
– I must say, cracking is much like acupuncture. It’s
about finding the right spots to insert some NOPs.

– Håvard Sørbø. 5
Modularising Cross-Cutting

Transformation Concerns

Properties such as logging, persistence, debugging, tracing, distribution, performance
monitoring and exception handling occur in most programming paradigms and are
normally very difficult or even impossible to modularise with traditional modularisa-
tion mechanisms because they are cross-cutting. Recently, aspect-oriented program-
ming has enjoyed recognition as a practical solution for separating these concerns.

This chapter describes an extension to the Stratego term rewriting language for
capturing such properties. It demonstrates how this aspect extension offers a concise,
practical and adaptable solution for dealing with unanticipated algorithm extension
for forward data-flow propagation and dynamic type checking of terms. The chapter
describes and discusses some of the challenges faced when designing and implement-
ing an aspect extension for and in a rule-based term rewriting system.

The aspect language described in this chapter was first presented in the paper
“Combining Aspect-Oriented and Strategic Programming” written together with Eelco
Visser [KV05].

5.1 Introduction

Good modularisation is a key issue in design, development and maintenance of soft-
ware. Software should be structured close to how one wants to think about it [Par72]
by cleanly decomposing the properties of the problem domain into basic function
units, or components. These can be mapped directly to language constructs such as
data types and functions. Not all properties of a problem decompose easily into com-
ponents. Some turn out to be non-functional and these frequently cross-cut the mod-
ule structure. Such properties are called aspects. The goal of aspect-oriented software
development [KLM+97] is the modularisation of cross-cutting concerns. By making
aspects part of the programming language, one is left with greater flexibility in modu-
larising software. The cross-cutting properties need no longer be scattered across the
components. Using aspects, they may now be declared entirely in separate units, one

91

92 Chapter 5. Modularising Cross-Cutting Transformation Concerns

for each property. Examples of general aspects include security, logging, persistence,
debugging, tracing, distribution, performance monitoring, exception handling, ori-
gin tracking and traceability. All these occur in the context of rule-based program-
ming in addition to some which are domain-specific such as rewriting with layout.
Existing literature predominantly discusses aspect-based solutions to these problems
for object-oriented languages and the documentation of paradigm-specific issues and
deployed solutions for the rule-based languages is scarce.

This chapter describes the design and use of aspects in the context of rule-based
programming. It introduces the AspectStratego language which enables modular dec-
laration of many separate cross-cutting concerns encountered in rule-based transfor-
mation languages. A discussion of the joinpoint model underlying AspectStratego
is provided. In addition, the practical usefulness of the extension is demonstrated
by three small case studies motivated by the problem of constant propagation. The
contributions of this chapter include:

1. The description of a novel aspect language extension implemented for and in
a rule-based programming language.

2. An example of its suitability for adding flexible dynamic type checking of terms
in a precise and concise way.

3. A demonstration of its application to unanticipated algorithm extension by
showing how aspects can help in generalising a constant propagation strategy
to a generic and adaptable forward propagation scheme using principles of
invasive software composition [Ass03].

This chapter is organised as follows. The next section describes the running
example of this chapter: a simple constant propagator. Section 5.3 introduces an
extension to Stratego which allows separate declaration of cross-cutting concerns and
shows how this extension facilitates declarative code composition. Section 5.4 dis-
cusses three cases where the aspect extension is found to be highly useful: logging,
type checking of terms and algorithm adaptation. Section 5.6 discusses previous,
related and future work. Section 5.7 summarises.

5.2 Constant Propagation

The code in Figure 5.1 shows an excerpt of a strategy for propagating constants ap-
plicable to an imperative language with assignment, While and If constructs. The
example in Figure 5.2 illustrates the application of the constant propagator to a short
program.

5.2. Constant Propagation 93

1 module prop-
onst
2 signature
3
onstru
tors
4 Var : Id ! Var
5 : Var ! Exp
6 Int : String ! Exp
7 Plus : Exp � Exp ! Exp
8 If : Exp � Exp � Exp ! Exp
9 While : Exp � Exp ! Exp

10 Assign : Var � Exp ! Exp
11 rules
12 EvalBinOp : Plus(Int(i), Int(j)) ! Int(k)
13 where <addS>(i,j)) k
14 EvalIf : If(Int("0"), e1, e2) ! e2
15 EvalIf : If(Int(v), e1, e2) ! e1 where <gtS> (v, "0")
16 strategies
17 prop-
onst =
18 PropConst <+ prop-
onst-assign <+ prop-
onst-if
19 <+ prop-
onst-while <+ (all(prop-
onst) ; try(EvalBinOp))
20 prop-
onst-assign =
21 Assign(?Var(x), prop-
onst) e)
22 ; if <is-value> e then rules(PropConst : Var(x) ! e)
23 else rules(PropConst :- Var(x)) end
24 prop-
onst-if =
25 If(prop-
onst, id, id)
26 ; (EvalIf ; prop-
onst <+
27 (If(id, prop-
onst, id) /PropConst\ If(id, id, prop-
onst)))
28 prop-
onst-while =
29 ?While(e1, e2)
30 ; (While(prop-
onst, id)
31 ; EvalWhile
32 <+ (/PropConstn* While(prop-
onst, prop-
onst)))

Figure 5.1: An excerpt of a Stratego program defining an intraprocedural conditional
constant propagation transformation strategy for a small, imperative language.

94 Chapter 5. Modularising Cross-Cutting Transformation Concernsx := 1 + 1 ;if x then y := 1else y := 0 fi) x := 2 ; y := 1
Figure 5.2: Example showing the constant propagation strategy.

The principle of the constant propagation algorithm is straightforward: A traver-
sal through the abstract syntax tree (AST) of a program is done. Whenever an assign-
ment of a constant value to a variable is encountered, this is recorded using a dynamic
rewrite rule set named PropConst. If the variable is subsequently assigned a non-
constant value, the corresponding rule is deleted. This is done in prop-
onst-assign
defined on lines 19–22. The process results in rule set mapping variable names to
their constant values.

