
ATIJ More Servlets 1/61

More Servlets

Advanced Topics in Java

Khalid Azim Mughal
khalid@ii.uib.no

http://www.ii.uib.no/~khalid/atij/

Version date: 2006-09-04

ATIJ More Servlets 2/61

Overview
• Redirecting Requests

• Sending Status Codes

• Sharing Data and Scopes: Session, Context and Request

• Session Management: HttpSession
– Session Support Using Cookies

• Example: Implementing a Multi-servlet Web Application

• Servlets and Threads

• Multi-Thread and Single-Thread Models

• URL Pattern Mapping
– Default and Custom URLs

• Servlet Development and Debugging: Handling Exceptions

• Secure Servlets: FORM-based Authentication

• More Cookies

• Logging

• Creating WARs

ATIJ More Servlets 3/61

Redirecting Requests
• If a servlet for some reason cannot handle the user request it can redirect the request.

• The HttpServletResponse interface provides the following method to redirect requests:

• The browser on receiving the redirection will automatically retrieve the resource
denoted by the URL.
– Note the redirection is exposed to the client in the response. It is not transparent.

• In order to redirect, the response should not already have been committed.
If so, a IllegalStateException will be thrown.

• See SimpleHoroServletWithRedirection.java.

void sendRedirect(String location)
 throws IOException

Sends a temporary redirect response using the
specified redirect location URL.
The URL can be a relative URL which the servlet
container converts to a absolute URL.
If the response has already been committed, this
method throws an IllegalStateException.
After using this method, the response should be
considered to be committed and should not be
modified.

ATIJ More Servlets 4/61

Sending HTTP Status Codes
• The HttpServletResponse interface provides constants for the HTTP status codes:

HttpServletResponse.SC_OK // HTTP Status-Code 200: OK
HttpServletResponse.SC_NOT_FOUND // HTTP Status-Code 404: Not Found
HttpServletResponse.SC_NOT_IMPLEMENTED // HTTP Status-Code 501: Not Implemented

• The HttpServletResponse interface provides the following methods for a servlet to
send HTTP status codes as a response:

• Normally the browser creates a server error page with appropriate message using the
status code.

void sendError(int sc)
 throws IOException
void sendError(int sc,
 String msg)
 throws IOException

Sends the specified HTTP status code as response.
If the response has already been committed, this
method throws an IllegalStateException.
After using this method, the response should be
considered to be committed and should not be
modified.

ATIJ More Servlets 5/61

Using Redirection and Status Codes

ATIJ More Servlets 6/61

• Servlet source code: SimpleHoroServletWithRedirection.java.

• Shows use of indirection and status codes by sendRedirect() and sendError()
methods, respectively.
public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // Get the sign.
 String sign = request.getParameter("sign").toLowerCase();
 // Check if redirection is necessary.
 if (sign.equals("joke")) {
 response.sendRedirect("http://www.comedycentral.com/jokes/index.jhtml");
 return; // No further processing

 // Send status code, if this choice is not implemented.
 if (sign.equals("dare")) {
 response.sendError(
 HttpServletResponse.SC_NOT_IMPLEMENTED,
 "Sorry. Please try another day!");
 return; // No further processing
 }
 ...
}

ATIJ More Servlets 7/61

Sharing Data in a Web Application
• In order to share data in a web application, the following scopes can be utilized

depending on the business logic:
– Session Scope (HttpSession) defines data which is visible only in a session

associated with a particular client.
– Context Scope (ServletContext) defines data which is visible to any client during

the life time of the web application.
– Request Scope (HttpServletRequest) defines data which is visible only as along as

the request is being serviced.

• Examples:
– If items in a shopping cart for a client should only be visible in the session

associated with the client and not in any other sessions, then these items can be
handled using session scope.

– If business logic requires that a list of users for a web application should be visible
to all servlets in the application for authentication purposes, then the list can reside
in the servlet context associated with the application, i.e. it will have context scope.

– If it is desired that specific information about a particular item is only valid during
servicing of a request for this item and should not be available in requests for other
items, then this information can be stored in the request, i.e. it will have request
scope.

ATIJ More Servlets 8/61

Sharing Data using Attributes
• In each of the three scopes (session, context, request), information can be stored and

retrieved using attributes. An attribute has a name and a value, and defines an entry:
<String attributeName, Object attributeValue>.

