1 Files and Streams

* Write code that uses objects of the File class to navigate the file system.

¢ Distinguish between byte and character streams, and identify the roots of
their inheritance hierarchies.

* Select valid constructor arguments for FilterInputStream and
FilterOutputStream subclasses from a list of classes in the java.io package.

* Write appropriate code to read, write and update files using FileInputStream,
FileOutputStream and RandomAccessFile objects.

e Write code that uses the classes DataOutputStream and DataInputStream for
writing and reading Java primitive values.

¢ Write code that uses objects of the classes InputStreamReader and
OutputStreamWriter to translate between Unicode and either platform default
or other character encodings.

* Write code to set up (buffered) readers and writers for text files.

¢ Write code that uses the classes ObjectOutputStream and ObjectInputStream for
writing and reading objects.

548

SECTION 18.1: INPUT AND OUTPUT 549

18.1

18.2

Input and Output

The java.io package provides an extensive library of classes for dealing with input
and output. Java provides streams as a general mechanism for dealing with data
I/0. Streams implement sequential access of data. There are two kinds of streams:
byte streams and character streams. An input stream is an object that an application
can use to read a sequence of data, and an output stream is an object that an applica-
tion can use to write a sequence of data. An input stream acts as a source of data, and
an output stream acts as a destination of data. The following entities can act as both
input and output streams:

* an array of bytes or characters

e afile

* apipe

* anetwork connection

Streams can be chained with filters to provide new functionality. In addition to
dealing with bytes and characters, streams are provided for input and output of
Java primitive values and objects. The java.io package also provides support for
random access of files, and a general interface to interact with the file system of the
host platform.

File Class

The File class provides a general machine-independent interface to the file system
of the underlying platform. A File object represents the pathname of a file or
directory in the host file system. An application can use the functionality provided
by the File class for handling files and directories in the file system. The File class
is not meant for handling the contents of files. For that purpose, there are the
FileInputStream, FileOutputStream and RandomAccessFile classes, which are dis-
cussed later in this chapter.

The pathname for a file or directory is specified using the naming conventions of
the host system. However, the File class defines platform-dependent constants that
can be used to handle file and directory names in a platform-independent way:

public static final char separatorChar

public static final String separator

Defines the character or string that separates the directory and the file com-
ponents in a pathname. This separatoris '/', '\' or ':' for Unix, Windows and
Macintosh, respectively.

public static final char pathSeparatorChar
public static final String pathSeparator

Defines the character or string that separates the file or directory names in a
“path list”. This characteris ':' or ';' for Unix and Windows, respectively.

550

CHAPTER 18: FILES AND STREAMS

Some examples of pathnames are:

/book/chapterl on Unix
C:\book\chapterl on Windows
HD:book: chapterl on Macintosh

Some examples of path lists are:

/book:/manual:/draft on Unix
C:\book;D:\manual;A:\draft on Windows

Files and directories can be referenced using both absolute and relative pathnames,
but the pathname must follow the conventions of the host platform. On Unix plat-
forms, a pathname is absolute if its first character is the separator character. On
Windows platforms, a path is absolute if the ASCII '\"' is the first character, or
follows the volume name (e.g., C:), in a pathname. On the Macintosh, a pathname
is absolute if it begins with a name followed by a colon. Java programs should not
rely on system-specific pathname conventions. The File class provides facilities to
construct pathnames in a platform-independent way.

The File class has various constructors for assigning a file or a directory to an
object of the File class. Creating a File object does not mean creation of any file or
directory based on the pathname specified. A File instance, called the abstract
pathname, is a representation of the pathname of a file and directory. The pathname
cannot be changed once the File object is created.

File(String pathname)

The pathname (of a file or a directory) can be an absolute pathname or a
pathname relative to the current directory. An empty string as argument
results in an abstract pathname for the current directory.

// "/book/chapterl" - absolute pathname of a file

File chapl = new File(File.separator + "book" +
File.separator + "chapterl");

// "draft/chapters" - relative pathname of a directory

File draftChapters = new File("draft" + File.separator + "chapters");

File(String directoryPathname, String filename)

This creates a File object whose pathname is as follows: directoryPathname +
separator + filename.

// "/book/chapterl" - absolute pathname of a file
File updatedChapl = new File(File.separator + "book", "chapterl™);

File(File directory, String filename)

If the directory argument is nul1, the resulting File object represents a file in
the current directory. If the directory argument is not null, it creates a File
object that represents a file in the given directory. The pathname of the file is
then the pathname of the directory File object + separator + filename.

SECTION 18.2: FILE CLASS 551

// "chapterl3" - relative pathname of a file
File parent = null;
File chapl3 = new File(parent, "chapterl3");

// "draft/chapters/chapterl3" - relative pathname of a file
File draftChapters = new File("draft" + File.separator + "chapters");
File updatedChapl3 = new File(draftChapters, "chapterl3");

An object of the File class provides a handle to a file or directory in the file system,
and can be used to create, rename, and delete the entry.

A File object can also be used to query the file system for information about a file
or directory:

whether the entry exists

whether the File object represents a file or directory
whether the entry has read or write access

get pathname information about the file or directory

list all entries under a directory in the file system

Many methods of the File class throw a SecurityException in the case of a security
violation, for example if read or write access is denied. Some also return a boolean
value to indicate whether the operation was successful.

Querying the File System

The File class provides a number of methods for obtaining the platform-dependent
representation of a pathname and its components.

String getName()

Returns the name of the file entry, excluding the specification of the directory
in which it resides.

On Unix, the name part of "/book/chapters/one" is "one".
On Windows platforms, the name part of "c:\java\bin\javac" is "javac".

On the Macintosh, the name part of "HD:java-tools:javac" is "javac".

String getPath()

The method returns the (absolute or relative) pathname of the file represented
by the File object.

String getAbsolutePath()

If the File object represents an absolute pathname then this pathname is
returned, otherwise the returned pathname is constructed by concatenating
the current directory pathname, the separator character and the pathname of
the File object.

552

CHAPTER 18: FILES AND STREAMS

String getCanonicalPath() throws IOException

Also platform-dependent, the canonical path usually specifies a pathname in
which all relative references have been completely resolved.

For example, if the File object represented the absolute pathname "c:\book\
chapterl” on Windows, then this pathname would be returned by these
methods. On the other hand, if the File object represented the relative pathname
"..\book\chapterl" and the current directory had the absolute pathname
"c:\documents", the pathname returned by the getPath(), getAbsolutePath() and
getCanonicalPath() methods would be "..\book\chapterl", "c:\documents\..\
book\chapterl" and "c:\book\chapterl", respectively.

String getParent()

The parent part of the pathname of this File object is returned if one exists,
otherwise the null value is returned. The parent part is generally the prefix
obtained from the pathname after deleting the file or directory name com-
ponent found after the last occurrence of the separator character. However, this
is not true for all platforms.

On Unix, the parent part of "/book/chapterl" is "/book", whose parent partis "/",
which in turn has no parent.

On Windows platforms, the parent part of "c:\java-tools" is "c:\", which in
turn has no parent.

On the Macintosh, the parent part of "HD:java-tools" is "HD:", which in turn has
no parent.

boolean isAbsolute()

Whether a File object represents an absolute pathname can be determined
using this method.

The following three methods can be used to query the file system about the modi-
fication time of a file or directory, determine the size (in bytes) of a file, and
ascertain whether two pathnames are identical.

Tong TastModified()

The modification time returned is encoded as a Tong value, and should only be
compared with other values returned by this method.

Tong Tength()
Returns the size (in bytes) of the file represented by the File object.

boolean equals(Object obj)

This method only compares the pathnames of the File objects, and returns true
if they are identical.

SECTION 18.2: FILE CLASS 553

File or Directory Existence

A File object is created using a pathname. Whether this pathname denotes an entry
that actually exists in the file system can be checked using the exists() method:

boolean exists()

Since a File object can represent a file or a directory, the following methods can be
used to distinguish whether a given File object represents a file or a directory
respectively:

boolean isFile()
boolean isDirectory()

Read and Write Access

To check whether the specified file has write and read access, the following
methods can be used. They throw a SecurityException if general access is not
allowed, i.e. the application is not even allowed to check whether it can read or
write a file.

boolean canWrite()
boolean canRead()

Listing Directory Entries

The entries in a specified directory can be obtained as a table of file names or
abstract pathnames, using the following 1ist() methods. The current directory and
the parent directory are excluded from the list.

String[] TistQ

String[] list(FilenameFilter filter)

File[l TlistFiles()

File[] TistFiles(FilenameFilter filter)

File[] TistFiles(FileFilter filter)

The filter argument can be used to specify a filter that determines whether an
entry should be included in the list. These methods return nu11 if the abstract
pathname does not denote a directory, or if an I/O error occurs. A filter is an
object of a class that implements either of these two interfaces:

interface FilenameFilter {
boolean accept(File currentDirectory, String entryName);

}

interface FileFilter {
boolean accept(File pathname);

}
The Tist() methods call the accept() methods of the filter for each entry, to
determine whether the entry should be included in the list.