The dynamic rule set is subsequently used to replace every variable with its value
where this is known. This replacement opens up for the elementary evaluation rulesEvalBinOp and EvalIf defined on lines 12–14. These rules simplify some expressions
involving Plus and If, respectively.

The prop-
onst strategy on lines 16–18 is the top level driving strategy which
takes care of recursively applying the constant propagation throughout a term. It
works by calling the rule PropConst to replaces any variable term for which the value
is known to be constant. If the PropConst rule fails, the current term is not a variable
with a known constant. In that case, the strategy prop-
onst-assign is attempted.
If the prop-
onst-assign is applied to an Assign term and the right hand side of the
assignment evaluates to a constant, a new PropConst rule is generated. If the right
hand side of the assignment is not a constant, any previously defined PropConst rule
for this variable is removed since its value is no longer known. Should the strategyprop-
onst-assign fail, two other strategies are tried in order, namely prop-
onst-if
and prop-
onst-while. These are described below. If all strategies fail, prop-
onst falls
back to applying itself recursively to all subterms of the current term and finally try
to apply the EvalBinOp rule (lines 12–13) on the result. This ensures that all language
constructs, such as Plus, are traversed.

The prop-
onst-if strategy on lines 23–26 matches an If construct using the
congruence operator while at the same time applying prop-
onst to the condition
expression. If the congruence succeeds, the prop-
onst-if strategy proceeds by ei-
ther (1) simplifying the If using the EvalIf rule and then recursively continuing
the prop-
onst algorithm on the result, or (2) applying prop-
onst recursively to the
then-branch and else-branch in turn, keeping only PropConst rules which are valid
after both branches, i.e. those rules that are defined and equal in both branches.

Recall that the dynamic rule intersection operator s1 /PropConstn s2 used on line
26 applies both strategies s1 then s2 to the current term in sequence while distribut-

5.3. AspectStratego 95

ing (clones of) the same rule set for the dynamic rule PropConst to both strategies.
Afterwards, only those rules which are equal in both branches are kept. A similar
explanation applies to prop-
onst-while, defined on lines 27–31, where the fixpoint
operator /PropConstn* s is used. This operator applies s repeatedly until a stable rule
set is obtained. Each iteration will apply s to the original term and the result of the
final iteration is kept as the new term.

Generalisation and Adaptation

As written, the algorithm already has some extension points the user of the con-
stant propagator may plug into without modifying the algorithm itself. For example,
adding another evaluation rule for EvalIf that deals with non-zero constants is triv-
ially possible. There are also other extensions and adaptations users may want to
apply to this algorithm which are impossible to do without reimplementing the al-
gorithm from scratch. Section 5.4.1 demonstrates that pervasive logging is one such
example. Using aspects, it is possible to extend the code with logging capabilities
to record all rule invocations. Section 5.4.2 shows another problematic case where
pervasive (dynamic) type checking of terms to ensure the result is a correct term is
desired. This is also handled easily with aspects. Finally, Section 5.4.3 shows how the
algorithm can be refactored into a more generalised schema for forward propagating
data-flow transformations. All extensions and adaptations are performed with the
help of the aspect extension to the Stratego language described next.

5.3 AspectStratego

AspectStratego is an extension to the Stratego language which addresses the problem
of declaring cross-cutting concerns in a modular way. The language extension bears
some resemblance to the AspectJ language [KHH+01].

The reader is not assumed be familiar with AspectJ, but for readers familiar with
AspectJ, some differences and similarities are remarked: Much of the terminology
in this chapter is inherited from AspectJ. The joinpoint model of Aspect Stratego
is somewhat similar to that of AspectJ, but has been adapted to fit better within
the paradigm of rule-based rewriting systems. Both AspectJ and AspectStratego pro-
vide the programmer with expressions called pointcuts. In AspectStratego these are
boolean predicates on the program structure unlike the set theoretic approach taken
in AspectJ. Pointcuts are used to pick out well-defined points in the program execu-
tion, called joinpoints, and are available in advice to pinpoint places to insert code
before, after or around. The inserted code is declared as part of the advice. Advice are
in turn gathered in named entities called aspects. The act of composing a program
with its aspects is called weaving.

96 Chapter 5. Modularising Cross-Cutting Transformation Concerns

1 module prop-
onst-logger
2 imports logging prop-
onst
3 aspe
ts
4 point
ut
all = strategies(prop-
onst)
5 aspe
t prop-
onst-logger =
6 before :
all = log(|Debug, "Invoking
onstant propagator")

Figure 5.3: Aspect extending the constant propagation module with logging. Thelog is from logging module, part of the Stratego library.

Figure 5.3 shows how one may use an aspect to extend the constant propagator
with trivial logging. It declares a pointcut,
all, on line 4 that identifies all strate-
gies named prop-
onst. The aspect on line 5–6 declares that before every joinpoint
identified by
all, the code fragment log(...) shall be inserted.

Section 5.4 will define the give a more advanced example of logging. Next, the
new terminology and language features introduced in this example will be defined.

5.3.1 Joinpoints

A joinpoint is a well-defined point in the program execution through which the con-
trol flow passes twice: once on the way into the sub-computation identified by the
joinpoint and once on the way out. The purpose of the aspect language is allowing
the programmer to precisely and succinctly identify and manipulate joinpoints.

5.3.2 Pointcuts

A pointcut is a boolean expression over a fixed set of predicates, defined in Table 5.1,
and the operators ; (and), + (or) and not. Pointcuts are used to specify a set of
joinpoints. There are two kinds of predicates in a pointcut: joinpoint predicates
and joinpoint context predicates 1. A joinpoint predicate is a pattern on the Stratego
program structure used to pick out a set of joinpoints. A joinpoint context predicate is
a predicate on the runtime environment which can be used in a pointcut to restrict
the set of joinpoints matched by a joinpoint predicate.