• Each scope (HttpSession, ServletContext, HttpServletRequest) provides the
following methods to store and retrieve attributes:

void setAttribute(String name,
 Object value)

Binds an object to this scope, using the name
specified, i.e. the scope stores the entry <name,
value>.
If an object of the same name is already bound to
the scope, the old object is replaced.

Object removeAttribute(String name) Removes the object bound with the specified
name from this scope.
If the scope does not have an object bound with
the specified name, this method does nothing.

Object getAttribute(String name) Returns the object bound with the specified name
in this scope, or null if no object is bound under
the name.

Enumeration getAttributeNames() Returns an Enumeration of String objects
containing the names of all the objects bound to
this scope.

ATIJ More Servlets 9/61

Attribute Scope Creation and Termination
• From the view point of the servlet:

Scope: Creation Termination

Session When the getSession()
method is called by the servlet.

When the invalidate() method is
called by the servlet or the session is
timed out by the server.

Context When the application is loaded. When the application is terminated.

Request When the service() method is
invoked on the servlet with the
request object as parameter.

When the service() method has
terminated, i.e. the servlet has
handled the request.

ATIJ More Servlets 10/61

Sessions
• The HTTP protocol is memoryless, i.e. it is stateless.

The server cannot remember information from one request to the next from a client.

• A session provides the means for tracking the interaction between a particular client
and the web application.
– A session is a repository of all pertinent information about a sequence of

continuous requests and responses between the server and a particular client.

• A session scenario proceeds as follows:
– A request from a client results in the creation of a session on the sever-side.

The server also assigns a unique session ID which identifies the session.
This session ID is included in all responses to the client.

– Any subsequent requests from this client contain the session ID which the server
uses to identify the session associated with this client.

– The session terminates either if a client action ends the session or the server detects
a period of inactivity of predefined length on the part of the client.

– After session termination, all interaction information about the user and the session
is expunged.

ATIJ More Servlets 11/61

The HttpSession Interface
• A session implements the javax.servlet.http.HttpSession interface.

• A session is obtained by invoking one of the following methods on a
HttpServletRequest object:

• The association of a client to a particular session is done transparently by the server.
No extra code is necessary apart from calling one of the above methods.

HttpSession getSession(
 boolean instantiate)

Returns the current session associated with the
request if there is one. Otherwise creates one if
argument instantiate is true.

HttpSession getSession() This method is equivalent to getSession(true).

ATIJ More Servlets 12/61

Using the Session as a Repository: Session Scope
• When a client issues a request, the session for this client is identified by the server and

the attributes in this session are available for handling the request.
– A session is thus accessible to the thread servicing the request.
– We say that the attributes have session scope, i.e. they are visible to any thread

servicing a request that belongs to the session.
– Session scope implies that the session is available to any servlet executed by the

thread as part of handling the request from the client associated with the session.

• Typical example of using a session is a shopping cart.
– The business logic of a shopping cart can be implemented using a session.
– A session is created when the client starts shopping and expunged when the order

is finally placed.

ATIJ More Servlets 13/61

Functionality of the HttpSession Interface
• The following method can be used to obtain various information about a session:

boolean isNew() Returns true if the client does not yet know about
the session or if the client chooses not to join the
session.

String getId() Returns a string containing the unique identifier
assigned to this session.
The identifier is assigned by the servlet container
and is implementation dependent.

long getCreationTime() Returns the time when this session was created,
measured in milliseconds since midnight January
1, 1970 GMT.

long getLastAccessedTime() Returns the last time the client sent a request
associated with this session, as the number of
milliseconds since midnight January 1, 1970 GMT,
and marked by the time the container received the
request.

void invalidate() Invalidates this session, then unbinds any objects
bound to it.

ATIJ More Servlets 14/61

• The following methods can be used to set and get the time-out value of a session:

int getMaxInactiveInterval() Returns the maximum time interval, in seconds,
that the servlet container will keep this session
open between client accesses.

void setMaxInactiveInterval(
 int interval)

Specifies the time, in seconds, between client
requests before the servlet container will
invalidate this session.
A negative time indicates the session should
never time-out.

ATIJ More Servlets 15/61

Demonstrating Session Scope
• Servlet SessionExample presents a form to register attributes, i.e. <name, value>

entries.

• The first request to the servlet creates a session.

• Clicking the Add button adds the attribute to the current session, and also lists all the
attributes in this session.

• Clicking the Clear button invalidates the current session. A new session is not
created until the user registers an attribute.

