
– Is it easy for humans to write code using this syntax?
– It depends on how you define “human”.

– Magne Haveraaen asking Valentin David 3
Strategic Term Rewriting

This chapter recalls some basic elements of term rewriting theory and some support-
ing parts of universal algebra. It proceeds by discussing a programming paradigm
called strategic programming which supports the separation of data traversal con-
cerns from data processing logic – allowing each part to be implemented and reused
separately – and how strategic programming, in the form of strategic term rewriting,
helps expressing reusable term rewriting systems. The chapter describes a calculus for
strategic term rewriting called System S calculus. This calculus provides the basic ab-
stractions of tree transformations and term rewriting: matching and building terms,
term traversal, combining computations, and failure handling. The strategic term
rewriting language Stratego, that implements the System S calculus, is described.

3.1 Term Rewriting

The field of term rewriting studies methods for replacing subterms of terms with
other terms. Techniques from this field are attractive for program transformation
and analysis because every computer program can be represented as a term. The
(abstract) syntax tree of a program can be directly treated as a term. The mathematical
machinery of term rewriting may be brought to bear on analysis and transformation
problems.

Term rewriting theory [Ter03] makes use of basic notions known from universal
algebra [Coh81], a field of mathematics which seeks to describe any mathematical
object by its operations. Objects and operations are described formally using signa-
tures. In term rewriting, one talks of sorts and constructors in lieu of objects (types)
and operations.

3.1.1 Algebraic Signatures and Language Signatures

In both universal algebra and term writing, terms are defined over signatures. Signa-
tures may be considered analogous to the context-free grammars used to describe the
structure of text. Both context-free grammars and signatures describe properties of

51

52 Chapter 3. Strategic Term Rewriting

(potentially) recursively defined tree structures. A standard definition of an algebraic
signature is given below.

Definition 1 Algebraic Signature.
An algebraic signature � is a pair (S;
) of sets, where S is a set of sorts and
 a

set of operations. Each operation is a (k + 2)-tuple, k � 0, on the formo : s1 � : : : � sk ! s
where s1; : : : ; sk; s 2 S, o is the operation name and s1 � : : : � sk ! s its arity. The
sorts s1; : : : ; sk are argument sorts, and s the target sort. When k = 0, o :! s is a
constant symbol, or just constant.

The following example of an algebraic signature declares the four basic arithmetic
operations.signature Arithmeti
sorts Intopsplus : Int � Int ! Intminus : Int � Int ! Intdivide : Int � Int ! Inttimes : Int � Int ! Int
In this dissertation, algebraic signatures will be used to describe abstract data types.
For example, the above signature partially describes the data type Int and some of
its operations (plus, minus, divide and times). All operations (and terms involving
operations) will be written in italics in the main text.

In several traditions of program transformation based on term rewriting there is
second role for signatures: they may be used to declare the abstract syntax of program-
ming languages, akin to document type definitions commonly found for markup
languages like XML [BPSM+] and SGML [sgm86]. Signatures used in this capacity
are referred to as language signatures in this dissertation. They have some minor and
subtle differences compared with the algebraic signatures.

The language signatures described here follow the tradition introduced by the
Stratego rewriting language. Operations are referred to as constructors. In the main
text, constructors (and terms involving constructors) will be written in MixedCase.
Constructors must always start with an uppercase letter. A more important difference
between the two uses of signatures is that in signatures describing languages, the
argument sorts of constructors follow the abstract grammar of the subject language
they define. Consider the signature definition for a minimal language L that supports
variables, assignment and addition operations on floating point and integer numbers:

1 signature L
2 sorts Var Exp Stmt String

3.1. Term Rewriting 53

3
onstru
tors
4 Var : String ! Var
5 : Var ! Exp
6 Int : String ! Exp
7 Float : String ! Exp
8 Plus : Exp � Exp ! Exp
9 Assign : Var � Exp ! Stmt

Line 4 declares that variable terms are of sort Var. Line 5 is an injection which declares
that every term of sort Var is also a term of sort Exp, i.e. Var is a subsort of Exp. TheInt and Float constructors describe literals of integers and floats, respectively. In the
abstract syntax, a Plus term is constructed from two terms of sort Exp. Assignments
are statements (of sort Stmt) which assign the result of expressions to variables.

3.1.2 Patterns and Terms

Universal algebra defines the notion of terms over signatures, a traditional definition
of which is given in Definition 3. These terms may contain variables.

Definition 2 (Variables).
Given a signature � = (S;
) with an associated family V = (Vs)s2S of disjoint

infinite sets, an element x 2 Vs; s 2 S is a variable x of sort s.

Algebraic terms may be recursively constructed from variables and the application
of operations to the result of operations or to variables.