Table 5.1 lists the supported joinpoint and joinpoint context predicates. A point-
cut declaration is a named and optionally parametrised pointcut intended to allow
easy sharing of identical pointcuts between advice. The parameters are used to
expose details about the pointcut to the advice. The declaration point
ut
all =strategies(prop-
onst) from Figure 5.3 shows a parameterless pointcut named
all

1This terminology and implementation differs from the AspectJ language which provides primitive
pointcut designators instead, see [KHH+01].

5.3. AspectStratego 97

Joinpoint Matches
alls(name-expr) n) strategy or rule invocationsstrategies(name-expr) n) strategy executionsrules(name-expr) n) rule executionsmat
hes(pattern) t) pattern matchesbuilds(pattern) t) term constructionsfails explicit invocations of fail

Joinpoint context Matcheswithin
ode(name-expr) n) joinpoints within a strategy or ruleargs(n0,n1,...,nn) joinpoints with given aritylhs(pattern) t) rule left-hand sidesrhs(pattern) t) rule right-hand sides

Advice Action on joinpointbefore run advice beforeafter run advice afterafter fail run after, iff code in pointcut failedafter su

eed run after, iff code in pointcut succeededaround run before and after

Cloning Action on declaration
lone kind name-expr) name-expr clone and rename a named declaration

Table 5.1: Synopsis of the AspectStratego joinpoints, joinpoint context predicates
and advice variants. The name-expr can either be a complete identifier name, such
as EvalBinOp, a prefix, such as prop-*, a suffix, such as *-assign or an infix, such as*-
onst-*. The result of a name-expr is a string, and may optionally be assigned to a
variable using the => x syntax. The kind is either of the keywords strategies, rules
or overlays. The pattern is an ordinary Stratego pattern, which may contain both
variables and wildcards. When a name-expr is used for cloning, the literal parts may
be replaced. I.e.,
lone *-prop-* as *-myprop-* will rewrite the middle part of the
identifier.

98 Chapter 5. Modularising Cross-Cutting Transformation Concerns

with the joinpoint predicate strategies and no joinpoint context predicates. It picks
out all definitions of strategies named prop-
onst.

5.3.3 Advice

An advice is a body of code associated with a pointcut. There are three main kinds of
advice: before, after and around. The different forms of advice specify where the body
of advice code should be placed relative to the joinpoint matched by its pointcut.
Table 5.1 lists the available advice types for AspectStratego. The declaration on line
6 in Figure 5.3 is an example of a before advice. The strategy log is provided by the
library, and will be discussed later. This code will be inserted – weaved – into theprop-
onst strategy from Figure 5.1 as follows:prop-
onst = log(|Debug, "Invoking
onst...."); (PropConst <+ prop-
onst-assign <+ prop-
onst-if<+ prop-
onst-while <+ (all(prop-
onst) ; try(EvalBinOp)))
Composing code by inserting advice like this opens up the possibility for manipulat-
ing the current term. Recall that all strategies and strategy expressions in Stratego are
applied to the current term unless they are specifically applied to a variable or pattern
with the application operator (<s> x). Exactly how the strategy or rule invocations
inside the advice body changes the current term can be controlled in two ways: the
advice body is a strategy expression and may be wrapped (entirely or partially) in awhere to control how and if the current term is modified. In the above case, log only
takes term arguments and is designed to leave the current term untouched, makingwhere superfluous.

This manipulation of the current term turns out to be very useful in around advice
where the implementer of the advice has full control over how the pointcut should be
executed. The placeholder strategy pro
eed is available for this purpose. By placing
the pro
eed within a try or as part of a choice (+), it is trivially possible to add
failure handling policies. The flexibility of around allows the aspect programmer to
completely override and replace the implementation of existing strategies and rules
by not invoking pro
eed at all. This can even be applied to strategies found in the
Stratego standard library.

The usefulness of current term manipulation stems from terms normally being
passed via the current term from one strategy to another, not as term arguments. E.g.,
in the following example, strat2 will be applied to the current term left behind bystrat1:strat1 ; strat2
An alternative, more imperative formulation of the same would be:strat1) r ; strat2(|r)

5.3. AspectStratego 99

This is not within the style of Stratego as it becomes cumbersome to use when one
replaces sequential composition (;) with the other strategy combinators, such as left
choice (<+). Current term manipulation is thus mostly analogous to manipulating
input parameters and return values in AspectJ.

A note about rule and strategy priority is warranted. Aspects may be used to
modify an existing rule (or strategy), but there is no mechanism by which aspects can
directly change the priority of a rule or an aspect.

5.3.4 Cloning

A very useful feature provided by AspectStratego is the ability to clone existing named
definitions, such as rules, strategies or overlays. For example, the declaration below
will clone all the strategies starting with the name prop-* and, for each, create an iden-
tical copy with the my-prop-* name prefix (the matching value of * will be expanded,
of course).
lone strategies prop-*) my-prop-*
The flat structure of Stratego, with only one global name space for all definitions,
makes cloning straightforward. It is allowed, but generally discouraged, to give the
clone a name which conflicts with existing definitions. In Stratego, multiple strategies
or rules may have the same name, so cloning with a conflicting name must remain
allowed – it is sometimes what the developer intends.

Using the cloning feature, it becomes possible to rewrite the pointcuts to ap-
ply to clones strategies, i.e. to my-prop instead of prop. Cloning enables aspects to
instantiate multiple concurrent variants of existing library functionality in the same
program. This allows existing language-specific transformations to be adapted for
new subject language signatures. New signatures may introduce additional language
constructs. Support for these constructs may be added to an existing (potentially
cloned) transformation using the techniques for unanticipated algorithm adaptation
discussed later.

The cloning feature was, to the knowledge of the author, first proposed (for Java)
in [BBK+05].