ATIJ More Servlets 16/61

New Session (Start Screen)

continued on next screen

ATIJ More Servlets 17/61

"Joined" Session: Subsequent Requests

continued on next screen

ATIJ More Servlets 18/61

Session Support Using Cookies
• The servlet SessionExample shows how sessions are supported using cookies.

• The server container sends the session ID to the client in a Set-Cookie header of the
response:
set-cookie: JSESSIONID=B0A1814A4AE32F7F1D7963FCD590542B;...

• The client sends the session ID in subsequent requests to the server in the Cookie
header of a request:
cookie: JSESSIONID=B0A1814A4AE32F7F1D7963FCD590542B;...

• The session ID, given by the name JSESSIONID, is used by the servlet container to
retrieve and associate the correct session with the client.

• Note that session identification and association is transparent to the servlet.

• Also note that cookies must be enabled in the browser, i.e. that the browser is willing
to accept cookies.

• In case cookies are not enabled in the browser, alternate methods, such as URL
rewriting, can be considered.

ATIJ More Servlets 19/61

The States of a Session: New, Joined and Invalidated
• See SessionExample.java.

public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
{ ...
 HttpSession session = request.getSession();
 ...
 if (command == null) // Sufficient to check for null.
 // Not sufficient to just call session.isNew().
 // List the data in the session.
 listSessionData(session, out); // Should be empty.
 else if (command.equalsIgnoreCase("Add")) { // Subsequent requests (joined).
 if (!dataName.equals("") && !dataValue.equals(""))
 // Add parameters to the session.
 session.setAttribute(dataName, dataValue);
 // List the data in the session.
 listSessionData(session, out);
 } else if (command.equalsIgnoreCase("Clear"))
 session.invalidate(); // Invalidated.
 ...
}

ATIJ More Servlets 20/61

Example of a Multi-servlet Web Application
• Document root of the application: myMultiServletApp.

• The application allows the client to add attributes to the current session (the Add
Attribute button).

• It lists the attributes in the current session, together with the grand total of all
attributes that were ever added in all sessions up to present time (the Show All
Attributes/Grand Total button).
– The statistics page allows the client to navigate to the registration page (the

Continue button).

• The client can terminate the current session (the Clear Session button).

ATIJ More Servlets 21/61

Multi-servlet Application: Main Pages

Registration Page

Statistics Page

ATIJ More Servlets 22/61

Multi-servlet Application: Implementation

ATIJ More Servlets 23/61

Multi-servlet Application Structure
• The application consists of three servlets (RequestHandler.java, ShowData.java,

ClearSession.java) and one HTML document (index.html).

• The implementation demonstrates following aspects:
– HTML form created dynamically by a servlet (ShowData.java) and also retrieved

from a HTML file (index.html).
– demonstrates session, context and request scopes.
– demonstrates redirection of requests.

• See the figure on the next page for an overview of control flow in the application.

ATIJ More Servlets 24/61

Multi-servlet Application: Control Flow

ClearSession.java

index.html

...
action="RequestHandler"
...

RequestHandler.java

...
response.sendRedirect(formLocation);
...
response.sendRedirect("ShowData");
...
response.sendRedirect("ClearSession");
...

...
response.sendRedirect("index.html");
...

ShowData.java

...

...
action="index.html"
...

HTML form

ATIJ More Servlets 25/61

The Registration Page
• The HTML form defines the main page of the application (file index.html).

<form action="RequestHandler" method="post">
 Attribute Name:
 <input type="text" size="20" name="dataname"/>

 Attribute Value:
 <input type="text" size="20" name="datavalue"/>

 <input type="submit" name="submitCmd" value="Add Attribute"/>
 <input type="submit" name="submitCmd"
 value="Show All Attributes/Grand Total"/>
 <input type="submit" name="submitCmdv value="Clear Session">
</form>

Servlet called Using POST method

Defines three commands

Defines two text fields

ATIJ More Servlets 26/61

The Main Servlet: RequestHandler

• The RequestHandler servlet creates a new session if necessary (doPost() method).

 HttpSession session = request.getSession();

• The RequestHandler servlet reads the HTML form parameters (doPost() method).

 String dataName = request.getParameter("dataname");
 String dataValue = request.getParameter("datavalue");
 String command = request.getParameter("submitCmd");

ATIJ More Servlets 27/61

• The RequestHandler servlet interprets the HTML form parameters (doPost()
method).

