
20

2 Language Fundamentals

Exam Objectives

• Identify correctly constructed package declarations, import statements, class
declarations (of all forms, including inner classes), interface declarations and
implementations (for java.lang.Runnable or other interface described in the
test), method declarations (including the main method that is used to start
execution of a class), variable declarations and identifiers.
❍ For defining and using packages, see Section 4.5.

❍ For class declarations, see Section 4.2.

❍ For inner classes, see Chapter 7.

❍ For interface declarations and implementations, see Section 6.4.

❍ For method declarations, see Section 4.3.

• State the correspondence between index values in the argument array
passed to a main method and command line arguments.
❍ See Section 3.23.

• Identify all Java programming language keywords and correctly
constructed identifiers.

• State the effect of using a variable or array element of any kind, when no
explicit assignment has been made to it.
❍ For array elements, see Section 4.1.

• State the range of all primitive data types, and declare literal values for
String and all primitive types using all permitted formats, bases and
representations.

• Write code to implement listener classes and methods, and in listener
methods extract information from the event to determine the affected
component, mouse position, nature and time of the event. State the event
class name for any specified event listener interface in the java.awt.event
package.
❍ See Chapter 14.

SECTION 2.1: LANGUAGE BUILDING BLOCKS 21

2.1 Language Building Blocks

Like any other programming language, the Java programming language is defined
by grammar rules that specify how syntactically legal constructs can be formed using
the language elements, and by a semantic definition that specifies the meaning of
syntactically legal constructs.

Lexical Tokens

The low-level language elements are called lexical tokens (or just tokens for short)
and are the building blocks for more complex constructs. Identifiers, operators and
special characters are all examples of tokens that can be used to build high-level
constructs like expressions, statements, methods and classes.

Identifiers

A name in a program is called an identifier. Identifiers can be used to denote classes,
methods and variables.

In Java an identifier is composed of a sequence of characters, where each character
can be either a letter, a digit, a connecting punctuation (such as underscore _) or any
currency symbol (such as $, ¢, ¥ or £), and cannot start with a digit. Since Java
programs are written in the Unicode character set (p. 24), the definitions of letter
and digit are interpreted according to this character set.

Note that Java is case-sensitive, e.g. price and Price are two different identifiers.

Examples of legal identifiers:

number, Number, sum_$, bingo, $$_100, mål, grüß

Examples of illegal identifiers:

48chevy, all/clear, get-lost-fred

Keywords

Keywords are reserved identifiers that are predefined in the language, and cannot
be used to denote other entities. Incorrect usage results in compilation errors.

Keywords currently defined in the language are listed in Table 2.1. In addition,
three identifiers are reserved as predefined literals in the language: null, true, false
(Table 2.3). Keywords currently reserved, but not in use, are listed in Table 2.2. All

Supplementary Objectives

• State the wrapper classes for primitive data types.

22 CHAPTER 2: LANGUAGE FUNDAMENTALS

these reserved words cannot be used as identifiers. The index contains references
to relevant sections where currently defined keywords are explained.

Literals

A literal denotes a constant value. This value can be numerical (integer or floating-
point), character, boolean or a string. In addition there is the null literal (null)
which represents the null reference.

Integer Literals

Integer datatypes are comprised of the following primitive types: int, long, byte
and short.

Table 2.1 Keywords in Java

abstract do import public transient

boolean double instanceof return try

break else int short void

byte extends interface static volatile

case final long super while

catch finally native switch

char float new synchronized

class for package this

continue if private throw

default implements protected throws

Table 2.2 Reserved Keywords not currently in use

const goto

Table 2.3 Reserved Literals in Java

null true false

Table 2.4 Examples of Literals

Integer 2000 0 -7

Floating-point 3.14 -3.14 .5 0.5

Character 'a' 'A' '0' '*' ')'

Boolean true false

String "abba" "3.14" "for" "a piece of the action"

SECTION 2.1: LANGUAGE BUILDING BLOCKS 23

The default type of an integer literal is int, but it can be specified as long by
appending the suffix L (or l) to the integer value; for example 2000L, 0l. There is no
way to specify a short or a byte literal.

