the String class, showing how immutable strings are created and
used

discussion of the StringBuffer class, showing how dynamic string buffers are
created and manipulated

Programming Exercises

Create a class named Pair, which aggregates two arbitrary objects. Implement the
equals() and hashCode() methods in such a way that a Pair object is identical to
another Pair object if, and only if, the pair of constituent objects are identical.
Make the toString() implementation return the textual representation of both the
constituent objects in a Pair object. Objects of the Pair class should be immutable.

A palindrome is a text phrase that spells the same thing backward and forward.
The word redivider is a palindrome, since the word would spell the same even if
the character sequence were reversed. Write a program that takes a word as an
argument and reports whether the word is a palindrome.

	Fundamental Classes
	10.1 Overview of the java.lang Package
	Figure 10.1 Partial Inheritance Hierarchy in the java.lang Package

	10.2 The Object Class
	Example 10.1 Methods in the Object class

	10.3 The Wrapper Classes
	Figure 10.2 Converting Values between Primitive, Wrapper, and String Types
	Common Wrapper Class Constructors
	Converting Primitive Values to Wrapper Objects
	Converting Strings to Wrapper Objects

	Common Wrapper Class Utility Methods
	Converting Strings to Wrapper Objects
	Converting Wrapper Objects to Strings
	Converting Primitive Values to Strings
	Converting Wrapper Objects to Primitive Values
	Wrapper Comparison, Equality, and Hashcode

	Numeric Wrapper Classes
	Converting any Numeric Wrapper Object to any Numeric Primitive Type
	Converting Strings to Numeric Values
	Converting Integer Values to Strings in different Notations
	Example 10.2 String Representation of Integers

	Character Class
	Boolean Class

	10.4 The Math Class
	Miscellaneous Rounding Functions
	Table 10.1 Applying Rounding Functions

	Exponential Functions
	Trigonometry Functions
	Pseudorandom Number Generator

	10.5 The String Class
	Creating and Initializing Strings
	String Literals Revisited
	String Constructors
	Example 10.3 String Construction and Equality

	Reading Characters from a String
	Example 10.4 Reading Characters from a String

	Comparing Strings
	Character Case in a String
	Concatenation of Strings
	Searching for Characters and Substrings
	Extracting Substrings
	Converting Primitive Values and Objects to Strings

	10.6 The StringBuffer Class
	Constructing String Buffers
	Reading and Changing Characters in String Buffers
	Constructing Strings from String Buffers
	Appending, Inserting, and Deleting Characters in String Buffers
	Appending Characters to a String Buffer
	Inserting Characters in a String Buffer
	Deleting Characters in a String Buffer

	Controlling String Buffer Capacity