554

Example 18.1

CHAPTER 18: FILES AND STREAMS

Creating New Files and Directories

The File class can be used to create files and directories. A file can be created whose
pathname is specified in a File object using the following method:

boolean createNewFile() throws IOException

It creates a new, empty file named by the abstract pathname if, and only if, a
file with this name does not already exist. The returned value is true if the file
was successfully created, false if the file already exists. Any I/O error results
in an IOException.

A directory whose pathname is specified in a File object can be created using the
following methods:

boolean mkdir()
boolean mkdirs()

The mkdirs() method creates any intervening parent directories in the
pathname of the directory to be created.

Renaming Files and Directories

A file or a directory can be renamed, using the following method which takes the
new pathname from its argument:

boolean renameTo(File dest)

Deleting Files and Directories

A file or a directory can be deleted using the following method. In the case of a
directory, it must be empty before it can be deleted.

boolean delete()

Listing Files Under a Directory
import java.io.*;

public class DirectorylLister {
public static void main(String args[]) {

File entry;

if (args.length == 0) { // Q)
System.err.printin("Please specify a directory name.");
return;

}

entry = new File(args[0]); // (2) user specified

TistDirectory(entry);

SECTION 18.3: BYTE STREAMS: INPUT STREAMS AND OUTPUT STREAMS 555

18.3

pubTlic static void listDirectory(File entry) {

try {
if (lentry.exists()) { // (3)
System.out.printin(entry.getName() + " not found.");
return;
}

if (entry.isFile()) {
// Write the pathname of the file
System.out.printin(entry.getCanonicalPath()); // (4
} else if (entry.isDirectory()) {
// Create list of entries for this directory
String[] fileName = entry.list(Q); // (5)
if (fileName == null) return;
for (int i = 0; i<fileName.length; i++) {
// Create a File object for the entry
File item = new File(entry.getPath(), fileName[i]); // (6)
// List it by a recursive call.
TistDirectory(item); // (D
}
}
} catch(I0Exception e) { System.out.printin("Error: " + e); }

}
Running the program on a Windows platform:
java DirectoryLister D:\docs\JC-Book\special
produces the following output:

D:\docs\JC-Book\special\book19990308\]C-14-applets.fm
D:\docs\JC-Book\special\book19990308\JC-16-swing.fm
D:\docs\JC-Book\special\JC-11-awtTayout. fm

The class DirectoryLister in Example 18.1 lists all entries in a directory specified in
the command line. If no directory is given, an error message is written. This is
shown at (1) and (2). In the method TistDirectory(), each entry is tested to see if it
exists, as shown at (3). The entry could be an alias (symbolic link in Unix or shortcut
in Windows terminology) and its destination might not exist. The method deter-
mines whether the entry is a file, in which case the absolute pathname is listed, as
shown at (4). In the case of a directory, an array of entry names is created, as shown
at (5). For each entry in the directory, a File object is created, as shown at (6). The
method TistDirectory() is called recursively for each entry, as shown at (7).

Byte Streams: Input Streams and Output Streams

The abstract classes InputStream and OutputStream are the root of the inheritance
hierarchies for handling the reading and writing of bytes (Figure 18.1). Their sub-
classes, implementing different kinds of input and output streams, override the

556

CHAPTER 18: FILES AND STREAMS

«interface» «interface» InputStream
Datalnput X ObjectInput {abstract)

A 2y A

‘ Objec%InputStream ‘ ‘ FilterInputStream ‘ |Fi1eInputStream‘

| |
DataInputStream o | BufferedInputStream

«interface» «interface» OutputStream
Datalutput < ObjectOutput {abstract}

A A A
| | [
‘ ObjectOutputStream “ Fi]terOutputStream‘ |Fi1e0utputStream‘

[| |
DataOutputStream e ‘ BufferedOutputStream ‘ | PrintStream

Byte Stream Inheritance Hierarchies

following methods from the InputStream and OutputStream classes to customize the
reading and writing of bytes, respectively:

int read() throws IOException
int read(byte[] b) throws IOException
int read(byte[] b, int off, int Ten) throws IOException

void write(int b) throws IOException

void write(byte[] b) throws IOException

void write(byte[] b, int off, int Ten) throws IOException

Note that the first read() method read a byte, but returns an int value. The byte
read resides in the eight least significant bits of the int, while the remaining
bits in the int are zeroed out. The read() methods return the value -1 when the
end of stream is reached. The first write() method takes an int as argument,
but truncates it down to the eight least significant bits before writing it out as
a byte.

A stream should be closed when no longer needed, to free system resources:

void close() throws IOException

void flush() throws IOException

Closing an output stream automatically flushes the stream, meaning that any
data in its internal buffer is written out. An output stream can also be manually
flushed by calling the second method.

Read and write operations on streams are synchronous (blocking) operations, i.e. a
call to a read or write method does not return before a byte has been read or written.

SECTION 18.3: BYTE STREAMS: INPUT STREAMS AND OUTPUT STREAMS 557

Many methods in the classes contained in the java.io package throw an
IOException. A calling method must either catch the exception explicitly, or specify

it in a throws clause.

Table 18.1 and Table 18.2 give an overview of the byte streams.

Table 18.1 Input Streams

ByteArrayInputStream Data is read from a byte array that must be specified.

FileInputStream Data is read as bytes from a file. The file acting as the input
stream can be specified by a File object, a FileDescriptor or a
String file name.

FilterInputStream Superclass of all input stream filters. An input filter must be
chained to an underlying input stream.

BufferedInputStream A filter that buffers the bytes read from an underlying input
stream. The underlying input stream must be specified, and an
optional buffer size can be included.

DatalnputStream A filter that allows the binary representation of Java primitive
values to be read from an underlying input stream. The
underlying input stream must be specified.

PushbackInputStream A filter that allows bytes to be "unread" from an underlying
input stream. The number of bytes to be unread can optionally
be specified.

ObjectInputStream Allows binary representations of Java objects and Java
primitive values to be read from a specified input stream.

PipedInputStream Reads bytes from a PipedOutputStream to which it must be
connected. The PipedOutputStream can optionally be specified
when creating the PipedInputStream.

SequencelnputStream Allows bytes to be read sequentially from two or more input
streams consecutively. This should be regarded as
concatenating the contents of several input streams into a
single continuous input stream.

Table 18.2 Output Streams

ByteArrayOutputStream

Data is written to a byte array. The size of the byte array
created can be specified.

FileOutputStream Data is written as bytes to a file. The file acting as the output
stream can be specified by a File object, a FileDescriptor or a
String file name.

FilterOutputStream Superclass of all output stream filters. An output filter must be
chained to an underlying output stream.

BufferedOutputStream A filter that buffers the bytes written to an underlying output

stream. The underlying output stream must be specified, and
an optional buffer size can be given.

558 CHAPTER 18: FILES AND STREAMS

Table 18.2 Output Streams (continued)

DataOutputStream A filter that allows the binary representation of Java primitive
values to be written to an underlying output stream. The
underlying output stream must be specified.

ObjectOutputStream Allows the binary representation of Java objects and Java
primitive values to be written to a specified underlying output
stream.

PipedOutputStream Writes bytes to a PipedInputStream to which it must be

connected. The PipedInputStream can optionally be specified
when creating the PipedOutputStrean.

File Streams

The classes FileInputStream and FileOutputStream define byte input and output
streams that are connected to files. Data can only be read or written as a sequence
of bytes.

An input stream for reading bytes can be created using the following constructors:

FileInputStream(String name) throws FileNotFoundException
FileInputStream(File file) throws FileNotFoundException
FileInputStream(FileDescriptor fdObj)

The file can be specified by its name, through a File or a FileDescriptor object.
If the file does not exist, a FileNotFoundException is thrown. If it exists, it is set
to be read from the beginning. A SecurityException is thrown if the file does not
have read access.

An output stream for writing bytes can be created using the following con-
structors:

FileOutputStream(String name) throws FileNotFoundException
FileOutputStream(String name, boolean append) throws FileNotFoundException
FileOutputStream(File file) throws IOException
FileOutputStream(FileDescriptor fdObj)

The file can be specified by its name, through a File object or using a File
Descriptor object.

If the file does not exist, it is created. If it exists, its contents are reset, unless the
appropriate constructor is used to indicate that output should be appended to
the file. A SecurityException is thrown if the file does not have write access or
it cannot be created.

The FileInputStream class provides an implementation for the read() methods in its
superclass InputStream. Similarly, the FileOutputStream class provides an imple-
mentation for the write() methods in its superclass OutputStream.