Octal Numbers and Hexadecimal Numbers

In addition to the decimal number system, integer literals can also be specified in
octal (base 8) and hexadecimal (base 16) number systems. Table 2.5 lists the integers
from 0 to 16, showing their equivalents in the octal and hexadecimal number
systems.

In Java, octal and hexadecimal numbers are specified with 0 and 0x prefix respect-
ively. Some examples of octal and hexadecimal literals are shown in Table 2.6.

Converting Octal and Hexadecimal Numbers to Decimals

Octal and hexadecimal numbers can be easily converted to their decimal equiva-
lents:

0132 = 1*82 + 3*81 + 2*80 = 64 + 24 + 2 = 90 (1) Octal -> Decimal

0x5a = 5*161 + a*160 = 80 + 10 = 90 (2) Hex -> Decimal

Table 2.5 Number Systems

Decimal numbers Octal numbers Hexadecimal numbers

0 0 0

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 10 8

9 11 9

10 12 a

11 13 b

12 14 c

13 15 d

14 16 e

15 17 f

16 20 10

24 CHAPTER 2: LANGUAGE FUNDAMENTALS

At (1) an octal number, expressed in base 8, is converted to its equivalent decimal
value. Each digit in the octal number contributes to the final decimal value by
virtue of its position, starting with position 0 (units) for the rightmost digit in the
number. Since hexadecimal numbers have the base 16, this value is used as the base
for converting from hexadecimal to decimal in (2).

Floating-point Literals

Floating-point data types come in two flavors: float or double.

The default type of a floating-point literal is double, but this can be explicitly
designated by appending the suffix D (or d) to the value. A floating-point literal can
also be specified to be a float by appending the suffix F (or f).

Floating-point literals can also be specified in scientific notation, for example 5E-1
is equivalent to 5*10-1, i.e. 0.5, where E (or e) stands for Exponent.

Boolean Literals

Boolean truth-values can be denoted using the reserved literals true or false.

Character Literals

A character literal is quoted in single-quotes (').

All characters are represented by 16-bit Unicode. The Unicode character set sub-
sumes the 8-bit ISO-Latin-1 and the 7-bit ASCII characters. In Table 2.7, note that
digits (1 to 9), upper-case letters (A to Z) and lower-case letters (a to z) have contig-
uous Unicode values.

Table 2.6 Examples of Octal and Hexadecimal Literals in Java

Decimal Octal Hexadecimal

8 010 0x8

10 012 0xa

16 020 0x10

27 033 0x1b

90 0132 0x5a

2147483647 017777777777 0x7fffffff

-2147483648 -017777777777 -0x7fffffff

SECTION 2.1: LANGUAGE BUILDING BLOCKS 25

Unicode Literals

Alternatively, a character literal can be defined by quoting the Unicode value, as
shown in Table 2.8.

Escape Sequences

Certain escape sequences define special character values as shown in Table 2.9. These
escape sequences can be single-quoted to define character literals. For example, the
character literals '\t' and '\u0009' are equivalent.

Table 2.7 Examples of Unicode Values

Character Literal Unicode value
(using hexadecimal digits)

Character

' ' \u0020 Space

'0' \u0030 0

'1' \u0031 1

'9' \u0039 9

'A' \u0041 A

'B' \u0042 B

'Z' \u005a Z

'a' \u0061 a

'b' \u0062 b

'z' \u007a z

‘Ñ’ \u0084 Ñ

‘å’ \u008c å

‘ß’ \u00a7 ß

Table 2.8 Expressing Character Literals as Unicode Values

Character Literal Unicode Literal Character

' ' '\u0020' Space

'0' '\u0030' 0

'A' '\u0041' A

26 CHAPTER 2: LANGUAGE FUNDAMENTALS

String Literals

A string literal is a sequence of characters, which must be quoted in quotation
marks and which must occur on a single line.