Definition 3 (Algebraic Terms).
Given a signature � = (S;
) and an associated set of variables X, the set of (alge-

braic) terms for �, (T�(X);s)s2S are defined by simultaneous induction:

1. Xs � T�(X);s
2. if o :! s 2
, then o 2 T�(X);s
3. if o : s1 � : : : � sk ! s 2
, k � 0 and if ti 2 T�(X);si for 1 � i � k, theno(t1; : : : ; tk) 2 T�(X);s.
An element in T�(X);s is called a �(X)-term of sort s, or just a term. Var(t) denotes

all variables occurring in the �(X) term t. If Var(t) = ;, t is called a ground term.

Every valid algebraic term for a given signature must respect the sorts of the
signature, i.e. the arity of each operation. Algebraic terms may contain variables.
The terms for language signatures, and their nomenclature, behave slightly differently
from algebraic terms.

54 Chapter 3. Strategic Term Rewritingp ::=
(p; : : : ; p) constructor application
| str string literal
| r real number
| i integer number
| x variable
 ::= identifier constructor namex ::= identifier variable name
| _ wildcard

Figure 3.1: Syntax definition for Stratego (language) patterns. The number of pat-
terns p in a constructor application must correspond to the numeric arity of the
constructor named
. Wildcards are “open holes” in patterns, akin to nameless vari-
ables.

The syntax for Stratego language terms is described in Figure 3.1. When language
terms, or just terms, are constructed, the language signature is assumed to be single-
sorted. Only the numeric arity must be respected, i.e. only the number of arguments,
irrespective of the sorts. This is done for practical convenience. Term rewriting ap-
proaches, including that of Stratego, use step-wise substitution of subterms when
going from one signature to another. It is useful to allow intermediate terms which
are not valid according to either the source or the target signature, without having to
explicitly declare a “super-signature” which defines all possible constructor combina-
tions.

Another difference between universal algebra and the nomenclature used in strate-
gic rewriting is the meaning of the word “term”. Language terms are always ground
terms. A language term containing variables will be referred to as a pattern, often
written p. Variables in patterns always start with lower case letters, e.g. x. Consider
the example term and pattern:Plus(Int("0"),Int("1")) Plus(x,y)

(term) (pattern)

The kind of term expression – pattern or ground term – is easily recognised from the
syntax since all constructors start with an uppercase letter and all variables start with
a lowercase letter.

A pattern p may be matched against a term t. This matching is purely syntactical.
It succeeds if and only if there exists a valid variable substitution �(p) � t. The
variables Var(p) of p will be bound to their corresponding subterms in t, e.g:hmat
h Plus(x,y)i Plus(Int("0"),Int("1"))) � : [x 7! Int("0"); y 7! Int("1")℄

3.1. Term Rewriting 55

Conversely, a pattern p may be instantiated into a term t, by replacing all its variablesx with terms:[x 7! Int("0"); y 7! Int("1")℄ : hbuild Plus(x,y)i) Plus(Int("0"),Int("1"))
Patterns are used in program transformations to check for structural (syntactic) prop-
erties and to construct new program fragments. By combining pattern matching and
pattern instantiation into one (potentially named) unit, the rewrite rule is obtained.

3.1.3 Rewrite Rules

Rewrite rules are the units of transformation – or the atomic building blocks, if you
will – in term rewriting systems. Each rewrite rule describes how one term can be
derived from another term in a single step.

Definition 4 (Rewrite Rule).
A rewrite rule R : pl ! pr, with name R, left-hand side pattern pl, right-hand side

pattern pr, and pl; pr 2 T�(X), reduces the term t to t0 if there exists a � : X ! T� such
that t = �(pl) (pl matches t) and t0 = �(pr) (pr instantiates to t0). The term t is called
the redex (reducible expression) and t0 the reduct.

In the context of System S and Stratego, the term variables are variables in the
Stratego program, and the substitution � corresponds to a variable environment ".
This is clarified in the next section. A set of rewrite rules R is said to induce a one-step
rewrite relation on terms, written as follows:t !R t0
This says that t reduces to t0 with one of the rules in R. Composing these in sequence,
i.e. t0 !R t1 !R : : : gives a reduction sequence with !R, where R is repeatedly
applied to the root of a term.

Definition 5 (Conditional Rewrite Rule).
A conditional rewrite rule R : pl ! pr where
, with
 being a logical expression in

some logic, specifies that R is only applicable if, for some �, pl matches t with � and �(
)
holds (evaluates to true).

3.1.4 Rewriting Strategies

The rewrite sequence, as defined above, repeatedly applies the rules of R to the root
of a term, i.e. to the top-level constructor and its subterms. The definition does not
describe how rules may be applied to subterms. Nor does it say anything about the

56 Chapter 3. Strategic Term Rewriting

order in which the rules in R of are applied for each step – it may be the case that
multiple rules are applicable.