SECTION 18.3: BYTE STREAMS: INPUT STREAMS AND OUTPUT STREAMS 559

Example 18.2 demonstrates usage of writing and reading bytes to and from file
streams. It copies the contents of one file to another file. The input and the output
file names are specified on the command line. The streams are created as shown at
(1) and (2). The input file is read a byte at a time and written straight to the output
file, as shown in the try block at (3). The streams are explicitly closed, as shown at
(4). Note that most of the code consists of try-catch constructs to handle the various
exceptions. The example could be optimized by using buffering, and reading and
writing several bytes at a time.

Example 18.2 Copy a File

/* Copy a file.
Command syntax: java CopyFile <from-file> <to-file>

>':/
import java.io.*;

class CopyFile {
pubTic static void main(String args[]) {
FileInputStream fromFile;
FileOutputStream toFile;

// Assign the files

try {
fromFile = new FileInputStream(args[0]); // ()
toFile = new FileQutputStream(args[1]); // ()

} catch(FileNotFoundException e) {

System.err.printin("File could not be copied: " + e);
return;

} catch(I0Exception e) {
System.err.printin("File could not be copied: " + e);

return;

} catch(ArrayIndexOutOfBoundsException e) {
System.err.printin("Usage: CopyFile <from-file> <to-file>");
return;

}

// Copy bytes
try { /7 (3)
int i = fromFile.read();
while (i != -1) { // check end of file
toFile.write(i);
i = fromFile.read();
}
} catch(IOException e) {
System.err.printin("Error reading/writing.");

}

// Close the files

try { /(4
fromFile.close();
toFile.close(Q);

560

CHAPTER 18: FILES AND STREAMS

} catch(I0Exception e) {
System.err.printIin("Error closing file.");

}

Filter Streams

A filter is a high-level stream that provides additional functionality to an under-
lying stream to which it is chained. The data from the underlying stream is manip-
ulated in some way by the filter. The FilterInputStream and FilterOutputStream
classes, together with their subclasses, define input and output filter streams. Sub-
classes BufferedInputStream and BufferedOutputStream implement filters that
respectively buffer input from, and output to, the underlying stream. Subclasses
DataInputStream and DataOutputStream implement filters that allow Java primitive
values to be read and written respectively to and from an underlying stream.

I/0 of Java Primitive Values

The java.io package contains two interfaces: DataInput and DataOutput, that streams
can implement to allow reading and writing of binary representations of Java
primitive values (boolean, char, byte, short, int, Tong, float, double). Methods for
writing binary representations of Java primitive values are named writeX (), where
X is any Java primitive datatype. Methods for reading binary representations of
Java primitive values are similarly named readX(). Table 18.3 gives an overview of
the readX () and writeX() methods found in these two interfaces. Note the methods
provided for reading and writing strings. Whereas the methods readChar() and
writeChar() handle a single character, the methods readLine() and writeChars()
handle a string of characters. The methods readUTF() and writeUTF() also read and
write a string of characters, but use the UTF-8 character encoding (see Table 18.7
on page 570).

The filter streams DataOutputStream and DataInputStream implement DataOutput and
DataInput interfaces respectively, and can be used to write and read binary repres-
entations of Java primitive values to and from an underlying stream. Both the
writeX() and readX() methods throw an I0OException in the event of an I/O error.
Bytes can also be skipped from a DataInput stream, using the skipBytes(int n)
method which skips n bytes. The following constructors can be used to set up
filters for reading and writing Java primitive values respectively from an under-
lying stream:

DataInputStream(InputStream in)
DataOutputStream(OutputStream out)

For handling character streams, Java provides special streams called readers and
writers which are discussed in Section 18.4.

SECTION 18.3: BYTE STREAMS: INPUT STREAMS AND OUTPUT STREAMS 561

Table 18.3

Figure 18.2

DataInput and DataOutput Interfaces

Type Methods in Datalnput Methods in DataOutput
booTlean readBoolean() writeBoolean(boolean v)
char readChar() writeChar(int v)

byte readByte() writeByte(int v)

short readShort() writeShort(int v)

int readInt() writeInt(int v)

Tong readLong() writelLong(Tong v)

float readFloat() writeFloat(float v)
double readDouble() writeDouble(double v)
String readLine() writeChars(String s)
String readUTF() writeUTF(String s)

Object of class
DataOutputStream

writeBoolean()
writeByte()
writeChar()
writeDouble()
writeFloat()
writeInt()
writeLong()
writeShort()
writeChars()
writeUTF(Q)

Stream Chaining

Object of class
FileQutputStream

Object of class
FileInputStream

Object of class
DataInputStream

readBoolean()
readByte()
readChar()
readDouble()
readFloat()
readInt()
readLong ()
readShort()
readLine()
readUTF()

To write the binary representation of Java primitive values to a file, the following
procedure can be used, which is also depicted in Figure 18.2.

1. Create a FileOutputStream:

FileOutputStream outputFile = new FileOutputStream("primitives.data");

2. Create a DataOutputStream which is chained to the FileOutputStream:

DataOutputStream outputStream = new DataOutputStream(outputFile);

3. Write Java primitive values using relevant writeX () methods:

outputStream.
outputStream.
outputStream.
outputStream.
outputStream.

writeBoolean(true);
writeChar('A");
writeByte(Byte.MAX_VALUE);
writeShort(Short.MIN_VALUE);
writeInt(Integer.MAX_VALUE);

// int written as Unicode char
// int written as 8-bits byte
// int written as 16-bits short

562

Example 18.3

CHAPTER 18: FILES AND STREAMS

outputStream.writeLong(Long.MIN_VALUE);
outputStream.writeFloat(Float.MAX_VALUE);
outputStream.writeDouble(Math.PI);

Note that in the case of char, byte and short datatypes, the int argument to the
writeX() method is converted to the corresponding type, before it is written.

Close the filter stream, which also closes the underlying stream:

outputStream.close();

To read the binary representation of Java primitive values from a file the following
procedure can be used, which is also depicted in Figure 18.2.

1.

Create a FileInputStream:
FileInputStream inputFile = new FileInputStream("primitives.data");
Create a DataInputStream which is chained to the FileInputStream:
DataInputStream inputStream = new DataInputStream(inputFile);

Read Java primitive values in the same order they were written out, using
relevant readX() methods :

boolean v = inputStream.readBoolean();

char c = inputStream.readChar();
byte b = inputStream.readByte();
short s = inputStream.readShort();
int i = inputStream.readInt();
Tong 1 = inputStream.readLong();
float f = inputStream.readFloat();
double d = inputStream.readDouble();

4. Close the filter stream, which also closes the underlying stream:

inputStream.close();

Example 18.3 uses both the procedures described above: first to write and then to
read some Java primitive values to and from a file. The values are also written to
the terminal.

Reading and Writing Java Primitive Values

import java.io.*;

pubTic class JavaPrimitiveValues {
public static void main(String args[]) throws IOException {
// Create a FileQutputStream.
FileOutputStream outputFile =
new FileQutputStream("primitives.data");

// Create a DataOutputStream which is chained to the FileOutputStream.
DataOutputStream outputStream = new DataOutputStream(outputFile);

// Write Java primitive values.
outputStream.writeBoolean(true);
outputStream.writeChar('A"); // int written as Unicode char
outputStream.writeByte(Byte.MAX_VALUE); // int written as 8-bits byte

SECTION 18.3: BYTE STREAMS: INPUT STREAMS AND OUTPUT STREAMS 563

outputStream.writeShort(Short.MIN_VALUE); // int written as 16-bits short
outputStream.writeInt(Integer.MAX_VALUE);
outputStream.writelLong(Long.MIN_VALUE);
outputStream.writeFloat(Float.MAX_VALUE);
outputStream.writeDouble(Math.PI);

// Close the output stream, which also closes the underlying stream.
outputStream.close();

// Create a FileInputStream.
FileInputStream inputFile = new FileInputStream("primitives.data");

// Create a DatalnputStream which is chained to the FileInputStream.
DataInputStream inputStream = new DataInputStream(inputFile);

// Read Java primitive values in the same order they were written out.
boolean v = inputStream.readBoolean();
char c = inputStream.readChar();

byte b = inputStream.readByte();
short s = inputStream.readShort();
int i = inputStream.readInt();
Tong 1 = inputStream.readLong();
float f = inputStream.readFloat();
double d = inputStream.readDouble();

// Close the input stream, which also closes the underlying stream.
inputStream.close();

// Write the values read on the terminal
System.out.printin(v);
System.out.printin(c);
System.out.printin(b);
System.out.printin(s);
System.out.printIn(i);
System.out.printin(1);
System.out.printin(f);
System.out.printin(d);

}
Output from the program:

true

A

127

-32768

2147483647
-9223372036854775808
3.4028235E38
3.141592653589793

Buffered Byte Streams

The filter classes BufferedInputStream and BufferedOutputStream implement buffering
of bytes for input and output streams, respectively. Data is read and written in blocks

564 CHAPTER 18: FILES AND STREAMS

of bytes, rather than a single byte at a time. Buffering can enhance performance
significantly. These filter classes only provide methods for reading and writing
bytes. A buffering filter must be chained to an underlying stream:

BufferedInputStream(InputStream 1in)
BufferedOutputStream(OutputStream out)

Obiject of class Object of class Object of class Obiject of class
DataOutputStream FileOutputStream FileInputStream DataInputStream

R Y S
| el el

r= 1

Object of class Object of class
BufferedOutputStream BufferedInputStream

Figure 18.3 Buffering Byte Streams

Other filters can be chained to byte buffering filters to provide buffering of data.
For example, during the writing of binary representations of Java primitive values
to a file, bytes can be buffered (see Figure 18.3):

FileOutputStream outputFile = new FileOutputStream("primitives.data");
BufferedOutputStream bufferedOutput = new BufferedOutputStream(outputFile);
DataOutputStream outputStream = new DataOutputStream(bufferedOutput);

Values are now written using the DataOutputStream outputStream, with the buffering
of bytes being provided by the BufferedOutputStream bufferedOutput.