Escape sequences as well as Unicode values can appear in string literals:

"Here comes a tab.\t And here comes another one\u0009!" // (1)
"What's on the menu?" // (2)
"\"String literals are double-quoted.\"" // (3)

In (1), the tab character is specified using the escape sequence and the Unicode
value respectively. In (2), the single apostrophe need not be escaped in strings, but
it would be if specified as a character literal('\''). In (3), the double apostrophes in
the string must be escaped. Printing these strings would give the following result:

Here comes a tab. And here comes another one !
What's on the menu?
"String literals are double-quoted."

White Spaces

A white space is a sequence of spaces, tabs, form feeds and line terminator charac-
ters. Line terminators can be newline, carriage return or carriage return-newline
sequence in a Java source file.

A Java program is a free-format sequence of characters which is tokenized by the
compiler, i.e. broken into a stream of tokens for further analysis. Separators and
operators help to distinguish tokens, but sometimes white space has to be inserted
explicitly. For example, the identifier classRoom will be interpreted as a single token,
unless white space is inserted to distinguish the keyword class from the identifier
Room.

Table 2.9 Escape Sequences

Escape Sequence Unicode Value Character

\b \u0008 Backspace

\t \u0009 Horizontal tabulation

\n \u000a Linefeed

\f \u000c Form feed

\r \u000d Carriage return

\' \u0027 Apostrophe-quote

\" \u0022 Quotation mark

\\ \u005c Backslash

SECTION 2.1: LANGUAGE BUILDING BLOCKS 27

White space aids not only in separating tokens, but also in formatting the program
so that it is easy for humans to read. The compiler ignores the white spaces once
the tokens are identified.

Comments

A program can be documented by inserting comments at relevant places. These
comments are for documentation purposes and are ignored by the compiler.

Java provides three types of comments to document a program:

• A single-line comment

• A multiple-line comment

• A documentation (or Javadoc) comment

Regardless of the type of comment, they cannot be nested. The comment-start
sequences (//, /*, /**) are not treated differently from other characters when occur-
ring within comments.

Single-line Comment

All characters after the comment-start sequence // through to the end of the line
constitute a single-line comment.

// This comment ends at the end of this line.

Multiple-line Comment

A multiple-line comment, as the name suggests, can span several lines. Such a
comment starts with /* and ends with */.

/* A comment
on several
lines.

*/

Documentation Comment

A documentation comment is a special-purpose comment which when placed at
appropriate places in the program can be extracted and used by the javadoc utility
to generate HTML documentation for the program. Documentation comments are
usually placed in front of class, interface, method and variable definitions. Groups
of special tags can be used inside a documentation comment to provide more
specific information. Such a comment starts with /** and ends with */:

/**
* This class implements a gizmo
* @author K.A.M.
* @version 1.0
*/

For a detailed discussion of the javadoc utility, see Chapter 19.

28 CHAPTER 2: LANGUAGE FUNDAMENTALS

Review questions

2.1 Which of the following is not a legal identifier?

Select all valid answers.
(a) a2z
(b) ödipus
(c) 52pickup
(d) _class
(e) ca$h

2.2 Which one of these statements is correct?

Select the one right answer.
(a) new and delete are keywords in the Java language.
(b) try, catch and thrown are keywords in the Java language.
(c) static, unsigned and long are keywords in the Java language.
(d) exit, class and while are keywords in the Java language.
(e) return, goto and default are keywords in the Java language.
(f) for, while and next are keywords in the Java language.

2.3 Is this a complete and legal comment?

/* // */

Select the one right answer.
(a) No, the block comment (/* ... */) is not ended since the single-line comment

(// ...) comments out the closing part.
(b) It is a completely valid comment. The // part is ignored by the compiler.
(c) This combination of comments is illegal and the compiler will reject it.

2.2 Primitive Datatypes

Figure 2.1 gives an overview of the primitive datatypes in Java.

Primitive datatypes in Java can be divided into three main categories:

• Integral types consisting of integers and characters:
Integer datatypes are byte, short, int and long. They represent signed integers.

The character datatype is represented by the char type. It represents the symbols
in the Unicode character set, like letters, digits and special characters.

• Floating-point types:
This category includes float and double datatypes. They represent fractional
signed numbers.

SECTION 2.3: VARIABLE DECLARATIONS 29

• Boolean type:
The datatype boolean represents truth-values true and false.