Other definitions for rule application exist in term rewriting theory, but for pro-
gram transformation, a flexible and precise way of programming both the application
location (inside a term) and the order of (rule) application is necessary. In this disser-
tation, the System S calculus is used for this purpose.

3.2 System S – Strategic Term Rewriting

Strategic term rewriting extends basic term rewriting with additional constructs that
accurately control the application strategies for sets of rules. These constructs are
used to control the order of rule application, traversal over term structures, and how
to handle rule application failures.

The System S core calculus is a formalism for strategic term rewriting. It pro-
vides the basic abstractions of tree transformations and term rewriting: matching and
building terms, term traversal, combining computations and failure handling. It was
first introduced by Visser and Benaissa [VBT98, VB98]. The programming language
Stratego is directly based on this calculus.

This section contains a slightly modified formulation of the same core calculus
which is more in the style of [BvDOV06]. The definitions given herein are only those
necessary for later chapters. Compared to the original description, non-deterministic
choice, s0 + s1 and the test operator have been dropped. These are now replaced by
a guarded choice combinator. The some(s) traversal primitive has been eliminated.
A syntax of System S is shown in Figure 3.2. For the rest of this section, the word
“program” is taken to mean the transformation program. Terms are used to represent
subject programs.

In Chapter 5 and Chapter 7, the System S calculus and Stratego is extended with
additional constructs that improve the capacity for expressing language independent
transformation programs.

Basic Definitions

The operational semantics of System S is specified using the notation described be-
low. The semantics describes the behaviour of strategies. Rewrite rules are encoded
as strategies (shown later), but are provided with syntactic sugar to give them their
familiar notation.

The domain of strategy applications is the set of terms extended with a special
failure value ". The notation t is used to indicate terms from this extended domain;
the notation t still refers to terms. Consider the following assertion:�; " ` hsi t) t0(�0; "0)

3.2. System S – Strategic Term Rewriting 57s ::= id identify
| fail failure
| ?p match term
| !p build term
| s; s sequential composition
| s < s + s guarded choice
| where(s) where
| {x,. . . ,x: s} new variable scope
| one(s) | all(s) generic traversal operators
| f (f ; : : : ; f jp; : : : ; p) strategy invocationx ::= identifier variable namesf ::= identifier strategy names
 ::= identifier constructor names

Figure 3.2: Syntax for System S. The definition of term patterns p was given in
Figure 3.1. The semantics of strategy invocation is defined in [BvDOV06].

It states that the strategy s applied to term t in context of the system state � (used to
model dynamic rules) and variable environment " evaluates to the term t0 in a new
system state �0 and a new environment "0. The variable environment takes on the
role of the � substition previously described for rewrite rules.

Strategies may fail. This is noted with the following assertion:�; " ` hsi t)" (�0; "0)
Changes to state and variable bindings are preserved in the case of failure.

Variables A variable environment " is a finite ordered map [x1 7! t1; : : : ; xn 7!tn℄ from variables to terms or failure. A variable x may occur multiple times in", in which case the first (leftmost) binding is applicable. The application of an
environment – a variable lookup – is defined as picking out the first binding for x (if
any): [x1 7! t1; : : :xn 7! tn℄(x)(t0i if xi � x ^ 8 j < i : x j . x" if 8 j � n : x j . x
The variables in " fulfil the role of algebraic term variables. The instantiation "(p) of
the pattern p yields a (language) term, i.e. a ground term, by replacing every variablex in p with its bound term from ". This is identical to variable substitution with �
with the exception that the pattern variables are variables of the System S calculus
(i.e. variables in the Stratego language).

58 Chapter 3. Strategic Term Rewriting

Environments " are used in the matching process of patterns p. It is convenient to
have a notation stating that the only difference between environments " and "0 are the
bindings for the variables of p. The notation "0 w " declares that the environment "0
is a refinement of the environment ". This means that if " = [x1 7! t1; : : : ; xn 7! tn℄,
then " = [x1 7! t01; : : : ; xn 7! t0n℄ and for each i : 0 � i � n, "(xi) = "0(xi) or"(xi) =" and "0(xi) = t for some term t. "0 wp " declares that the environment "0 is
the smallest refinement of the environment " with respect to a term pattern p if "0 w "
and for all x not in p, "0(x) = "(x).
Algebraic Properties The notation e1 � e2 is used to describe algebraic properties
of the defined constructs and to define syntactical shorthands. These equations are
universally quantified unless otherwise stated.