5.3.5 Weaving

The pointcuts are designed to be evaluated entirely at compile-time. All cloning
declarations are evaluated and resolved before any pointcuts are matched. Given an
advice declaration, the compiler will interpret its pointcut declaration on the Stratego
abstract syntax tree (AST) to find the location where the advice body must be weaved.
The code in the advice body is then inserted into the AST before, after or around the
joinpoint.

100 Chapter 5. Modularising Cross-Cutting Transformation Concerns

The body of the advice has a rudimentary reflective capability, which is also re-
solved at compile-time. Table 5.1 indicates that the advice body has access to rule
and strategy names. The Stratego runtime has no reflective nor code-generating ca-
pabilities so these names are mostly useful for logging purposes. Advice body code
also has access to patterns from match expressions, and may evaluate these patterns
at runtime. This is demonstrated in Section 5.4.2.

5.3.6 Modularisation

All AspectStratego code, including aspects, must reside in modules. This seems sen-
sible, since the goal of aspects is to modularise cross-cutting concerns. An aspe
t orpoint
ut can only be declared within an aspe
ts section of a module. This is simi-
lar to how for example overlays must reside in the overlays section. While aspe
ts
sections may be interleaved with the other Stratego sections (e.g., strategies, rules,signature), it is encouraged that each aspect is declared in a separate module. First,
this helps keep aspects – separate, cross-cutting concerns – truly separate, both in
design and implementation. Second, this also allows them to be selectively enabled
or disabled using compiler flags without any code modification at all. Modules may
be substituted in the build system without source code modification. The mecha-
nisms and language features required for controlling the application of aspects on the
module level are still subject to research; it is currently not possible to restrict the
application of aspects based on the module of a joinpoint.

AspectStratego keeps the pointcut declarations outside the aspect declarations, to
signify that pointcuts may be shared between aspects. In object-oriented renditions
of aspects, such as AspectJ, sharing of pointcuts between aspects is captured using
inheritance: a subaspect inherits all pointcuts from its superaspect. The usefulness of
shared pointcuts are demonstrated in Section 5.4.3.

5.4 Case Studies

This section motivates the use of AspectStratego with three case studies relevant to
rule-based programming. The first example is a simple logging aspect which is in-
cluded to show similarities and differences with the AspectJ language. The second is
a dynamic type checker of terms realised entirely as an aspect. It shows how aspects
may sometimes be used as an alternative to compiler extensions. The final case is a
discussion of how aspects may be useful in expressing variation points when imple-
menting generalised adaptable algorithms.

5.4. Case Studies 101module simple-loggerstrategiesinvoked(|s) = !["Rule '", s, "' invoked" ℄aspe
tspoint
ut log-rules(n) = rules(*) n)aspe
t simple-logger =before : log-rules(r) = log(|Debug, <invoked(|r)>)after fail : log-rules(r) = log(|Debug, <failed(|r)>)after su

eed: log-rules(r) = log(|Debug, <su

eeded(|r)>)after : log-rules(r) = log(|Debug, <finished(|r)>)
Figure 5.4: A complete logging aspect in AspectStratego. The definitions of failed,su

eeded and finished are similar to invoked. The direction of information flow
through the pointcut declaration arguments is somewhat uncommon: they specify
information going out of the declaration.

5.4.1 Logging

Logging of program actions is often useful when developing software and is therefore
a problem one wants to encode in a concise fashion. The program points one wants
to trace frequently follow the program structure, for instance, the entry and exit of
functions. In these cases, the established solution is to wrap the function definitions
in syntactical or lexical macros which perform simple code composition. The nu-
merous shortcomings of this technique, such as decreased code readability, lack of
flexibility, interference with meta-tools (especially for documentation and refactor-
ing) and typographic tedium, are all addressed by aspects. The aspect language also
allows pervasive insertion of logging code in locations unanticipated by the origi-
nal implementer such as inside rule conditions and failures deep inside the Stratego
library.

The code in Figure 5.4 shows an aspect, called simple-logger, that may be used
to insert logging code around all rules in a program by adding it to the imports list of
the main module. The code transformations induced by the weaving are detailed in
Section 5.5.

While the built-in log strategy provides the ability to set the logging level at run-
time (e.g. only errors, and no warning and debug messages), a program with explicitlog calls inserted into its strategy and rule definitions will always take a slight per-
formance hit. Stratego, where the coding style encourages many and small rules and
strategies, is sensitive to any such overhead even with aggressive inlining. Conse-
quently, it is desirable to have the ability to easily remove most or all log calls before
final deployment. Aspects make this trivial.

102 Chapter 5. Modularising Cross-Cutting Transformation Concerns

The application of one aspect may open up for further adaptation by another
aspect. For example, the strategy invoked in Figure 5.4 may be the target for further
aspects. Note that these second level — or “meta” — aspects pose a few potential
problems with respect to weaving order that have not been resolved in the imple-
mentation yet. In the current implementation, aspects are weaved in the order of
declaration. Consider the following definition of ext-invoked:aspe
tspoint
ut invoked =
alls(invoked)aspe
t ext-invoked =before : invoked = ...
If this aspect were to be weaved before simple-logger, it would have no effect, asinvoked is not called anywhere at the time ext-invoked is weaved. As long as the user
is aware of this, and manually linearises the dependency chain between aspects by
declaring ext-invoked after simple-logger, the result will match the intention of the
user.

5.4.2 Type Checking

Terms in Stratego are built with constructors from a signature, but the language does
not enforce a typing discipline on the terms: it is a single-sorted rewriting language.
Given the signature in Figure 5.1, a Stratego program may construct an invalid term,
e.g. !Plus(Int("0"), "0"). As the normal mode of operation for Stratego is local and
piecewise rewriting of terms, possibly from one signature to another, invalid inter-
mediates cannot be forbidden. To debug such problems, it is common to manually
insert debug printing, or weave in a logger to generate a program trace for manual
inspection. This form of manual verification is highly error-prone.