Primitive data values are atomic and are not objects. Each primitive datatype
defines the range of values in the datatype, and operations on these values are
defined by special operators in the language.

Each primitive datatype has a corresponding wrapper class that can be used to
represent a primitive value as an object. Wrapper classes are discussed in Section
10.3.

2.3 Variable Declarations

Declaring, Initializing and Using Variables

Variables in Java come in three flavors:

• Instance variables that are members of a class and are instantiated for each object
of the class. In other words, all instances, i.e. objects, of the class will have their
own instances of these variables, which are local to the object. The values of
these variables at any given time constitute the state of the object.

• Static variables that are also members of a class, but these are not instantiated
for any object of the class and therefore belong only to the class (Section 4.10,
p. 121).

• Local variables (also called method automatic variables), which are declared in
methods and in blocks, are instantiated for each invocation of the method or
block. In Java, local variables must be declared before they can be used (Section
4.8, p. 113).

A variable stores values of datatypes. A variable has a name, a type, a particular size
and a value associated with it.

Figure 2.1 Primitive Datatypes in Java

30 CHAPTER 2: LANGUAGE FUNDAMENTALS

A variable declaration, in its simplest form, can be used to specify the name and
the type of variables. This implicitly determines their size and the values that can
be stored in them.

char a, b, c; // a, b and c are character variables.
double area; // area is a floating-point variable.
boolean flag; // flag is a boolean variable.

A declaration can also include initialization code to specify an initial value for the
variable:

int i = 10, // i is an int variable with initial value 10.
j = 101; // j is an int variable with initial value 101.

long big = 2147483648L; // big is a long variable with specified initial value.

In Java, variables can only store values of primitive datatypes and references to
objects.

Initializers for initializing member variables in objects, classes and interfaces are
discussed in Section 8.2.

Object Reference Variables

An object reference provides a handle for an object. References can be stored in vari-
ables.

In Java, reference variables must be declared and initialized before they can be
used. A reference variable has a name and a type or class associated with it. A
reference variable declaration, in its simplest form, can be used to specify the name
and the type. This determines what objects a reference variable can denote.

Pizza yummyPizza; // Variable yummyPizza can reference objects of class Pizza.
Hamburger bigOne, // Variable bigOne can reference objects of class Hamburger,

smallOne; // and so can variable smallOne.

It is important to note that the declarations above do not create objects of class
Pizza or Hamburger. They only create variables which can store references to objects
of these classes.

A declaration can also include an initializer to create an object that can be assigned
to the reference variable:

Pizza yummyPizza = new Pizza("Hot&Spicy"); // Declaration with initializer.

The reference variable yummyPizza can reference objects of class Pizza. The keyword
new, together with the constructor call Pizza("Hot&Spicy"), creates an object of class
Pizza. The reference to this object is assigned to the variable yummyPizza. The newly
created object of class Pizza can now be manipulated through the reference stored
in this variable.

SECTION 2.4: INTEGERS 31

2.4 Integers

Integer values are represented as signed with 2’s complement (Section 3.12, p. 64).

int i = -215; // int literal
int max = 0x7fffffff; // 2147483647 as hex int literal
int min = 0x80000000; // -2147483648 as hex int literal
long isbn = 05402202647L; // octal long literal
long phone = 55584152L; // long literal

2.5 Characters

The char datatype encompasses all the 65536 (216) characters in the Unicode char-
acter set as 16-bit values. The first 128 characters of the Unicode set are the same as
the 128 characters of the 7-bit ASCII character set, and the first 256 characters of the
Unicode set correspond to the 256 characters of the 8-bit ISO Latin-1 character set.
See Section 18.4 on page 570 for a discussion on character encodings.