Likewise, during the reading of binary representations of Java primitive values
from a file, bytes can be buffered (see Figure 18.3):

FileInputStream inputFile = new FileInputStream("primitives.data");
BufferedInputStream bufferedInput = new BufferedInputStream(inputFile);
DataInputStream inputStream = new DataInputStream(bufferedInput);

Values are now read using the DataInputStream inputStream, with the buffering of
bytes being provided by the BufferedInputStream bufferedInput.

Comparison of Byte Output Streams and Input Streams

Usually an output stream has a corresponding input stream of the same type. The
table below shows the correspondence between byte output and input streams.
Note that not all classes have a corresponding counterpart.

SECTION 18.3: BYTE STREAMS: INPUT STREAMS AND OUTPUT STREAMS 565

Table 18.4

18.1

18.2

18.3

Comparing Output Streams and Input Streams

OutputStreams InputStreams
ByteArrayOutputStream ByteArrayInputStream
FileOutputStream FileInputStream
FilterOutputStream FilterInputStream
BufferedOutputStream BufferedInputStream
DataQutputStream DataInputStream

No counterpart PushbackInputStream
ObjectOutputStream ObjectInputStream
PipedOutputStream PipedInputStream

No counterpart SequenceInputStream

Review questions

Which of these can act both as an input stream and as an output stream, based on
the classes provided by the java.io package?

Select all valid answers.
(a) A file

(b) A network connection
(c) A pipe

(d) A string

(e) Anarray of chars

Which of these statements about the constant named separator of the File class are
true?

Select all valid answers.

(a) The variable is of type char.

(b) The variable is of type String.

(c) It can be assumed that the value of the variable always is the character '/".
(d) It can be assumed that the value of the variable always is one of '/', '\"' or ':".
(e) The separator can consist of more than one character.

Which one of these methods in the File class will return the name of the entry,
excluding the specification of the directory in which it resides?

Select the one right answer.

(a) getAbsolutePath()
(b) getName(Q)

(c) getParent()

(d) getPathQ)

(e) None of the above.

566

18.4

18.5

18.6

18.7

18.8

CHAPTER 18: FILES AND STREAMS

What will the method Tength() in the class File return?

Select the one right answer.

(a) The number of characters in the file.
(b) The number of kilobytes in the file.
(c¢) The number of lines in the file.

(d) The number of words in the file.

(e) None of the above.

A file is readable but not writable on the file system of the host. What will be the
result of calling the method canWrite() on a File object representing this file?

Select the one right answer.

(a) A SecurityException is thrown.

(b) The boolean value false is returned.

(c¢) The boolean value true is returned.

(d) The file is modified from being unwritable to being writable.
(e) None of the above.

What is the type of the parameter given to the method renameTo() in the class File?

Select the one right answer.
(a) File

(b) FileDescriptor

(c) FileNameFilter

(d) String

(e) charl[]

If write(0x01234567) is called on an instance of QutputStream, what will be written to
the destination of the stream?

Select the one right answer.

(a) The bytes 0x01, 0x23, 0x34, 0x45 and 0x67, in that order.
(b) The bytes 0x67, 0x45, 0x34, 0x23 and 0x01, in that order.
(c) The byte 0x01.

(d) The byte 0x67.

(e) None of the above.

Given the following code, under which circumstances will the method return
false?

public static boolean test(InputStream is) throws IOException {
int value = is.read();
return value == (value & Oxff);

}

Select all valid answers.

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS 567

18.9

18.4

Figure 18.4

(a) A character of more than 8 bits was read from the stream.
(b) AnI/0O error occurred.

(c) Never.

(d) The end of the input was reached in the input stream.

Which of these classes provides methods for writing binary representations of
primitive Java types?

Select all valid answers.

(a) DataOutputStream
(b) FileQutputStream

(c) ObjectOutputStream
(d) PrintStream

(e) BufferedOutputStream

Character Streams: Readers and Writers

A character encoding is a scheme for representing characters. Java programs repre-
sent characters internally in the 16-bit Unicode character encoding, but the host
platform might use another character encoding to represent characters externally.
For example, the ASCII (American Standard Code for Information Interchange)
character encoding is widely used to represent characters on many platforms.
However, it is only one small subset of the Unicode standard.

The abstract classes Reader and Wri ter are the roots of the inheritance hierarchies for
streams that read and write Unicode characters using a specific character encoding.

/\

[| [
‘ BufferedReader | ‘ FilterReader | ‘ InputStreamReader |

T T

‘ FileReader |
/\
[[[
Bufferedwriter | ‘ FilterWriter | ‘0utputStreamWr1'ter| ‘ PrintWriter
‘ FileWriter |

Character Stream Inheritance Hierarchies

568

Table 18.5

CHAPTER 18: FILES AND STREAMS

A reader is an input character stream that reads a sequence of Unicode characters,
and a writer is an output character stream that writes a sequence of Unicode char-
acters. Character encodings are used by readers and writers to convert between
external encoding and internal Unicode characters. Table 18.5 and Table 18.6 give
an overview of the character streams found in the java.io package.

Readers

BufferedReader A reader that buffers the characters read from an underlying
reader. The underlying reader must be specified, and an optional
buffer size can be given.

LineNumberReader A buffered reader that reads characters from an underlying reader
while keeping track of the number of lines read. The underlying
reader must be specified, and an optional buffer size can be given.

CharArrayReader Characters are read from a character array that must be specified.

FilterReader Abstract superclass of all character input stream filters. A
FilterReader must be chained to an underlying reader which must
be specified.

PushbackReader A filter that allows characters to be “unread” from a character
input stream. A PushbackReader must be chained to an underlying
reader which must be specified. The number of characters to be
unread can optionally be specified.

InputStreamReader Characters are read from a byte input stream which must be
specified. The default character encoding is used if no character
encoding is explicitly specified.

FileReader Reads characters from a file using the default character encoding.
The file can be specified by a File object, a FileDescriptor, or a
String file name. It automatically creates a FileInputStream for the
file.

PipedReader Reads characters from a PipedWriter to which it must be
connected. The PipedWriter can optionally be specified when
creating the PipedReader.

StringReader Characters are read from a String which must be specified.

Readers use the following methods for reading Unicode characters:

int read() throws IOException
int read(char cbuf[]) throws IOException
int read(char cbuf[], int off, int Ten) throws IOException

Note that the read() methods read an int in the range 0 to 65535 (0x0000-
OxFFFF), i.e. a Unicode character. The value -1 is returned if the end of file has
been reached.

Tong skip(long n) throws IOException
A reader can skip over characters using the skip() method.

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS 569

Table 18.6 Writers

Bufferedwriter A writer that buffers the characters before writing them to an
underlying writer. The underlying writer must be specified, and
an optional buffer size can be specified.

CharArrayWriter Characters are written to a character array that grows
dynamically. The size of the character array initially created can
be specified.

FilterWriter Abstract superclass of all character output stream filters. The

java.io package does not have any concrete character output
stream filters.

OutputStreamWriter Characters are written to a byte output stream which must be
specified. The default character encoding is used if no explicit
character encoding is specified.

FileWriter Writes characters to a file, using the default character encoding.
The file can be specified by a File object, a FileDescriptor, or a
String file name. It automatically creates a FileOutputStream for the

file.

Pipedwriter Writes characters to a PipedReader, to which it must be connected.
The PipedReader can optionally be specified when creating the
PipedwWriter.

PrintWriter A filter that allows textual representations of Java objects and Java

primitive values to be written to an underlying output stream or
writer. The underlying output stream or writer must be specified.

StringWriter Characters are written to a StringBuffer. The initial size of the
StringBuffer created can be specified.

Writers use the following methods for writing Unicode characters:

void write(int c) throws IOException

The write() method takes an int as argument, but only writes out the least
significant 16 bits.

void write(char[] cbuf) throws IOException
void write(String str) throws IOException
void write(char[] cbuf, int off, int len) throws IOException
void write(String str, int off, int len) throws IOException

These methods write the characters from an array of characters or a string.

void close() throws IOException
void flush() throws IOException
Like byte streams, a character stream should be closed when no longer needed,
to free system resources. Closing a character output stream automatically
flushes the stream, and a character output stream can also be manually flushed.