 String formLocation = "index.html";
 if (command == null) // (1)
 // Redirect to the HTML form.
 response.sendRedirect(formLocation);
 else if (command.startsWith("Add")) { // (2)
 if (!dataName.equals("") && !dataValue.equals("")) {
 // Add parameters to the session.
 session.setAttribute(dataName, dataValue);
 // Update grand total.
 updateGrandTotal();
 }
 // Redirect to the HTML form.
 response.sendRedirect(formLocation);
 } else if (command.startsWith("Show")) // (3)
 // Redirect to the ShowData servlet.
 response.sendRedirect("ShowData");
 else if (command.startsWith("Clear")) // (4)
 // Redirect to the ClearSession servlet.
 response.sendRedirect("ClearSession");

ATIJ More Servlets 28/61

• The RequestHandler servlet stores "global" information (i.e. the company name) in
the servlet context so that other servlets can also share this information.
– This information is set only once in the init() method when the servlet is loaded.

 public void init()
 {
 // Set the company name in the servlet context.
 ServletContext context = getServletContext();
 context.setAttribute("companyName",
 "WeWillSellYouAnything.com");
 }

ATIJ More Servlets 29/61

• The RequestHandler servlet updates the attribute count (i.e. the grand total) in the
servlet context so that other servlets can also share this information.
– The update is made thread-safe by synchronizing on the servlet context.

 private void updateGrandTotal()
 {
 ServletContext context = getServletContext();
 synchronized(context) { // Drastic but thread-safe.
 String attributeName = "grandTotal";
 String attributeValue =
 (String) context.getAttribute(attributeName);
 if (attributeValue != null) { // Update
 context.setAttribute(attributeName,
 String.valueOf(Integer.parseInt(attributeValue) +
 1));
 } else // First time.
 context.setAttribute(attributeName, "1");
 }
 }

ATIJ More Servlets 30/61

The Statistics Page: ShowData Servlet
• The doPost() method of the ShowData servlet creates a response, including

appropriate information.

 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 { ...
 String title = getCompanyName(); // Get the name from the servlet context.
 ...
 // Get the session, if there is one. Does not create one if there is none.
 HttpSession session = request.getSession(false);
 if (session != null) {
 ServletUtil.echoSessionInfo(session, out);
 // List data in the session.
 listSessionData(session, out);
 }
 // Send grand total
 sendGrandTotal(out);
 // Render the form.
 renderForm(response, out);
 ...
 }

ATIJ More Servlets 31/61

• The ShowData servlet retrieves the attributes from the current session and includes it in
the response.
 private void listSessionData(HttpSession session, PrintWriter out)
 throws IOException, ServletException
 { int total = 0; String attributes ="";
 Enumeration names = session.getAttributeNames();
 while (names.hasMoreElements()) {
 String name = (String) names.nextElement();
 String value = session.getAttribute(name).toString();
 attributes += (name + ": " + value + "
");
 total++;
 }
 if (total == 0)
 out.println("<h3>No data in the current session.</h3>");
 else {
 out.println("<h3>Data in the Current Session:</h3>");
 out.println("<p>" + attributes + "</p>");
 out.println("<h4>Total number in current session: " +
 total + "</h3>");
 }
 }

ATIJ More Servlets 32/61

• The ShowData servlet retrieves the company name from the servlet context and includes it
in the response.
 private String getCompanyName()
 {
 ServletContext context = getServletContext();
 String attributeName = "companyName";
 return (String) context.getAttribute(attributeName);
 }

• The ShowData servlet retrieves the grand attribute total from the servlet context and
includes it in the response.

 private void sendGrandTotal(PrintWriter out)
 { ServletContext context = getServletContext();
 String attributeName = "grandTotal";
 String attributeValue =
 (String) context.getAttribute(attributeName); // Cast necessary
 String total = "0";
 if (attributeValue != null)
 total = attributeValue;

 out.println("<h3>Grand Total: " + total + "</h3>");
 }

ATIJ More Servlets 33/61

• The ShowData servlet generates a HTML form (as part of the response) to allow the
client to continue with attribute registration.

 private void renderForm(HttpServletResponse response,
 PrintWriter out)
 throws IOException, ServletException
 {
 out.println("<p>");
 out.print("<form action=\"index.html\""); // Go to form
 out.println("method=\"get\">");
 out.println(
 "<input type=\"submit\" name=\"command\" value=\"Continue\"/>");
 out.println("</form>");
 out.println("</p>");
 }

ATIJ More Servlets 34/61

Session Invalidation: ClearSession Servlet
• The ClearSession servlet invalidates the current session, if one exists.