2.6 Floating-point Numbers

Table 2.10 Range of Integer Values

Datatype Width
(bits)

Minimum value
MIN_VALUE

Maximum value
MAX_VALUE

byte 8 -27 (-128) 27-1 (+127)

short 16 -215 (-32768) 215-1 (+32767)

int 32 -231 (-2147483648) 231-1 (+2147483647)

long 64 -263 (-9223372036854775808L) 263-1 (+9223372036854775807L)

Table 2.11 Range of Character Values

Datatype Width (bits) Minimum Unicode value Maximum Unicode value

char 16 0x0 0xffff

Table 2.12 Range of Floating-point Values

Datatype Width
(bits)

Minimum value
MIN_VALUE

Maximum value
MAX_VALUE

float 32 1.40129846432481707e-45 3.40282346638528860e+38

double 64 4.94065645841246544e-324 1.79769313486231570e+308

32 CHAPTER 2: LANGUAGE FUNDAMENTALS

Floating-point numbers conform to the IEEE 754-1985 standard. Table 2.12 shows
the range of values for positive floating-point numbers, but these apply equally to
negative floating-point numbers with the '-' sign as prefix. Zero can be either 0.0
or -0.0.

Since the size for representation is finite, certain floating-point numbers can only
be represented as approximations.

float pi = 3.14159F;
double p = 314.159e-2;
double fraction = 1.0/3.0;

2.7 Booleans

The boolean datatype is used to represent logical values that can be either the literal
true or the literal false.

Boolean values are returned by all relational (Section 3.8), conditional (Section 3.11)
and boolean logical operators (Section 3.10), and are primarily used to govern the
flow of control during program execution.

Note that boolean values cannot be converted to other primitive data values, and
vice versa.

2.8 Wrapper Classes

The wrapper classes for primitive datatypes are found in the java.lang package,
and are summarized in Table 2.14. For each primitive datatype there is a corres-
ponding wrapper class to represent the values of the primitive datatype as an
object. These wrapper classes also define useful methods for manipulating both
primitive data values and objects. Wrapper classes are discussed in detail in Sec-
tion 10.3.

The wrapper classes for integers (Byte, Short, Integer, and Long) are subclasses of the
java.lang.Number class, as are the wrapper classes for floating-point numbers
(Float, Double).

Table 2.13 Boolean Values

Datatype Width True value/literal False value/literal

boolean not applicable true false

SECTION 2.8: WRAPPER CLASSES 33

Examples of Primitive Values as Objects:

Integer intObj = new Integer(2010);
Long longObj = new Long(2030L);

Float floatObj = new Float(3.14F);
Double doubleObj = new Double(3.14D);

Character charObj = new Character('\t');
Boolean boolObj = new Boolean(true);

Review questions

2.4 Which of the following does not denote a primitive data value in Java?

Select all valid answers.
(a) "t"
(b) ’k’
(c) 50.5F
(d) "hello"
(e) false

2.5 Which of the following lines are valid declarations?

Select all valid answers.
(a) char a = ’\u0061’;
(b) char \u0061 = ’a’;
(c) ch\u0061r a = ’a’;

Table 2.14 Summary of Primitive Datatypes

Datatype Width (bits) Minimum value,
Maximum value

Wrapper Class

boolean not applicable true, false (no ordering) Boolean

byte 8 -27, 27-1 Byte

short 16 -215, 215-1 Short

char 16 0x0, 0xffff Character

int 32 -231, 231-1 Integer

long 64 -263, 263-1 Long

float 32 ±1.40129846432481707e-45,

±3.40282346638528860e+38

Float

double 64 ±4.94065645841246544e-324,

±1.79769313486231570e+308

Double

34 CHAPTER 2: LANGUAGE FUNDAMENTALS

2.6 Which integral type in Java has the exact range from -2147483648 (-231) to
2147483647 (231-1), inclusive?

Select the one right answer.
(a) Type byte
(b) Type short
(c) Type int
(d) Type long
(e) Type char

2.9 Initial Values for Variables

Default Values for Member Variables

Default values for primitive datatypes are listed in Table 2.15.

Static variables in a class are initialized to default values when the class is loaded,
if they are not explicitly initialized.

Instance variables are also initialized to default values when the class is instanti-
ated, if they are not explicitly initialized.

Note that a reference variable is initialized with the value null.

Example 2.1 Default Values for Member Variables

class Light {
// Static variable
static int counter; // Default value 0 when class is loaded.

// Instance variables
int noOfWatts = 100; // Explicitly set to 100.
boolean indicator; // Implicitly set to default value false.
String location; // Implicitly set to default value null.