570

Table 18.7

CHAPTER 18: FILES AND STREAMS

Like byte streams, many methods of the character stream classes throw an
IOException that a calling method must either catch explicitly, or specify in a throws
clause.

Character Encodings

Every platform has a default character encoding that can be used by readers and
writers to convert between external encodings and internal Unicode characters.
Readers and writers can also explicitly specify which encoding schemes to use for
reading and writing. Some common encoding schemes are given in Table 18.7.

Encoding Schemes

Encoding Name Character Set Name

8859_1 ISO Latin-1 (subsumes ASCII)

8859_2 ISO Latin-2

8859_3 ISO Latin-3

8859_4 ISO Latin/Cyrillic

UTF8 Standard UTF-8 (UCS Transformation Format; UCS stands for

Universal Character Set) (subsumes ASCII)

Not all Unicode characters can be represented in other encoding schemes. In that
case, the '?' character is usually used to denote any such character in the resulting
output, during translation from Unicode.

The raw 16-bit Unicode is not particularly space efficient for storing characters
derived from the Latin alphabet, because the majority of the characters can be
represented by one byte (same as ASCII), making the higher byte in the 16-bit
Unicode superfluous. For this reason, Unicode characters are usually encoded
externally, using the UTF8 encoding which has a multi-byte encoding format. It
represents ASCII characters as one-byte characters but uses multiple bytes for
others. The readers and writers can correctly and efficiently translate between
UTF8 and Unicode.

The class OutputStreamWriter implements writers that can translate Unicode
characters into bytes, using a character encoding which can be either the default
encoding of the host platform or an encoding that is explicitly specified, and write
the resulting bytes to a byte output stream:

OutputStreamWriter(OutputStream out)

This creates a writer that uses the default character encoding.

OutputStreamWriter(QutputStream out, String encodingName)
throws UnsupportedEncodingException

This creates a writer that uses the specified character encoding.

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS 571

The class InputStreamReader implements readers that can read bytes in the default
character encoding or a particular character encoding from an input stream, and
translate them to Unicode characters:

InputStreamReader (InputStream in)
This creates a reader that reads bytes in the default character encoding.

InputStreamReader(InputStream in, String encodingName)
throws UnsupportedEncodingException

This creates a reader that reads bytes in the specified character encoding.

An InputStreamReader or an OutputStreamWriter can be queried about the encoding
scheme it uses:

String getEncoding()

The OutputStreamWriter and the InputStreamReader classes provide methods for writ-
ing and reading individual characters and arrays of characters to and from byte
streams. The OutputStreamiWriter class in addition provides a method for writing
strings to byte output streams.

The rest of this section provides examples that illustrate readers and writers for
handling text files, including textual representation of Java primitive values and
objects, and usage of character encodings.

Print Writers

The capabilities of the OutputStreamwWriter and the InputStreamReader classes are
limited, as they primarily write and read characters.

In order to write textual representation of Java primitive values and objects, a
PrintWriter should be chained to either a writer or a byte output stream, using one
of the following constructors:

PrintWriter(Writer out)

PrintWriter(Writer out, boolean autoFlush)

PrintWriter(QutputStream out)

PrintWriter(OQutputStream out, boolean autoFTush)

The autoFlush argument specifies whether the PrintWriter should be flushed
when any printin() method of the PrintWriter class is called.

When the underlying writer is specified, the character encoding supplied by
the underlying writer is used. However, an OutputStream has no notion of any
character encoding, so the necessary intermediate OutputStreamwriter is auto-
matically created, which will convert characters into bytes, using the default
character encoding.

The PrintWriter class provides the following methods for writing textual repres-
entation of Java primitive values and objects:

572

Table 18.8

CHAPTER 18: FILES AND STREAMS

Print Methods of the PrintWriter Class

print()-methods printin-methods
printin()

print(boolean b) printin(boolean b)
print(char c) printin(char c)
print(int 1) printinCint i)
print(long 1) printin(long 1)
print(float f) printin(float f)
print(double d) printin(double d)
print(char[] s) printin(char[] s)
print(String s) printIn(String s)
print(Object obj) printIn(Object obj)

The printin() methods write the text representation of their argument to the
underlying stream, and then append a line-separator. The printin() methods use
the correct platform-dependent line-separator. For example, on Unix platforms the
line-separator is '\n' (linefeed), while on Windows platforms it is "\r\n" (carriage
return + linefeed) and on the Macintosh it is '\r' (carriage return).

The print() methods create a textual representation of an object by calling the
toString() method on the object. The print() methods do not throw any I0Exception.
Instead, the checkError() method of the PrintWriter class must be called to check
for errors.

Writing Text Files

When writing text to a file using the default character encoding, the following
three procedures for setting up a PrintWriter are equivalent.

Setting up a PrintWriter based on an OutputStreamwWriter which is chained to a
FileOutputStream (Figure 18.5a):
1. Create a FileOutputStream:
FileOutputStream outputFile = new FileOutputStream("info.txt");
2. Create an OutputStreamWriter which is chained to the FileOutputStream:
OutputStreamWriter outputStream = new OutputStreamWriter(outputFile);

The OutputStreamWriter uses the default character encoding for writing the
characters to the file.

3. Create a PrintWriter which is chained to the OutputStreamWriter:

PrintWriter printWriterl = new PrintWriter(outputStream, true);

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS 573

Object of class Object of class Obiject of class
PrintWriter OutputStreamWriter FileOutputStream

))0 T e

text file
(@)
Object of class Object of class
PrintWriter FileOutputStream
[J
icharaoters
l.)Dl e
text file
()
Object of class Object of class
PrintWriter FileWriter

|
¢ icharaoters

).)D. 09
©)]

text file

Figure 18.5 Setting up a Print Writer

Setting up a PrintWriter based on a FileOutputStream (Figure 18.5b):

1. Create a FileOutputStream:
FileOutputStream outputFile = new FileQOutputStream("info.txt");
2. Create a PrintWriter which is chained to the FileOutputStream:
PrintWriter printWriter2 = new PrintWriter(outputFile, true);
The intermediate OutputStreamiriter to convert the characters using the default
encoding is automatically supplied.
Setting up a PrintWriter based on a FileWriter (Figure 18.5¢):

1. Create a FileWriter which is a subclass of QutputStreamWriter:
FileWriter fileWriter = new FileWriter("info.txt");

This is equivalent to having an OutputStreamWriter chained to a FileOutputStream
for writing the characters to the file, as shown in Figure 18.5a.

2. Create a PrintWriter which is chained to the FileWriter:

PrintWriter printWriter3 = new PrintWriter(fileWriter, true);

574

CHAPTER 18: FILES AND STREAMS

If a specific character encoding is desired for the writer, then the first procedure
(Figure 18.5a) must be used, the encoding being specified for the OutputStream
Writer:

FileOutputStream outputFile = new FileOutputStream("info.txt");
OutputStreamWriter outputStream = new OutputStreamWriter(outputFile, "8859_1");
PrintWriter printWriter4 = new PrintWriter(outputStream, true);

This writer will use the 8859_1 character encoding to write the characters to the file.
A BufferedWriter can be used to improve the efficiency of writing to the underlying
stream.

Reading Text Files

Java primitive values and objects cannot be read directly from their textual repres-
entation. Characters must be read and converted to the relevant values explicitly.
One common strategy is to write lines of text and tokenize the characters as they are
read, a line at a time.

When reading characters from a file using the default character encoding, the
following two procedures for setting up an InputStreamReader are equivalent.

Set up an InputStreamReader which is chained to a FileInputStream (Figure 18.6a):

1. Create a FileInputStream:
FileInputStream inputFile = new FileInputStream("info.txt");

2. Create an InputStreamReader which is chained to the FileInputStream:
InputStreamReader reader = new InputStreamReader(inputFile);

The InputStreamReader uses the default character encoding for reading the
characters from the file.

Object of class Object of class
FileInputStream InputStreamReader

| |
characters i i
: -mnﬂ.@.@

text file (@)

Object of class
FileReader

characters i
AN

text file (b)

Figure 18.6 Setting up Readers

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS 575

Set up a FileReader which is a subclass of InputStreamReader (Figure 18.6b):

1. Create a FileReader:
FileReader fileReader = new FileReader("info.txt");
This is equivalent to having an InputStreamReader chained to a FileInputStream
for reading the characters from the file, using the default character encoding.

If a specific character encoding is desired for the reader, then the first procedure
must be used (Figure 18.6a), the encoding being specified for the InputStreamReader:

FileInputStream inputFile = new FileInputStream("info.txt");
InputStreamReader reader = new InputStreamReader(inputFile, "8859 1");

This reader will use the 8859_1 character encoding to read the characters from the
file.