The Stratego/XT environment comes with format checking tools for this pur-
pose. The tools can be applied to the resulting term of a Stratego program, checking
it against a given signature. While all signature violations are caught by these tools,
they cannot help in telling where in your program the actual problem is present
as the check happens entirely after program execution. It is possible to use aspects
to weave the format checker into the rules of our program at precisely the spots
where one would like the structural invariants to hold. The type
he
ker aspect in
Figure 5.5 makes use of the format checker functionality in Stratego/XT to perva-
sively weave format checking into all rules of a Stratego program. By modifying
the type
he
k-rules pointcut, the user can control the exact application of the type
checker. Its usage is similar to the simple-logger: it must be imported, but, in addi-
tion, a type
he
k strategy for the relevant signature must be declared in a strategies
section:type
he
k(|t) = format-
he
k-Imp(|t)

5.4. Case Studies 103module type
he
k-exampleaspe
tspoint
ut type
he
k-rules(n, t) = rules(n) ; rhs(t)aspe
t type
he
ker =around(n, t) : type
he
k-rules(n, t) =pro
eed ; (type
he
k(|t)<+ (log(|in
orre
t-term(n) ; fail))
Figure 5.5: An aspect for weaving simple dynamic type of terms into rules.

Given the signature in Figure 5.1, the Stratego/XT format checker tools generate a
Stratego module containing a complete format checker for that signature. The top
level strategy for this format checker is named format-
he
k. It may be applied to a
term and checks if it is a valid (sub)term of that signature.

As with logging, introducing the checking aspect provides the user with a quick
and concise mechanism to decide which parts (if any) of a program should be type
checked. Its usage can be toggled both at compile- and runtime (the latter always
incurs a small performance hit as previously discussed).

The aspect Figure 5.5 invokes the type
he
k strategy. The argument t to type
he
k
is the pattern matched by the type
he
k-rules pointcut, i.e. the pattern is extracted
from the right-hand side pattern of a rule. In the case that t is a term (no variables),
it can in theory be entirely checked at compile time as both the signature and the
term are completely known to the compiler. In the case that t contains variables, the
static parts may be checked at compile time, but the variable part must be evaluated
at runtime.

The type checking aspect is only a partial replacement for a built-in type system.
It performs no type inferencing and can therefore not eliminate redundant checks.
The topic of typed, strategic term rewriting is discussed in [Läm03].

5.4.3 Extending Algorithms

The algorithm in Figure 5.1 is an instance of the more general data-flow problem
of forward propagation examples of which are common subexpression elimination,
copy propagation, unreachable code elimination and bound variable renaming. The
algorithm can be factored into a language-specific skeleton and problem-specific ex-
tensions. The language-specific skeleton must account for control-flow constructs
and scoping rules specific to a given language. In some cases, it is possible to abstract
over subject language differences. Using aspects, additional flexibility is provided and
the skeletons may more easily be reused for similar subject languages. Cases for ad-
ditional language constructs may easily be added to the skeleton using before advice,

104 Chapter 5. Modularising Cross-Cutting Transformation Concerns

and non-applicable cases may be voided using around advice.

A variation point is a concrete point in a program where variants of an entity
may be inserted. By providing clearly defined variation points, the skeleton is made
adaptable to the specific propagation problem at hand.

Expressing Adaptable Algorithms

There are many well-known techniques for expressing adaptable algorithms. When
providing an algorithm intended for reuse and adaptation by other programmers
(users), the following properties of the technique become important:� adaptability; one would like maximal freedom in which variation points one

exposes to the users.� reuse; the users of the algorithm should need to reimplement as little code as
possible. This is especially important in the face of maintenance.� traceability; when errors (either in the design or the implementation) are dis-
covered in the algorithm, users should be offered an easy upgrade path. Ideally,
the users should only need to replace the library file wherein the algorithm re-
sides. This may not always be feasible, but, at the very least, the users should
know which parts of their system may be affected by the error.� evolution; one must be able to change the internals of the algorithm without
disturbing the users.

Boilerplates One of the most popular, but least desirable, techniques for adaptation
is boilerplate adaptation. In this approach, a code template is manually copied then
modified to fit the situation at hand. The approach suffers from high maintenance
costs due to inherent code duplication. It is especially problematic if the original
template is later found to contain grave (security) errors since there is no traceability
of where it has been used. On the other hand, it offers a very high degree of flexibility
as all variation points may be reached. At its most extreme, boilerplate adaptation
allows the applicant to gradually replace the entire algorithm.

Design Patterns Another, popular technique for reuse is the use of design pat-
terns [GHJV95]. A design pattern is a piece of reusable engineering knowledge. For
every case where a design pattern is applicable, it must be implemented from scratch
by the programmer. In the recent years, much research has been into improving reuse
of design patterns, either by providing direct language support [Bos98, Hed98] or by
placing them in reusable libraries [AC98, HK02].

5.4. Case Studies 105

Hooks and Callbacks Hooks and callbacks are well-known techniques for exposing
variation points through overridable stubs the user of a library or algorithm can ex-
tend. By calling registration functions, the user may add callbacks and hooks which
are called at pre-determined locations in the algorithm or upon particular events in
the program. As long as the contract between the algorithm and its callbacks is main-
tained, the algorithm internals may evolve separately from the adapted hooks and
therefore offers good maintenance properties. Its drawbacks include the fact that not
all variation points may be expressed as hooks, and that it is difficult to adapt an
algorithm with different sets of hooks in multiple contexts within the same program.
In Stratego, this can to some degree be solved using scoped dynamic rules. For other
paradigms, function pointers, closures and/or objects allow multiple contexts to exist.