Table 2.15 Default Values

Datatype Default value

boolean false

char '\u0000'

Integer (byte, short, int, long) 0

Floating-point (float, double) +0.0F or +0.0D

Object reference null

SECTION 2.9: INITIAL VALUES FOR VARIABLES 35

public static void main(String args[]) {
Light bulb = new Light();
System.out.println("Static member counter: " + Light.counter);
System.out.println("Instance member noOfWatts: " + bulb.noOfWatts);
System.out.println("Instance member indicator: " + bulb.indicator);
System.out.println("Instance member location: " + bulb.location);

}
}

Output from the program:

Static member counter: 0
Instance member noOfWatts: 100
Instance member indicator: false
Instance member location: null

Example 2.1 illustrates default initialization of member variables. Note that static
variables are initialized when the class is loaded the first time, and instance vari-
ables are initialized accordingly in every object created from the class Light.

Initializing Local Variables of Primitive Datatypes

Local variables are not initialized when they are instantiated at method invocation.
The compiler javac reports use of uninitialized local variables.

Example 2.2 Flagging Uninitialized Local Variables of Primitive Datatypes

public class TooSmartClass {
public static void main(String args[]) {

int weight = 10, thePrice; // local variables

if (weight < 10) thePrice = 100;
if (weight > 50) thePrice = 5000;
if (weight >= 10) thePrice = weight*10; // Always executed.

System.out.println("The price is: " + thePrice); // (1)
}

}

In Example 2.2, the compiler complains that the local variable thePrice in the
println statement at (1) may not be initialized. However, from the program it can
be seen that the local variable thePrice gets the value 100 in the last if-statement
before it is used in the println statement. The compiler does not perform a rigorous
analysis of the program in this regard. The program will compile correctly if the
variable was initialized in the declaration, or if an unconditional assignment is
made to the variable in the method.

36 CHAPTER 2: LANGUAGE FUNDAMENTALS

Initializing Local Reference Variables

Note that the same initialization rules that apply to local variables of primitive
datatypes also apply to local reference variables.

Example 2.3 Flagging Uninitialized Local Reference Variables

public class VerySmartClass {
public static void main(String args[]) {

String oneLongString; // local reference variable

System.out.println("The string length is: " + oneLongString.length());
}

}

In Example 2.3, the compiler complains that the local variable oneLongString in the
println statement may not be initialized. Objects should be created and their state
initialized appropriately (for example, in a constructor) before use. If the variable
oneLongString is set to the value null, the program will compile. However, at
runtime, a NullPointerException will be thrown since the variable oneLongString will
not reference any object. The golden rule is to ensure that a reference variable
denotes an object before invoking methods via the reference, i.e. it is not null.

Arrays and their default values are discussed in Section 4.1 on page 88.

Review questions

2.7 Given the following code, which statement is true?

int a, b;
b = 5;

Select the one right answer.
(a) Variable a is not declared.
(b) Variable b is not declared.
(c) Variable a is declared but not initialized.
(d) Variable b is declared but not initialized.
(e) Variable b is initialized but not declared.

2.8 In which of these variable declarations will the variable remain uninitialized
unless explicitly initialized?

Select all valid answers.
(a) Declaration of an instance variable of type int.
(b) Declaration of a static class variable of type float.
(c) Declaration of a local variable of type float.
(d) Declaration of a static class variable of type Object.
(e) Declaration of an instance variable of type int[].

SECTION 2.10: JAVA SOURCE FILE STRUCTURE 37

2.10 Java Source File Structure

A Java source file has the following elements, specified in the following order.

1. An optional package definition to specify a package name. The classes and
interfaces defined in the file will belong to this package. If omitted, the
definitions will belong to the default package. Packages are discussed in Section
4.5.

2. Zero or more import statements. The import statement is discussed in Section
4.5 on page 107.

3. Any number of class and interface definitions. Technically a source file need
not have any such definitions, but that is hardly useful. The classes and inter-
faces can be defined in any order. Note that JDK imposes the restriction that
only one public class definition per source file can be defined, and it requires
that the file name match this public class. If the public class name is NewApp
then the file name must be NewApp.java. Classes are discussed in Section 4.2,
and interfaces are discussed in Section 6.4.