Buffered Character Streams

To improve the efficiency of I/O operations, readers and writers can buffer their
input and output. For this purpose, a Bufferedriter or a BufferedReader can be
chained to the underlying writer or reader, respectively:

BufferedWriter(Writer out)
BufferedWriter(Writer out, int size)
BufferedReader(Reader in)
BufferedReader(Reader in, int size)

The default buffer size is used, unless the buffer size is explicitly specified.

The BufferedReader class provides the method readLine() to read a line of text from
the underlying reader:

String readLine() throws IOException

The null value is returned when the end of input is reached. The returned
string must explicitly be converted to other values.

The Bufferedwriter class provides the method newLine() for writing the platform-
dependent line-separator.

Using Buffered Writers

The following code creates a PrintWriter whose output is buffered, and the charac-
ters are written using the 8859_1 character encoding (Figure 18.7a):

FileOutputStream outputFile new FileOutputStream("info.txt");
OutputStreamWriter outputStream new OutputStreamWriter(outputFile, "8859_1");
Bufferedwriter bufferedwWriterl = new BufferedWriter(outputStream);
PrintWriter printWriterl = new PrintWriter(bufferedWriterl, true);

The following code creates a PrintWriter whose output is buffered, and the charac-
ters are written using the default character encoding (Figure 18.7b):

576 CHAPTER 18: FILES AND STREAMS

Object of class Object of class Object of class
PrintWriter OutputStreamWriter FileOutputStream

))

text file
Object of class
Bufferedwriter
(@)
Object of class Object of class Object of class
PrintWriter Bufferedwriter FileWriter

Figure 18.7 Buffered Writers

FileWriter fileWriter = new FileWriter("info.txt");
BufferedwWriter bufferedWriter2 = new BufferedWriter(fileWriter);
PrintWriter printWriter2 = new PrintWriter(bufferedWriter2, true);

Note that in both cases the PrintWriter is used to write the characters. The Buffered
Writer is sandwiched between the PrintWriter and the underlying OutputStream
Writer.

Using Buffered Readers

The following code creates a BufferedReader that can be used to read text lines from
a file, using the 8859_1 character encoding (Figure 18.8a):

new FileInputStream("info.txt");
new InputStreamReader(inputFile, "8859_1");
new BufferedReader(reader);

FileInputStream inputFile
InputStreamReader reader
BufferedReader bufferedReaderl

The following code creates a BufferedReader that can be used to read text lines from
a file, using the default character encoding (Figure 18.8b):

FileReader fileReader = new FileReader("lines.txt");
BufferedReader bufferedReader2 = new BufferedReader(fileReader);

Note that in both cases the BufferedReader object is used to read the text lines.

In contrast to Example 18.3, which demonstrated the reading and writing of binary
representations of primitive data values, Example 18.4 shows the reading and writ-
ing of textual representations of primitive data values.

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS 577

Figure 18.8

Example 18.4

Object of class Object of class Object of class
FileInputStream InputStreamReader BufferedReader

characters l l i

()

text file @)
Object of class Object of class
FileReader BufferedReader

|
charactersi ¢

text file (b)

Buffered Readers

The CharEncodingDemo class in Example 18.4 writes textual representations of
Java primitive values, using the 8859_1 character encoding (Figure 18.7a). The
PrintWriter is buffered. Its underlying writer uses the specified encoding, as shown
at (1). Values are written out with one value on each line, as shown at (2), and the
writer is closed, as shown at (3). The example uses the same character encoding to
read the values. A BufferedReader is created (Figure 18.8a). Its underlying reader
uses the specified encoding, as shown at (4). The values are read in the same order
they were written out, one value per line. The line is explicitly converted to an
appropriate value, as shown at (5). The BufferedReader is closed, as shown at (6),
and the values are echoed on the terminal, as shown at (7). Note the exceptions that
are specified in the throws clause of the main() method.

Demonstrating Readers and Writers, and Character Encoding
import java.io.*;
public class CharEncodingDemo {

pubTlic static void main(String args[])

throws IOException, NumberFormatException {
// character encoding. (@D)
FileOutputStream outputFile = new FileOutputStream("info.txt");
OutputStreamWriter writer = new OutputStreamWriter(outputFile, "8859_1");
BufferedWriter bufferedWriterl = new BufferedWriter(writer);
PrintWriter printWriter = new PrintWriter(bufferedWriterl, true);
System.out.printin("Writing using encoding: " + writer.getEncoding());

// Print Java primitive values, one on each Tine. (@3]
printWriter.printin(true);

printWriter.printin('A');

printWriter.println(Byte.MAX_VALUE);

578 CHAPTER 18: FILES AND STREAMS

printWriter.printIn(Short.MIN_VALUE);
printWriter.printin(Integer.MAX_VALUE);
printWriter.printin(Long.MIN_VALUE);
printWriter.printin(Float.MAX_VALUE);
printWriter.printin(Math.PI);

// Close the writer, which also closes the underlying stream 3)
printWriter.close();

// Create a BufferedReader which uses 8859_1 character encoding (4)
FileInputStream inputFile = new FileInputStream("info.txt");
InputStreamReader reader = new InputStreamReader(inputFile, "8859_1");
BufferedReader bufferedReader = new BufferedReader(reader);
System.out.printin("Reading using encoding: " + reader.getEncoding());

// Read Java primitive values in the same order they 5
// were written out, one on each Tine
boolean v = bufferedReader.readlLine().equals("true")? true : false;

char ¢ = bufferedReader.readLine().charAt(0);

byte b = (byte) Integer.parselnt(bufferedReader.readLine());

short s = (short) Integer.parselnt(bufferedReader.readlLine());

int i = Integer.parselnt(bufferedReader.readLine());

Tong 1 = Long.parseLong(bufferedReader.readLine());

float f = Float.parseFloat(bufferedReader.readlLine());

double d = Double.parseDouble(bufferedReader.readLine());

// Close the reader, which also closes the underlying stream (6)

bufferedReader.close();

// Write the values read on the terminal @)
System.out.printin("Values:");

System.out.printin(v);

System.out.printin(c);

System.out.printin(b);

System.out.printin(s);

System.out.printin(i);

System.out.printin(1);

System.out.printin(f);

System.out.printin(d);

}
Output from the program:

Writing using encoding: IS08859 1
Reading using encoding: IS08859_1
Values:

true

A

127

-32768

2147483647

-9223372036854775808

3.4028235E38

3.141592653589793

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS 579

Example 18.5

Terminal I/0

The standard output stream (usually the screen) is represented by the PrintStream
object System.out. The standard input stream (usually the keyboard) is represented
by the InputStream object System.in. In other words, it is a byte input stream. The
standard error stream (also usually the screen) is represented by System.err which is
another object of the PrintStream class. The PrintStream class is now mostly deprec-
ated, but its print() methods, which act as corresponding print() methods from
the PrintWriter class, can still be used to write output to System.out and System.err.
In other words, both System.out and System.err act like PrintWriter, but in addition
they have write() methods for writing bytes.

In order to read and translate characters correctly and efficiently, System.in should
be chained to an InputStreamReader that in turn should be buffered:

InputStreamReader inStream = new InputStreamReader(System.in);
BufferedReader stdInStream = new BufferedReader(inStream);

In this case, the default character encoding is used to translate the characters.

In Example 18.5, a BufferedReader is chained to an InputStreamReader that in turn is
chained to System.in, as shown at (1). This allows the characters from the standard
input stream to be buffered and read using the default character encoding. The
BufferedReader in the example always reads a whole line at a time from the ter-
minal. If a line of text is requested, the whole line read is returned, as shown at (3).
If an int is to be read, the line is parsed to an int, as shown at (5). If a double is to be
read, the line is parsed to a double, as shown at (7). Note the exception handling that
is necessary to read a line of characters and ensure that it contains a valid numer-
ical value.

The Java class libraries provide a class named java.text.NumberFormat that can be
used to format numeric values according to a specified locale. At (8), the example
uses a NumberFormat object created to format values according to the locale
java.util.Locale.US.