Higher-order Parameters In functional languages, it is common to expose varia-
tion points through higher-order parameters. The paper [OV05] describes an adapt-
able skeleton for forward propagation using this approach. The technique provides a
precise way for exposing variation points which is both easy to use and allows the user
to adapt the algorithm on a per-context basis within the same program. One draw-
back is the issue of “parameter plethora”, i.e. the number of parameters users must
deal with. In cases where the problem space is large, the algorithm often has many
variation points yielding a long parameter list. A common solution to this problem is
providing multiple entry points into the algorithm, each with an increasing number
of parameters. Another is having parameters with default values where the language
supports this.

Limitations

Boilerplates and design patterns are not really desirable given their poor support for
code reuse and traceability. While the last two solutions discussed above offer both
good reuse and traceability, they suffer from a few additional drawbacks. Over time,
experience with the use of an algorithm may expose a need to extend it with further
variation points unanticipated by the original implementer. Exposing a new variation
point frequently results in a change in the algorithm interface, through the adding
new higher-order parameters, hooks or new parameters to existing hooks. Backwards
compatibility can normally be handled by writing wrappers mimicking the old in-
terface which forwards to the new. The price is the burden of maintaining multiple
versions of the same interface.

Another consideration when extending an algorithm is how to propagate the new
variation point through its internals. Suppose in prop-
onst (Figure 5.1), one wanted
to add the ability to transform the current term before recursively descending into the
children. With a solution based on higher-order parameters, this transform parameter
would have to be “threaded” through all prop-* strategies as a higher-order parameter,

106 Chapter 5. Modularising Cross-Cutting Transformation Concerns

and thus result in an intrusive rewrite.

A final consideration is who should be able to perform adaptation and extension
of existing algorithms. It is normally not possible for the user of the algorithm to
extend it outside the exposed variation points even if they can be clearly identified,
unless the user has access to the source code, in which case the boilerplate technique
may be resorted to.

Dealing with Evolution

This section demonstrates a solution to the extensibility problem for handling unan-
ticipated variation points that is complementary to hooks and higher-order param-
eters. It uses the declarative features of aspects to clearly identify and name the
variation points in the algorithm. The code in Figure 5.6 shows how some of the
variation points already discussed have been exposed through pointcuts. The algo-
rithm provider may decide to add some trivial points, fail in forward-prop and id
in prop-assign to allow the pointcuts and advice to be expressed more clearly. These
are not strictly necessary. The same joinpoints can be identified and used with only
slightly more complicated pointcuts and advice and also by a user of the skeleton
without involving the provider nor changing the code.

The forward-prop pointcut may be used to insert the transformation code before
and after the propagator visits subterms of a given term. The prop-* pointcuts may
be used similarly for inserting code before and after recursive descent into subterms
of their respective language constructs. The prop-rule pointcuts are used for declar-
ing which dynamic rule(s) to use for intersections and during traversal. Note that
the pointcuts have the same names as the strategies they match inside. This makes
it very clear to the user where the advice is applied. Admittedly, this is also a po-
tential source of confusion as the same identifier may refer to either an aspect or a
strategy/rule, depending on context. The pointcut namespace is kept separate from
the other namespaces in Stratego (one for rules and strategies, another for construc-
tor names) because the namespaces in Stratego are global and one-level. There is no
hierarchy of namespaces (c.f. Chapter 2, Section 2.4.1).

By using these variation points exposed through aspects, the code in Figure 5.7
demonstrates how the skeleton may be instantiated with advice to obtain a constant
propagator. After weaving, the result is the exact algorithm presented in Figure 5.1.around advice is used instead of after advice to properly parenthesise the expressions
and control operator precedence. Consider the weaving of the around advice forprop-while pointcut. The pointcut matches the following joinpoint code:/n* While(forward-prop,forward-prop)
By using the around advice, this expression is replaced with:(While(forward-prop,id); EvalWhile <+ pro
eed)

5.4. Case Studies 107

module forward-propstrategiesforward-prop =fail <+ prop-assign <+ prop-if <+ prop-while<+ all(forward-prop)prop-assign =Assign(?Var(x), forward-prop) e) ; idprop-if =If(forward-prop, id, id); (If(id,forward-prop,id) /\ If(id,id,forward-prop))prop-while =?While(e1, e2); (/n* While(forward-prop, forward-prop)))aspe
tspoint
ut prop-rule(r) =(
alls(dr-fork-and-interse
t) ; args(_, _, r))+ (
alls(dr-fix-and-interse
t) ; args(_, r))point
ut prop-rule = fails ; within
ode(forward-prop)point
ut forward-prop =
alls(all) ; within
ode(forward-prop)point
ut prop-assign =
alls(id) ; within
ode(prop-assign)point
ut prop-if =
alls(dr-fork-and-interse
t) ; within
ode(prop-if)point
ut prop-while =
alls(dr-fix-and-interse
t) ; within
ode(prop-while)
Figure 5.6: Skeleton for forward propagation with variation points exposed as point-
cuts. For a real language, the skeleton is often quite large and often difficult to con-
struct. s1 /Rulen s2 is syntactic sugar for dr-fork-and-interse
t(s1, s2 | ["Rule"℄), and /Rulen* is sugar for dr-fix-and-interse
t. In the above code, the Rule will
be filled in later by aspects, thus the empty fork (/n) and fix (/n*) in prop-if andprop-while, respectively.

108 Chapter 5. Modularising Cross-Cutting Transformation Concerns

Since pro
eed invokes the original (matched) joinpoint code, the end result is the
same code as found in prop-
onst-while in Figure 5.1, modulo the fact that the driv-
ing strategy is now named forward-prop. Using cloning and renaming, it is possible to
derive a practically identical implementation. Additionally, the patterns and traver-
sals may be adapted for additional signatures, thus easily instantiating the forward
propagator for a family of subject languages.

Evaluation

The proposed solution is now evaluated based on the criteria set out above.