– It does not creates a new session.

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 // Get the current session, if there is one.
 HttpSession session = request.getSession(false);
 // Invalidate session.
 if (session != null)
 session.invalidate();
 // Redirect to the HTML form.
 response.sendRedirect("index.html");
 }

ATIJ More Servlets 35/61

More Servlet Utilities: ServletUtil

• The static method echoSessionInfo() includes pertinent information about the
current session in a response:

 public static void echoSessionInfo(HttpSession session,
 PrintWriter out)
 throws ServletException, IOException {
 out.println("<h3>Session Info</h3>");
 out.println("<p>");
 out.println("Session ID: "+ session.getId() + "
");
 out.println("Whether the session is new: "+ session.isNew() +
 "
");
 out.println("Creation Time: "+
 new Date(session.getCreationTime()) + "
");
 out.println("When Last Accessed: " +
 new Date(session.getLastAccessedTime()) + "
");
 out.println("</p>");
 }

ATIJ More Servlets 36/61

Multi-thread Servlet Model

Request Dispatcher

servlet_A

servlet_B

Worker Thread Pool

service()

service()

service()

Request for servlet_A

Request for servlet_B

Request for servlet_B

Servlet Container

Servlet Instances

thread_1

thread_2

thread_3

thread_4

Only one instance of a servlet, and
several requests can execute concurrently in this servlet instance.

ATIJ More Servlets 37/61

Remarks on Multi-thread Servlet Model
• The multi-thread servlet model is the default mode of execution.

• As is the case with any Java application in a multi-thread environment, the servlet
must take the necessary steps to ensure data integrity.

• Fields in a servlet are not thread-safe, therefore access to them must be synchronized.
– However, local variables are thread-safe as a new copy is created on each method

invocation in a thread.

• Attributes in a context are not thread-safe, as any number of threads (requests) can be
accessing them.

• Attributes in a session are also not thread-safe, as a client can send simultaneous
requests from different browsers, thus accessing the same session.

• Access to shared data in a session or a context must be synchronized either on the
data or on the session/context.

• Attributes in a request are always thread-safe as the request object passed to the
service() method is isolated from other request objects in other invocations of the
service() method.
– It is not a good idea to "cache" a request object.

ATIJ More Servlets 38/61

Thread-safety and Variables Summary

Thread-safety and Attribute Scope Summary

Variables In Multi-thread
Servlet Model

Local variables Thread-safe

Instance variables Not thread-safe

Static variables Not thread-safe

Scope
In Multi-
thread Servlet
Model

Solution

Context Not thread-safe Synchronize on shared data in the
context.

Session Not thread-safe Synchronize on shared data and/
or on the session.

Request Thread-safe OK

ATIJ More Servlets 39/61

The /servlet/ Pattern in URLs to invoke Servlets
• A servlet container has a default servlet with the registered name invoker. The

/servlet/ pattern in a URL maps to this servlet which invokes the real servlet
designated in the URL.

Examples of using the /servlet/ pattern in URLs.

Assume that the following servlet element has been specified in the web.xml file of
the web application:
 <servlet>
 <servlet-name>mySimpleServlet</servlet-name>
 <servlet-class>StopTheWorld</servlet-class>
 </servlet>

• Default URL of the servlet can be used to invoke the servlet (i.e. the class name
specified in <servlet-class> element):
http://localhost:8080/myExamples/servlet/StopTheWorld

• Registered name of the servlet can be used to invoke the servlet (i.e. the servlet name
specified in <servlet-name> element):
http://localhost:8080/myExamples/servlet/mySimpleServlet

• Using the /servlet/ pattern does not require a servlet-mapping in the web.xml file
of the web application.

ATIJ More Servlets 40/61

Note that the servlet can always be invoked using customized URLs based on the URL
pattern specified in the servlet-mapping element in the web.xml file:

 <servlet-mapping>
 <servlet-name>mySimpleServlet</servlet-name>
 <url-pattern>/SimpleServlet/*</url-pattern>
 </servlet-mapping>

• Customized URLs of the servlet (in <url-pattern> element) can be used to invoke the
servlet:
http://localhost:8080/myExamples/SimpleServlet
http://localhost:8080/myExamples/SimpleServlet/
http://localhost:8080/myExamples/SimpleServlet/more

• The /servlet/ pattern with either the default URL or the registered name only works
in invoking the servlet if the invoker servlet is enabled in the servlet container.