Demonstrating Terminal I/O

import java.io.*;
import java.text.*;
import java.util.*;

public final class Stdin {

// A BufferedReader chained to an InputStreamReader chained to an InputStream.
private static BufferedReader reader = new BufferedReader(// Q)
new InputStreamReader(System.in)

)3
// Read one 1ine of text from the terminal and return it as a string.
public static String readLine() { // ()

while (true) try {
return reader.readLine(); /7 (3)

580

CHAPTER 18: FILES AND STREAMS

} catch(IOException ioe) {
reportError(ioe);
}
}

// Read one integer value from the terminal.
public static int readInteger() {
while (true) try {
return Integer.parselnt(reader.readLine());
} catch (IOException ioe) {
reportError(ioe);
} catch(NumberFormatException nfe) {
reportError(nfe);
}
}

// Read one double value from the terminal.
pubTlic static double readDouble() {
while (true) try {

return Double.parseDouble(reader.readlLine());

} catch(IOException ioe) {
reportError(ioe);
} catch(NumberFormatException nfe) {
reportError(nfe);
}
}

private static void reportError(Exception e) {
System.err.printIn("Error in input: " + e);
System.err.printin("Please re-enter data.");

/] &
/7 (5

// (6)
/7 (D

}

pubTlic static void main(String args[]) {
System.out.printin("Input a string:");
String str = Stdin.readlLine();
System.out.printin("Input an integer:");
int i = Stdin.readInteger();
System.out.printin("Input a double:");
double d = Stdin.readDouble();

NumberFormat formatter = NumberFormat.getInstance(Locale.US); // (8)

System.out.printin("Data read:");
System.out.printin(str);
System.out.printin(formatter.format(i));
System.out.printin(formatter.format(d));

}
Output from the program:

Input a string:
Habari

Input an integer:
0201596148

Input a double:
47.584152

SECTION 18.4: CHARACTER STREAMS: READERS AND WRITERS

Table 18.9

Table 18.10

Data read:
Habari
201,596,148
47.584

Comparison of Character Writers and Readers

581

Usually a writer has a corresponding reader. Table 18.9 shows the correspondence
between character output and character input streams. Note that not all classes

have a corresponding counterpart.

Correspondence between Writers and Readers

PrintWriter

StringWriter

Writers Readers
Bufferedwriter BufferedReader
No counterpart LineNumberReader
CharArrayWriter CharArrayReader
FilterWriter FilterReader

No counterpart PushbackReader
OutputStreamWriter InputStreamReader
FileWriter FileReader
PipedwWriter PipedReader

No counterpart

StringReader

Comparison of Byte Streams and Character Streams

It is instructive to see which byte streams correspond to which character streams.
Table 18.10 shows the correspondence between byte and character streams. Note
that not all classes have a corresponding counterpart.

Correspondence between Byte Streams and Character Streams

Byte Streams

Character Streams

OutputStream Writer

InputStream Reader
ByteArrayOutputStream CharArrayWriter
ByteArrayInputStream CharArrayReader
No counterpart OutputStreamWriter
No counterpart InputStreamReader

582

Table 18.10

CHAPTER 18: FILES AND STREAMS

Correspondence between Byte Streams and Character Streams (continued)

Byte Streams Character Streams
FileOutputStream FileWriter
FileInputStream FileReader
FilterQutputStream FilterWriter
FilterInputStream FilterReader
BufferedOutputStream Bufferedwriter
BufferedInputStream BufferedReader
PrintStream PrintWriter
DataOutputStream No counterpart
DataInputStream No counterpart
ObjectOutputStream No counterpart
ObjectInputStream No counterpart
PipedOutputStream Pipedwriter
PipedInputStream PipedReader

No counterpart StringWriter

No counterpart StringReader

No counterpart LineNumberReader
PushbackInputStream PushbackReader
SequenceInputStream No counterpart

Review questions

18.10 Which of these are valid parameter types for the write() methods of the Writer

18.11

class?

Select all valid answers.
(a) Type String
(b) Type char

(c) Type char[]
(d) Type int

What is the default encoding for an OutputStreamWriter?

Select the one right answer.

(a) 8859_1

(b) UTF8

(c) Unicode

(d) The default is system-dependent.

(e) The default is not system-dependent, but is none of the above.

SECTION 18.5: RANDOM ACCESS FOR FILES 583

18.12

18.13

18.5

Figure 18.9

Which of these integer types do not have their own print() method in the
PrintWriter class?

Select all valid answers.

(a) byte

(b) char

(c) int

(d) Tong

(e) All have their own print() method.

How can one access the standard error stream?

Select all valid answers.

(a) Itis accessed as a member of the class System.err.

(b) Itis accessed as a static variable named out in the class System.
(c) Itis accessed as a static variable named err in the class System.
(d) Itis accessed as a static variable named err in the class Runtime.
(e) Itis returned by a method in the class System.

Random Access for Files

The RandomAccessFile class implements direct access for files, i.e. bytes can be read
from or written to any specified location in a file. The RandomAccessFile class inher-
its directly from the Object class. It implements both the DataInput and DataOutput
interfaces, meaning that Java primitive values can be written and read from a
random access file. However, note that objects of the RandomAccessFile class cannot
be chained with streams.

A random access file must be created and assigned to a file, before it can be used.

RandomAccessFile(String name, String mode) throws IOException
RandomAccessFile(File file, String mode) throws IOException

The file is specified by a file name or by a File object. The mode argument must
be equal to either "r" (for reading) or "rw" (for both reading and writing), other-
wise an I1legalArgumentException is thrown. Note that opening the file for
writing does not reset the contents of the file. The file should have the access
specified in the constructor.

‘ java.lang.Object ‘

‘ java.io.RandomAccessFile |

Random Access File Inheritance Hierarchy

584

Figure 18.10

CHAPTER 18: FILES AND STREAMS

An I0Exception is thrown if an I/O error occurs, most notably when the mode
is "r" and the file does not exist. However, if the mode is "rw" and the file does
not exist, a new empty file is created. Regardless of the mode, if the file does
exist, its file pointer is set to the beginning of the file.

A SecurityException is thrown if the application does not have the necessary
access rights.

seek(0) —»
_B <4— seek(current - d)

. —]: -d bytes

<4— current = getFilePointer()

i +d bytes

<4— seek(current + d)
<4— seek(length(D-1) // last byte

Positioning the File Pointer for Direct File Access

A file pointer indicates the next location in the file where bytes can be read from or
written to. The current position of the file pointer can be obtained by using the
getFilePointer() method:

Tong getFilePointer() throws IOException

The number of bytes in the file can be obtained by using the Tength() method:

Tong Tength() throws IOException

The file pointer can be positioned using the seek() method:

void seek(Tong offset) throws IOException

The offset argument specifies the position from the beginning of the file, the
tirst byte being at position 0. The position will be the target of the next read or
write operation. See Figure 18.10.

When a random access file is no longer needed, it should be closed, to free the
resources:

void close() throws IOException

Example 18.6 illustrates usage of random access files. The program creates a file
and writes the byte representation of the squares of numbers from 0 to 9. It then
reads the squares of odd numbers back from the file, using direct access. The
squares are represented as int values. The file is then extended with the squares of
numbers from 10 to 19, and again the squares of odd numbers are read from the
file. In the method createFile(), the initial file is created using a RandomAccessFile

SECTION 18.5: RANDOM ACCESS FOR FILES 585

object with "rw" mode. The squares of odd numbers are read in the method
readFile() using a RandomAccessFile object with "r" mode, which opens the file for
direct read access. The numbers are read after the current file pointer value is incre-
mented with the size of an int value, thereby reading every other integer from the
file, as shown at (1).

The file is extended in the method extendFile(). The file is opened for direct read
and write access. The file pointer is first positioned at the end of the file, before
writing the new numbers as shown at (2).

The output from the program shows that only squares of odd numbers were read
from the file.

Example 18.6 Random Access File
import java.io.*;

public class RandomAccessDemo {
static String fileName = "new-numbers.data";

final static int INT_SIZE = 4;

pubTic static void main(String args[]) {
try {
RandomAccessDemo random = new RandomAccessDemo();
random.createFile();
random.readFile();
random.extendFile();
random.readFile();
} catch (IOException ex) {
System.err.println(ex);
}
}

// Create a file with squares of numbers from 0 to 9.
pubTlic void createFile() throws IOException {
File dataFile = new File(fileName);
RandomAccessFile outputFile = new RandomAccessFile(dataFile, "rw");
for (int i = 0; i < 10; i++)
outputFile.writeInt(i*i);
outputFile.close();
}

// Read every other number from the file i.e. the squares of odd numbers
public void readFile() throws IOException {
File dataFile = new File(fileName);
RandomAccessFile inputFile = new RandomAccessFile(dataFile, "r");
System.out.printin("Squares of odd numbers from the file:");
Tong length = inputFile.length();
for (int i = INT_SIZE; i < length; i += 2 * INT_SIZE) {
inputFile.seek(i); // (D
System.out.printin(inputFile.readInt());
}

inputFile.close();

586 CHAPTER 18: FILES AND STREAMS

// Extend the file with squares from 10 to 19.
pubTic void extendFile() throws IOException {
RandomAccessFile outputFile = new RandomAccessFile(fileName, "rw");
outputFile.seek(outputFile.length()); // (2)
for (int i = 10; i < 20; i++)
outputFile.writeInt(i*i);
outputFile.close();

}
Output from the program:

Squares of odd numbers from the file:
1

9

25

49

81

Squares of odd numbers from the file:
1

9

25

49

81

121

169

225

289

361

Review questions

18.14 Which of the these are valid access mode specifiers for a constructor of the
RandomAccessFile class?

Select all valid answers.

@) "

(b) *r"
() "rw"
(d) "w
(e) "wr"
(f) null

18.15 Which of the following method calls would, if executed on a RandomAccessFile
object, position the file pointer so that reading the last byte of the file could be done
with a single call to read()?