The above structure is depicted by a skeletal source file in Figure 2.2.

Figure 2.2 Java Source File Structure

// Filename: NewApp.java

// PART 1: (OPTIONAL)

// Package name

package com.company.project.fragilePackage;

// PART 2: (ZERO OR MORE)

// Packages used

import java.util.*;

import java.io.*;

// PART 3: (ZERO OR MORE)

// Definitions of classes and interfaces (in any order)

public class NewApp { }

class C1 { }

interface I1 { }

// ...

class Cn { }

interface Im { }

// end of file

38 CHAPTER 2: LANGUAGE FUNDAMENTALS

Review questions

2.9 What will be the result of attempting to compile this class?

import java.util.*;

package com.acme.toolkit;

public class AClass {
public Other anInstance;

}

class Other {
int value;

}

Select the one right answer.
(a) The class will fail to compile, since the class Other has not yet been declared

when referenced in class AClass.
(b) The class will fail to compile, since import statements must never be at the

very top of a file.
(c) The class will fail to compile, since the package declaration can never occur

after an import statement.
(d) The class will fail to compile, since the class Other must be defined in a file

called Other.java.
(e) The class will fail to compile, since the class Other must be declared public.
(f) The class will compile without errors.

2.10 Is an empty file a valid source file?

Answer yes or no.

2.11 The main() Method

The Java interpreter executes a method called main in the class specified on the
command line. This is the standard way in which a standalone application is
invoked. The main() method has the following signature:

public static void main(String args[])

The command

java TooSmartClass

results in a call to the TooSmartClass.main() method. Note that any class can have a
main() method. Only the main() method of the class specified to the Java interpreter
is executed.

SECTION 2.11: THE MAIN() METHOD 39

The main() Method Modifiers

The main() method always has public accessibility so that the interpreter can call it
(Section 4.9, p. 115). It is a static method belonging to the class (Section 4.10,
p. 121). It does not return a value, i.e. it is declared void (Section 5.4, p. 148). It
always has an array of String objects as its only formal parameter. This array con-
tains any arguments passed to the program on the command line (Section 3.23,
p. 82). All this adds up to the following definition of the main() method:

...
public static void main(String args[]) {

// ...
}
...

The requirements above do not exclude specification of additional modifiers (Sec-
tion 4.10, p. 121).

Review questions

2.11 Which of these are valid declarations of the main() method?

Select all valid answers.
(a) static void main(String args[]) { /* ... */ }
(b) public static int main(String args[]) { /* ... */ }
(c) public static void main(String args) { /* ... */ }
(d) final static public void main(String[] arguments) { /* ... */ }
(e) public int main(Strings args[], int argc) { /* ... */ }
(f) public void main(String args[]) { /* ... */ }

Chapter summary

The following information was included in this chapter:

• Explanation of identifiers, keywords, literals, white spaces, and comments.

• Explanation of all the primitive datatypes in Java.

• Declaration, initialization and usage of variables, including reference variables.

• Usage of default values for member variables.

• Structure of a Java source file.

• Declaration of main() method.

40 CHAPTER 2: LANGUAGE FUNDAMENTALS

Programming exercises

2.1 The following program has several errors. Modify it so that it will compile and run
without errors.

import java.util.*;

package com.acme;

public class Exercise1 {
int counter;

void main(String args[]) {
Exercise1 instance = new Exercise1();
instance.go();

}

public void go() {
int sum;
int i = 0;
while (i<100) {

if (i == 0) sum = 100;
sum = sum + i;
i++;

}
System.out.println(sum);

}
}

2.2 The following program has several errors. Modify it so that it will compile and run
without errors.

// Filename: Temperature.java
PUBLIC CLASS temperature {

PUBLIC void main(string args) {
double fahrenheit = 62.5;
/ Convert /
double celsius = f2c(fahrenheit);
System.out.println(fahrenheit + ’F = ’ + celsius + ’C’);

}

double f2c(float fahr) {
RETURN (fahr - 32) * 5 / 9;

}
}