Adaptability Exposing variation points through pointcuts is more adaptable than
higher-order parameters and hooks because it can be done without changing the
algorithm itself. As long as the variation point can be picked out using a pointcut,
an advice may be used to insert a callback into the algorithm at that point. This is
easier with AspectStratego than many other aspect extensions since the data normally
is passed through the algorithm as the current term. It is possible to use pointcuts
to modify the current term before or after any strategy or rule invocation in the
algorithm implementation. Aspects can be viewed as a complementary extension
mechanism to callbacks/hooks since it may be used to add these. Similarly, the aspect
technique is complementary to higher-order parameters. It is also possible to wrap
the entry point to the algorithm in a reparametrised strategy.

Different levels of adaptability may be exposed using aspects. These these levels
are expressed separately from the algorithm skeleton. By choosing between the avail-
able adaptation aspects, the user may select which sets of variation points he intends
to deal with. Assuming white-box reuse, the user may add new variation points to
the algorithm in this fashion.

Reuse Compared to design patterns and boilerplates, much better reuse is obtained.
With a properly designed skeleton, the amount of code needed to adapt the algorithm
is proportional to the extra functionality added.

Traceability It is directly evident from the code both which version of the skeleton
that has been used and how it has been adapted (using which aspects). Traceability is
therefore better than for boilerplates and patterns, and at the same level as parameters
and callbacks.

Evolution As time goes by, new callbacks and higher-order parameters may easily
be added to the skeleton using aspects. Further, aspects may be used internally to
propagate the parameters to all sub parts of the algorithm implementation. Arguably,
extra care must be taken to ensure that the semantics of the pointcuts are kept after

5.5. Implementation of the Weaver 109module forward-prop-usageimports forward-propaspe
tsaspe
t prop-
onst =around : prop-rule(r) = pro
eed(["PropConst" ℄)around : prop-rule = PropConstaround : forward-prop = (pro
eed ; try(EvalBinOp))before : prop-assign-ext =?Assign(Var(x), e); if <is-value> ethen rules(PropConst: Var(x) ! e)else rules(PropConst:- Var(x)) endaround : prop-if = EvalIf ; forward-prop <+ pro
eedaround : prop-while =(While(forward-prop,id) ; EvalWhile <+ pro
eed)
Figure 5.7: Instantiation of the forward-prop to make the constant propagator in
Figure 5.1, using aspects. Admittedly, the example is somewhat contrived, as these
are variation points we normally would anticipate and explicitly parameterize easily.

an algorithm revision since they now are declared separately. This problem is no
different from variation points exposed through higher-order parameters or hooks as
long as the pointcuts are known to the revising party.

In the case where users have identified and extended variation points through
their own pointcuts, the situation is more precarious. This is a known drawback of
white box reuse.

A particularly attractive feature of aspects in the context of this dissertation is
the way they enable the expression of language independent transformations. Gen-
eral algorithm skeletons may be implemented and adapted invasively when they are
instantiated for new subject languages. To some extent, existing language-specific
transformations may in some cases also be adapted to other, similar languages.

5.5 Implementation of the Weaver

The aspect weaver for AspectStratego is realised entirely inside the Stratego compiler
as one additional stage in the front-end. It operates on the normalised AST where the
module structure has been collapsed. All definitions from all included modules are
thereby available for weaving. The weaver is implemented as traversals on the AST.
The full pipeline for compiling – or weaving – the aspect extension into Stratego is

110 Chapter 5. Modularising Cross-Cutting Transformation Concerns

Figure 5.8: Pipeline for assimilating AspectStratego into StrategoCore

shown in Figure 5.8.

Cloning – All clone expressions are collected and the relevant definitions are du-
plicated and renamed in two-pass top-down traversal called pro
ess-
lones. First, all
the clone expressions are collected and then to all matches are found and duplicated.

Pointcut collection and evaluation (
olle
t-point
uts in the figure) is a top down
traversal that collects all pointcut declarations. Every pointcut encountered is essen-
tially a simple logical expression. These expressions are decomposed into conjunctive
normal forms called fragments. A fragment contains one joinpoint and an arbitrary set
of joinpoint context predicates all separated by logical and. For example, the point-
cut (rules(n) + strategies(n)) ; args(y) is split into the two fragments rules(n); args(y) and strategies(n) ; args(y). For each named pointcut, a dynamic rule
is generated and used as a map from pointcut names to the fragment set for that
pointcut.

Advice collection and evaluation (
olle
t-advi
e) is a top down traversal that col-
lects all advice declarations. When an advice is encountered, its associated pointcut
is looked up and one dynamic rule is generated for each fragment of that pointcut.
In a generated rule, the left-hand side matches the term in the Stratego AST corre-
sponding to the fragment’s joinpoint predicate. For example, rules match against
the AST term for rule declaration, RDefT. The generated rule evaluates all joinpoint

5.5. Implementation of the Weaver 111EvalBinOp =log(|Debug, invoked("EvalBinOp")) ;if shadowed-EvalBinOp thenif log(|Debug, su

eeded("EvalBinOp")) thentry(log(|Debug, finished("EvalBinOp")))elselog(|Debug, finished("EvalBinOp")) ; failendelse// identi
al to the then-
lause,// with su

eeded repla
ed by failedend
Figure 5.9: The declaration of EvalBinOp from Figure 5.1 after weaving in thesimple-logger aspect.

context predicates in its condition. These rules are applied later by the weaver. When
a rule succeeds, it provides the weaver with the context information identified by its
pointcut fragment and the advice body associated with that pointcut.

Weaving – The actual weaving is a bottom up traversal of the AST (weave-advi
e).
It exhaustively attempts to apply all generated advice rules from the previous step. On
any term where one or more rules match, their associated advice bodies are collected
and applied in place.

5.5.1 A Weaving Example

By weaving the simple-logger aspect (Figure 5.4) into the module in Figure 5.2, all
executions of EvalBinOp and EvalIf are logged. Weaving of this aspect on the ruleEvalBinOp proceeds as follows.