• Customized URLs work as long as an appropriate <servlet-mapping> element is
specified, and do not depend on whether the invoker servlet is enabled or not.

• The invoker servlet of the servlet container can be disabled by commenting out the
following entry in the <tomcat-home>/conf/web.xml file:
 <servlet-mapping>
 <servlet-name>invoker</servlet-name>
 <url-pattern>/servlet/*</url-pattern>
 </servlet-mapping>

ATIJ More Servlets 41/61

Logging
• Printing messages or debugging information on the console using System.out or

System.err is not always the best solution.
– This information is not persistent unless captured somehow, and is certainly not

recommended in a production environment.

• Logging is a better solution, which can also, for example, be used for monitoring the
performance of web applications.

• The information is written to a file (called the servlet log file) whose name and type is
specific to the servlet container.
– Log files are usually created in the <tom-cat home directory>/logs directory.
– For example, Tomcat logs information about servlet deployment in log files.
– Configuration of log files for different web applications can be done by providing

specific information in the <tom-cat home directory>/conf/server.xml file.

• The abstract GenericServlet class and the ServletContext interface define the
following two methods for logging.

void log(String msg) Logs the specified message to the servlet log file.

void log(String msg,
 Throwable exception)

Logs the specified message and a stack trace to
the servlet log file.

ATIJ More Servlets 42/61

– The methods in the GenericServlet class prepend the servlet name to the logged
information.

• Example: Logging commands in the RequestHandler servlet.

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 { ...
 String command = request.getParameter("submitCmd");
 ...
 log("command: " + command);
 ...
 }

Contents of log file localhost_log.2003-10-12.txt:
...
2003-10-12 11:50:01 RequestHandler: command: Add Attribute
2003-10-12 11:50:04 RequestHandler: command: Add Attribute
2003-10-12 11:50:08 RequestHandler: command: Add Attribute
2003-10-12 11:50:09 RequestHandler: command: Show All Attributes/Grand Total
...

ATIJ More Servlets 43/61

Handling Exceptions
• Two common scenarios where an exception is thrown and caught in a catch block.

– In the catch block, the action is to send an error message as response:

 try { ... }
 catch (SomeException se) {
 response.sendError(APPROPRIATE_HTTP_CODE, "explanation");
 // Note that the response has now been committed.
 }

– In the catch block, the action is to log the exception:

 try { ... }
 catch (SomeException se) {
 log("Exception occurred", se); // stack trace will be logged.
 }

ATIJ More Servlets 44/61

Defining Exceptions
• Overriding the doHttpRequestMethodName() methods does not allow new checked

exception types to be specified in the throws clause unless these checked exception
types are subclasses of ServletException or IOException.

class MajorIOException extends IOException {
 MajorIOException(String message) { super(message); }
}

public class ClearSession extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws MajorIOException
 { ...
 throw new MajorIOException("Serious I/O Problem");
 ...
 }
}

• There are more sophisticated mechanisms for handling exceptions declaratively, but
we will not discuss them here.

ATIJ More Servlets 45/61

More Cookies
• Some typical uses of cookies:

– Identification of a client during a session
– Remembering username and password
– Customizing responses, for example, to provide focused advertising

• Some Problems with Cookies
– Cookies can be a privacy problem, not a security problem.
– Some privacy problems:

• actions from previous session can be remembered
• personal information can be linked to previous actions
• information can be shared with others through willing third party
• stored sensitive information can present a problem

ATIJ More Servlets 46/61

• Creating and Adding Cookies to the Response
– The addCookie() method of the HttpServletResponse interface is used to add a

cookie to the response.
– An appropriate HTTP Set-Cookie response header is created.
– Note that the cookie has to be added to the response each time if the client is to return it in

the next request.

 Cookie uidCookie = new Cookie("user", "uid999"); // Create a Cookie.
 uidCookie.setMaxAge(60*60*24*365); // 1 year
 response.addCookie(uidCookie);

– Before adding a cookie to the response, various characteristics of the cookie can be
tailored using setAttribute() methods, where Attribute is the name of the attribute
you want to specify. There are also corresponding getAttribute() methods to
retrieve the attribute value.

void setComment(String purpose) Specifies a comment that describes a cookie's
purpose.

void setDomain(String pattern) Specifies the domain within which this cookie should
be presented.

void setMaxAge(int expiry) Sets the maximum age of the cookie in seconds.

ATIJ More Servlets 47/61

– For new cookies, the name is supplied in the constructor call. There is no
setName() method. For cookies in the response, the getName() method can be
used (see below).