Select the one right answer.

(a) seek(length())
(b) seek(length()+1)

SECTION 18.6: OBJECT SERIALIZATION 587

18.6

Figure 18.11

(c) seek(length()+2)
(d) seek(length()-1)
(e) seek(length()-2)

Object Serialization

Object serialization allows an object to be transformed into a sequence of bytes that
can later be re-created (deserialized) into the original object. After deserialization the
object has the same state as it had when it was serialized, barring any data mem-
bers that were not serializable. Java provides this facility through the ObjectInput
and ObjectOutput interfaces, which allow the reading and writing of objects from
and to streams. These interfaces extend the DataInput and DataOutput interfaces
respectively.

The ObjectOutputStream class implements the ObjectOutput interface. This means
that the ObjectOutputStream class provides methods to write objects as well as bytes,
text and Java primitive values. Similarly ObjectInputStream class implements the
ObjectInput interface. This means that the ObjectInputStream class provides
methods to read objects as well as bytes, text and Java primitive values. Figure
18.11 gives an overview of how these classes can be chained and the methods they
provide.

Object of class

Object of class

ObjectOutputStream FileOutputStream

Object of class
FileInputStream

Object of class
ObjectInputStream

writeObject() readObject()
+ +
writeBoolean() readBoolean()
writeByte() readByte()
writeChar() objects objects readChar()
writeDouble() 5 readDouble()
writeFloat() readFloat()
writeInt() file readInt()
writeLong() readLong()
writeShort() readShort()
writeChars() readLine()
writeUTF(Q) readUTF()
Object Stream Chaining

ObjectOutputStream Class

The class ObjectOutputStream can write objects to any stream that is a subclass of the
OutputStream, for example to a file or a network connection (socket). An Object
OutputStream must be chained to an OutputStream, using the following constructor:

ObjectOutputStream(OQutputStream out) throws IOException

588

CHAPTER 18: FILES AND STREAMS

For example, in order to store objects in a file and thus provide persistent storage
for objects, an ObjectOutputStream can be chained to a FileOutputStream:

FileOutputStream outputFile = new FileOutputStream("obj-storage.dat");
ObjectOutputStream outputStream = new ObjectOutputStream(outputFile);

Objects can be written to the stream, using the writeObject() method of the
ObjectOutputStream class:

final void writeObject(Object obj) throws IOException

The writeObject() method can be used to write any object to a stream, including
strings and arrays, as long as the object supports the java.io.Serializable interface,
which is a marker interface with no methods. The String class and all array types
implement the Serializable interface. A serializable object can be any compound
object containing references to other objects, and all constituent objects that are
serializable are serialized recursively when the compound object is written out.
Each object is written out once during serialization. The following information is
included when an object is serialized:

¢ the class information needed to reconstruct the object.

¢ the values of all serializable non-transient and non-static members, including
those that are inherited.

ObjectInputStream Class

An ObjectInputStream is used to restore (deserialize) objects that have previously
been serialized using an ObjectOutputStream. An ObjectInputStream must be chained
to an InputStream, using the following constructor:

ObjectInputStream(InputStream in)
throws IOException, StreamCorruptedException

For example, in order to restore objects from a file, an ObjectInputStream can be
chained to a FileInputStream:

FileInputStream inputFile = new FileInputStream("obj-storage.dat");
ObjectInputStream inputStream = new ObjectInputStream(inputFile);

The method readObject() of the ObjectInputStream class is used to read an object
from the stream:

final Object readObject()
throws OptionalDataException, ClassNotFoundException, IOException

Note that the reference returned is of type Object regardless of the actual type of
the retrieved object, and can be cast to the desired type. Objects and values must
be read in the same order as when they were serialized.

SECTION 18.6: OBJECT SERIALIZATION 589

Example 18.7

Serializable, non-transient data members of an object, including those data
members that are inherited, are restored to the values they had at the time of serial-
ization. For compound objects containing references to other objects, the constit-
uent objects are read to re-create the whole object structure. In order to deserialize
objects, the appropriate classes must be available at runtime. Note that new objects
are created during deserialization, so that no existing objects are overwritten.

The class ObjectSerializationDemo in Example 18.7 serializes some objects in the
writeData() method at (1), and then deserializes them in the readData() method at
(2). The readdata() method also writes the data to the standard output stream.

The writeData() method writes the following: an array of strings (strArray), a Tong
value (num), an array of int values (intArray), and lastly a String object (commonStr)
which is shared with the array of strings, strArray. However, this shared String
object is actually only serialized once. Duplication is automatically avoided when
the same object is serialized several times. Note that the array elements and the
characters in a String object are not written out explicitly one by one. It is enough
to specify the object reference in the writeObject () method. The method also recurs-
ively goes through the array of strings, strArray, serializing each String object in the
array.

The method readData() deserializes the data in the order in which it was written.
An explicit cast is needed to convert the reference of a deserialized object to the
right type. Note that new objects are created by the readobject() method, and that
an object created during the deserialization process has the same state as the object
that was serialized.

Object Serialization

// Reading and Writing Objects
import java.io.*;

public class ObjectSerializationDemo {

void writeData() { // @)
try {
// Setup the Output stream
FileQutputStream outputFile = new FileOutputStream("obj-storage.dat");
ObjectOutputStream outputStream = new ObjectOutputStream(outputFile);

// Write data

String[] strArray = {"Seven", "Eight", "Six"};
Tong num = 2001;

int[] intArray = {1, 3, 1949};

String commonStr = strArray[2];

outputStream.writeObject(strArray);
outputStream.writeLong(num);
outputStream.writeObject(intArray);
outputStream.writeObject(commonStr);

590 CHAPTER 18: FILES AND STREAMS

// Close the stream
outputStream.flush();
outputStream.close();
} catch (IOException ex) {
System.err.printin(ex);
}
}

void readData() {

try {
// Setup the Input stream

/7 (@)

FileInputStream inputFile = new FileInputStream("obj-storage.dat");
ObjectInputStream inputStream = new ObjectInputStream(inputFile);

// Read data

String[] strArray = (String[]) inputStream.readObject();

Tong num = inputStream.readlLong();

int[] intArray = (int[]) inputStream.readObject();
String commonStr = (String) inputStream.readObject();

// Write data on standard output stream

for (int i = 0; i < strArray.length; i++) {

System.out.print(strArray[i] + "\t");
}
System.out.printin();
System.out.printin(num);

for (int i = 0; i < intArray.length; i++) {

System.out.print(intArray[i] + "\t");
}
System.out.printin();
System.out.printin(commonStr);

// Close the stream
inputStream.close();
} catch (Exception ex) {
System.err.printin(ex);
}
}

public static void main(String args[1) {

ObjectSerializationDemo demo = new ObjectSerializationDemo();

demo.writeData();
demo. readData();

}
}
Output from the program:
Seven Eight Six
2001
1 3 1949

Six

SECTION 18.6: OBJECT SERIALIZATION 591

18.16

18.17

Review questions

How many methods are defined in the Serializable interface?

Select the one right answer.

(a) None
(b) One
(c) Two
(d) Three
(e) None of the above.

Which of the following best describes the data an ObjectOutputStream can write?

Select the one right answer.

(a) Bytes and other primitive Java types.

(b) Object hierarchies.

(c) Object hierarchies and primitive Java types.
(d) Single objects.

(e) Single objects and primitive Java types.

Chapter summary

The following information was included in this chapter:

¢ Discussion of the File class, which provides an interface to the host file system.
¢ Byte streams, as represented by the InputStream and OutputStream classes.

¢ File streams, as represented by the FileInputStream and FileQutputStream
classes.

* Reading and writing Java primitive values using the DataInputStream and
DataOutputStream classes.

¢ Buffering byte streams for improved efficiency, using the BufferedInputStream
and BufferedOutputStream classes.

* Character streams, as represented by the Reader and Writer classes.

e Usage of character encodings, including Unicode and UTFS, by the Input
StreamReader and OutputStreamWriter classes.

¢ Reading and writing text files.

* Buffered character streams, as represented by the BufferedReader and Buffered
Writer classes.

e Terminal I/O using System.in, System.out and System.err.
¢ Random access files for direct access I/0.

¢ Object serialization: reading and writing objects.

592

18.1

CHAPTER 18: FILES AND STREAMS

Programming exercise

Write a program that reads text from a source using one encoding, and writes the
text to a destination using another encoding. The program should have four
optional arguments:

e First argument, if present, should specify the encoding of the source. The
default source encoding should be "8859_1".

* Second argument, if present, should specify the encoding of the destination.
The default destination encoding should be "UTF8".

¢ Third argument, if present, should specify a source file. If no argument is
given, the standard input should be used.

e Fourth argument, if present, should specify a destination file. If no argument is
given, the standard output should be used.

Use buffering, and read and write 512 bytes at a time to make the program efficient.

Errors should be written to the standard error stream.

