
ATIJ RQs + PEs: Stream-based Implementation of Application Protocols 1/5

RQs + PEs:
Stream-based Implementation

 of 
Application Protocols

Advanced Topics in Java 

Khalid Azim Mughal
khalid@ii.uib.no

http://www.ii.uib.no/~khalid/atij/

Version date: 2006-09-04



ATIJ RQs + PEs: Stream-based Implementation of Application Protocols 2/5

REVIEW QUESTIONS - Application Protocols
1. Explain what is the TCP/IP stack.

2. What is HTTP (HyperText Transmission Protocol) primarily used for? How do a 
client and a server utilize the protocol? 

3. Explain the terms URI, URL and URN. Name the common components of a URL.

4. What is a cookie and what is it’s purpose?

5. What is CGI and what is it’s purpose?

6. What are the main components of a HTTP message?

7. Explain the format of a HTTP request, distinguishing between GET, HEAD and POST 
methods.

8. Name three HTTP request headers and their purpose.

9. Explain the format of a HTTP response, distinguishing between it’s main 
components.

10. Explain why HTTP is a line-based, stateless protocol.

11. Name three HTTP response header fields and their purpose.

12. Name three HTTP entity header fields and their purpose.

13. Sketch the socket-based communication between a client and a server. Pay attention 



ATIJ RQs + PEs: Stream-based Implementation of Application Protocols 3/5

to how they use input and output streams to communicate.

14. What is the purpose of encoding and decoding URLs?



ATIJ RQs + PEs: Stream-based Implementation of Application Protocols 4/5

PROGRAMMING EXERCISES - Application Protocols
1. We will implement a chat program where a client and a server communicate with 

each other by passing HTTP messages to each other. The client sends a HTTP request 
and then waits for a HTTP response. The server sends a HTTP response and then 
waits for a new HTTP request. The communication is strictly HTTP request/
response-based.

Write a client (HttpClient) and a server (HttpServer) that transmit and receive lines 
of text packaged in HTTP messages. Both have a simple GUI to enter a line of text. 
For example, when the client enters a line by hitting RETURN, the line of text is sent to 
the server in a HTTP request. The client then waits for the server to send a HTTP 
response. 

However, it is the client that initiates the communication by sending a HTTP request 
to the server. It should be possible for either of them to terminate the communication 
by entering an empty line in the GUI.

The GUI is continuously updated to show the dialog between the client and the 
server. See illustration of client GUI and server GUI interaction on the next page.

You can modify the source code files (NewTCPclient.java, NewTCPserver.java, 
NewTCPgui.java) to create a chat program which uses HTTP messages.



ATIJ RQs + PEs: Stream-based Implementation of Application Protocols 5/5

The client has sent the following 
requests so far: 1, 3, 5, 7.

Note that client cannot send a new 
request — it is waiting for a 
response and it’s message field is 
not editable.

The server has sent the following 
responses so far: 2, 4, 6.

Note that it is the server’s turn to 
send a response.