– For new cookies, the value is supplied in the constructor call. For cookies from the
client, the getValue() method can be used to extract the value from the cookie (see
below).

void setPath(String uri) Specifies a path for the cookie to which the client
should return the cookie.

void setSecure(boolean flag) Indicates to the browser whether the cookie should
only be sent using a secure protocol, such as HTTPS
or SSL.

void setValue(String newValue) Assigns a new value to a cookie after the cookie is
created.

void setVersion(int v) Sets the version of the cookie protocol this cookie
complies with.

ATIJ More Servlets 48/61

• Reading Cookies from the Request
– The client sends back cookies in each request.
– The cookies can be obtained from the request by calling the getCookies() method

of the HttpServletRequest interface. The method returns an array of Cookie
objects corresponding to the cookies in the request. If there are no cookies in the
request, the method returns null.

 Cookie[] cookies = request.getCookies(); // Retrieve all cookies from request

– Looking up the value of a particular cookie can be done in a loop:

 String cookieValue;
 if (cookies != null) {
 for(int i = 0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 String cookieName = cookie.getName();
 if (cookieName.equals(requiredCookieName)) {
 cookieValue = cookie.getValue();
 break;
 }
 }
 }

ATIJ More Servlets 49/61

Example: Using Cookies
• The application submits a search to Google and remembers the last search.

Refresh first!

ATIJ More Servlets 50/61

• The servlet SearchEngineGUI creates the search form (doPost() method).
 ...
 Cookie[] cookies = request.getCookies();
 ...
 out.println(
 "<html><head><title>Search Form</title></head>\n" +
 "<head><title>Search Form</title></head>\n" +
 "<body>\n" +
 "<h1>Search Form</h1>\n" +
 "<form name=\"searchForm\"\n" +
 "action=\"SearchHandler\"\n" +
 "method=\"POST\">\n" +
 "<h2>Specify new keywords:</h2>\n" +
 "<p><input type=\"text\" name=\"searchCriteria\"/>"+
 "</p>\n" +
 "<p><input type=\"submit\" name=\"submitCmd\"" +
 " value=\"Go get it!\"/>" +
 "</p>\n" +
 "</form>\n" +
 getPreviousSearchCriteria(cookies) +
 "</body>\n" +
 "</html>\n");
 ...

ATIJ More Servlets 51/61

• The servlet SearchEngineGUI looks up the last search criteria.

 private String getPreviousSearchCriteria(Cookie[] cookies) {
 String cookieValue = "";
 if (cookies != null) {
 for(int i = 0; i < cookies.length; i++) {
 Cookie cookie = cookies[i];
 String cookieName = cookie.getName();
 if (cookieName.equals("previousSearchCriteria")) {
 cookieValue = cookie.getValue();
 break;
 }
 }
 }
 if (cookieValue.equals(""))
 return "<h3>No previous search.</h3>\n";
 else
 return "<h3>I know what you searched for last time: " +
 cookieValue + "</h3>\n";
 }
}

ATIJ More Servlets 52/61

• The servlet SearchHandler creates the cookie to save the search criteria and redirects
the request to Google (via the browser) (See the doGet() method).

 // Read the form parameter.
 String searchCriteria = request.getParameter("searchCriteria");
 // Check if current search is valid.
 if ((searchCriteria == null) ||
 (searchCriteria.length() == 0)) {
 response.sendError(HttpServletResponse.SC_NOT_FOUND,
 "Missing search string.");
 return;
 }
 // Create a new cookie for this search.
 Cookie previousSearchCookie = new Cookie("previousSearchCriteria",
 searchCriteria);
 // Add it to the response.
 response.addCookie(previousSearchCookie);

 // Set up the uri and redirect.
 String uri = "http://www.google.com/" + "search?q=" +
 URLEncoder.encode(searchCriteria, "UTF8");
 response.sendRedirect(uri);

ATIJ More Servlets 53/61

Secure Servlets: FORM-based Authentication
• Example shows FORM-based authentication for a servlet (mySecureSearchEngine).

Ok

Not ok

Not logged on.