First, the weaver shadows both declarations by adding a new unique prefix to the
existing rule name. Then, a wrapper strategy from the template in Figure 5.102 is
instantiated. It has the name of the original rule (EvalBinOp). The final result of this
weaving for EvalBinOp is shown in Figure 5.9. The wrapper first executes the code
from the before advice followed by the shadowed (original) code. If the shadowed
code fails, the after fail advice is run followed by the after advice. The enclos-
ing try and if-then-else are there to allow after fail and after su

eed advice to
change a failure into success or success into failure, respectively. after advice may not
change failure/success but may replace the current term.

2Technically, the actual implementation uses the guarded choice operator. For readability reasons,
the if-then-else is shown in the examples.

112 Chapter 5. Modularising Cross-Cutting Transformation Concernsbefore ;if point
ut-
ode thenif after-su

eed then try(after) else after ; fail endelseif after-fail then try(after) else after ; fail endend
Figure 5.10: Template for advice weaving. Cursive identifiers are insertion sites for
advice code. If a particular advice is not present in a joinpoint, it is replaced by an id
(after-fail is replaced by fail).

5.5.2 Aspects as Meta Programs

When evaluating the pointcuts in the aspect compiler, there is a need to do interpre-
tation of the pointcut expressions. This is realised as interpretive dynamic rules in
the current implementation. Unfortunately, this leads to a rather rigid and tangled
implementation where extending the language with new joinpoint (context) predi-
cates becomes needlessly complex. It is conceptually much more appealing to view
each advice as a small meta program to be executed on the AST. This meta program
must be constructed at compilation time and can therefore not be a fixed part of the
compiler. The current implementation can be seen as a manual specialisation of such
a meta program where the dynamic parts are captured by dynamic rules.

Instead of inventing and maintaining a new interpreter for such meta programs, it
is desirable to generate a small Stratego program for every meta program. This would
be possible in a rewriting language with an open compiler or in a flexible, multi-
staged language. The weaver would generate compiler extensions (meta programs),
then execute these as part of the compilation process. This is now possible with
the MetaStratego infrastructure, but the weaver has not yet been updated to take
advantage of these developments.

5.6 Discussion

There are several documented examples of cross-cutting concerns found in the do-
main of rule-based programming. For example, the problem of origin tracking is
documented in [vDKT93] and the problem of rewriting with layout in [vdBV00].
Both papers present interpreter extensions as the solution to their respective prob-
lems.

In [KL03], it is argued that both the above cases are instances of the more gen-
eral problem of propagating term annotations – a separate concern which should be
adaptable by the programmer. The solution proposed in [KL03] is to provide the
programmer with declarative progression methods expressed as logic meta-programs.

5.6. Discussion 113

It is realised as a research prototype in Prolog. The aspect extension also provides a
mechanism for specifying cross-cutting concerns in a declarative and adaptable way,
but the style proposed herein is very similar to the popular AspectJ language, although
recast for Stratego.

Many other aspect extensions have been documented. The AspectS system for the
Squeak dialect of Smalltalk [Hir03] describes a weaver which works entirely at run-
time using the reflective features of the Smalltalk runtime environment. The Casear
aspect extension for Java [MO03] brings runtime weaving to Java. In [LK97], the
authors describe a small object-oriented language Jcore and its extension Cool for ex-
pressing coordination of threads. The two are composed using an aspect weaver. As-
pectC++ [SGSP02] is an aspect extension to the C++ language. An aspect extension
for the functional language Caml is described in [HT05]. In [MRB+], the authors
document an aspect extension to the GAMMA transformation language for multiset
rewriting and demonstrates its use to express timing constraints and distribution of
data and processes. AspectStratego attempts to solve many of the same problems as
the languages above because these problems are found in many languages. In addi-
tion, this chapter also motivates how problems specific to rule-based programming,
such as language independence, may have solutions based on aspects.

The implementation of aspect-weavers using rewriting has been documented in
[AL00] for the context of graph rewriting and in [GR04] using term rewriting. In
both cases, the subject languages were object-oriented. In [Läm99], the authors de-
tail an aspect language for declarative logic programs with formally described seman-
tics, and a weaver based on functional meta-programs. Reflective languages with
meta programming facilities such as Maude [CDE+03] are alternative implementa-
tion vehicles for aspects. The appeal of aspects is their concise, declarative nature
with their clearly defined goal: identify joinpoints for inserting code. This con-
trasts with the flexibility and complexity offered by general meta programming. The
“general-purposeness” of meta programming may in fact often be a hindrance to
users. Distilling the power of general meta programming into a concise, declarative
aspect language may therefore be worthwhile. While this chapter also describes the
implementation of an aspect weaver using a term-rewriting system, the subject lan-
guage, Stratego, is not a declarative logic nor an object-oriented language. This gives
rise to a different set of joinpoints than considered by the above references.

The algorithm extension technique described in Section 5.4.3 is an example of
compile-time code composition and is thus somewhat related to techniques such as
templates in C++. Unlike C++ templates, the AspectStratego composition language
is purely declarative and new variation points can be exposed retroactively without
reparameterizing.

114 Chapter 5. Modularising Cross-Cutting Transformation Concerns

5.7 Summary

This chapter presented an aspect extension for the Stratego term-rewriting language,
combining the paradigms of aspect-oriented programming and strategic program-
ming. The implementation of this language was discussed. Several examples of is ap-
plicability were given, including a flexible dynamic type checker of terms as a practical
example of aspects as an alternative to the interpreter extensions in [vDKT93] and
[vdBV00]. The chapter also demonstrated how aspects may be helpful in handling
unanticipated algorithm extension using the technique of invasive software composi-
tion. This form of (potentially retroactive) parametrisation increases the genericity of
(existing) implementations, and thereby improves language independence. Aspects
may be regarded as a declarative mechanism for adding support for subject language
families to transformation libraries and are therefore an attractive language abstrac-
tion for language independent transformations.