ATIJ More Servlets 54/61

Procedure for FORM-based Authentication
1. Define users (their names, passwords and roles), who can access the servlet, in

<tomcat-home>\conf\tomcat-users.xml:

<tomcat-users>
 ...
 <role rolename="role1"/>
 ...
 <user username="tom" password="tom" roles="role1"/>
 <user username="dick" password="dick" roles="role1"/>
 <user username="harry" password="harry" roles="role1"/>
</tomcat-users>

ATIJ More Servlets 55/61

2. Define the HTML FORM for username and password (loginform.html).

3. Define the HTML error page which will be shown in case the login fails
(errorpage.html).

<html><head><title>Authorization Failure</title></head>
<body>
<h4>Sorry. Could not log in.

 Contact your administrator.</h4>
</body>
</html>

<html><head><title>Login</title></head>
<body>
<h4>Please login first:</h4>
<form method="post" action="j_security_check">
 Username: <input type="text" name="j_username"/>

 Password: <input type="password" name="j_password"/>

 <input type="submit" value="login"/>
</form>
</body>
</html>

Predefined value of action
attribute.
Predefined value of the
name attribute in two text
fields which represent the
username and the
password, respectively.
No servlet is defined to
process the form.

ATIJ More Servlets 56/61

4. Rest of the setup for authentication is specified (in the indicated order) in the
deployment descriptor (web.xml) of the web application.

• Define the servlets in the web application in the normal way using the servlet
element in the web.xml file:

<web-app ...>
 ...
 <servlet>
 <servlet-name>SearchEngineGUI</servlet-name>
 <servlet-class>SearchEngineGUI</servlet-class>
 </servlet>

 <servlet>
 <servlet-name>SearchHandler</servlet-name>
 <servlet-class>SearchHandler</servlet-class>
 </servlet>
 ...
</web-app>

ATIJ More Servlets 57/61

• Define the security constraint for the secured servlet in the deployment descriptor
(web.xml) of the web application:
<web-app ...>
 ...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>DeclarativeSecurityTestI</web-resource-name>
 <url-pattern>/servlet/SearchEngineGUI</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>role1</role-name>
 </auth-constraint>

 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 ...
</web-app>

A collection
of resources
to which the
security
constraint
apply.
Only users
who have the
specified role
can access the
resource.
Specifies the
integrity and
confidentiality
of data
transmission.

ATIJ More Servlets 58/61

– Each web-resource-collection element specifies a collection of resources to
which the security constraint applies.
• The url-pattern element specifies the URL pattern through which the resource

will be accessed.
• The http-method elements specify the HTTP methods that the security

constraint will apply to.
– The auth-constraint element specifies the roles that can access the resources.

• The roles specified must be a subset of the roles specified in the security-role
element (see below).

• Only users who have this role specified in the server user list can access the
resources.

– The user-data-constraint element specifies any specific integrity and
confidentiality guarantees of the data transmitted (NONE, INTEGRAL,
CONFIDENTIAL).

ATIJ More Servlets 59/61

• Specification of the authentication mechanism in the login-config element.

– The auth-method element specifies the authentication method which can be BASIC,
DIGEST, CLIENT-CERT, or FORM.
• If the BASIC authentication method is specified, the browser uses predefined GUI

dialog box for login and a predefined error page to report any problems with
logging in.

Method used for
authentication
The form for logging in.

The error page to show if
login fails.

<web-app ...>
 ...
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/loginform.html</form-login-page>
 <form-error-page>/errorpage.html</form-error-page>
 </form-login-config>
 </login-config>
 ...
</web-app>

ATIJ More Servlets 60/61

• Each role that is legal for the users of this application is specified in a security-role
element.

– A role specified in a auth-constraint element must be one specified in a
security-role element

Role for users of this application

<web-app ...>
 ...
 <security-role>
 <role-name>role1</role-name>
 </security-role>
 ...
</web-app>

ATIJ More Servlets 61/61

Creating WARs: Web Application Deployment
• Using a WAR (Web ARchive) file simplifies web application deployment from

development environment to deployment environment.

• All the resources which comprise the application can be bundled in a WAR file.

• A WAR file is a JAR (Java ARchive) file, but it has the extension .war instead of the
.jar extension, and created using the jar utility.

• A server treats a WAR file in a special way when such a file is placed in the webapps
directory.
– When the server starts up, the WAR file is automatically unpacked by the server

and its contents installed in a directory with the same filename as the WAR file
without the extension.

• Deploying a WAR file for a web application is a two-step process:
– Create a WAR file for the file structure under the document root of the web

application (here called myWebApp):

 tomcat-home/webapps/myWebApp>jar -cvf myWebApp.war *

– Ship the myWebApp.war file, which can be placed under the webapps directory to
deploy the web application.