3.2.1 Primitive Operators and Strategy Combinators

System S provides a handful of primitive operators on terms. The most basic of these
are identity (id) and failure (fail) operators. Applying the identity operator to a term
leaves the term unchanged; applying the failure operator signals a failure:�; " ` hidit) t(�; ") �; " ` hfailit)" (�; ")
The operators, such as id and fail, are combined into expressions using strategy
combinators. The purpose of the combinators is to describe control flow. Strategy
expressions are built from primitive operators and combinators. The combinators
are used to express application – evaluation – strategies of transformations in terms
of how strategy application failures are handled. Any System S operator (except
identity) may fail. Strategy combinators are used to specify what should happen
when failures occur.

Sequential Composition The sequential application of two strategies s1 and s2 is
expressed using the sequential composition combinator, s1; s2.�; " ` hs1it) t0(�0; "0) �0; "0 ` hs2it0) t00(�00; "00)�; " ` hs1; s2it) t00(�00; "00)�; " ` hs1it)" (�0; "0)�; " ` hs1; s2it)" (�0; "0)
The assertions describe that strategy s1 is first applied to the current term t. If it
succeeds, s2 is applied to its result; the result of the combination is the result ofs2. If s1 fails, the combination fails. The following equations are consequences of the
definitions above. They show that the id operator is a unit for sequential composition
and that fail is a left zero.

3.2. System S – Strategic Term Rewriting 59id; s � s s; id � s fail; s � fail
Not that in the general case, 9s : s; fail . fail. This follows from the way the state
and the environment propagates over s: any environment " before s will in general
be "0 after s, whereas fail preserves the environment. Because of this, fail is not a
right zero for sequential composition.

Guarded Choice The guarded choice (sometimes referred to as just the choice com-
binator) s1 < s2 + s3 resembles an if-then-else expression, e.g.:id < s2 + s3 � s2 fail < s2 + s3 � s3
First, s1 is applied. If s1 succeeds, s2 is applied and the result of s2 is the result of the
combined expression; if s2 fails, the combination fails. Should s1 fail, s3 is applied
and the result of s3 is the result of the combination; if s3 fails, the combination fails.�; " ` hs1it) t0(�0; "0) �0; "0 ` hs2it0) t00(�00; "00)�; " ` hs1 < s2 + s3it) t00(�00; "00)�; " ` hs1it)" (�0; "0) �0; " ` hs3it) t0(�00; "00)�; " ` hs1 < s2 + s3it) t0(�00; "00)
An important feature of the guarded choice is that if s1 fails, both the effects due tos1 on the term t are and to the environment (but not the state �) are undone. This
means that the choice combinator implements a notion of (local) backtracking.

Negation, Left and Right Choices For notational convenience, the operators not,
left choice, and right choice may be defined using guarded choice:

left choice s0<+s1 � s0 < id + s1
right choice s0+>s1 � s1 < id + s0

not not(s) � s < fail + id
try trys � s <+ id

3.2.2 Primitive Traversal Strategies

The combinators in the previous section addressed the first of the two concerns of
rule application: how rule application failure may be handled. The second concern –
where in a term rules should be applied – is addressed by primitive traversal strategies.
There are two primitive traversal strategies: one and all. They enable term traversal
by local navigation into subterms.

60 Chapter 3. Strategic Term Rewritingtopdown(s) = s; all(topdown(s)) top-down traversalbottomup(s) = all(bottomup(s)) ; s bottom-up traversalrepeat(s) = try(s; repeat(s)) apply s until it failson
etd(s) = s <+ all(on
etd(s)) apply s once, start at the topon
ebu(s) = all(on
ebu(s)) <+ s apply s once, start at the bottominnermost(s) = bottomup(try(s; innermost(s))) innermost traversaloutermost(s) = repeat(on
etd(s)) outermost traversal

Table 3.1: A selection of frequently used traversal and application strategies.

All Subterms The all(s) strategy applies the strategy expression s to each subterm
of the current term, potentially rewriting each. all(s) succeeds if and only if s suc-
ceeds for all subterms.�0; "0 ` hsi t1) t01(�1; "1) : : : �n�1; "n�1 ` hsi tn) t0n(�n; "n)�0; "0 ` hall(s)i
(t1; : : : ; tn))
(t01; : : : ; t0n)(�n; "n)�0; "0 ` hsi t1) t01(�1; "01) : : : �i�1; "i�1 ` hsi tn)" (�i; "i)�0; "0 ` hall(s)i
(t1; : : : ; tn))" (�i; "i)
The strategy all(s) behaves as follows with respect to failure, identity and constant
terms:all(id) � id <all(s)>
() �
() <all(fail)>
(t1; : : : ; tn) � fail (if n > 0)

One Subterm The traversal strategy one(s) is similar to all, but applies s to exactly
one subterm. It fails if s does not succeed for any of the subterms.�; " ` hsit1)" (�1) : : : �i�2; " ` hsiti�1)" (�i�1) �i�1; " ` hsiti) t0i (�i; "i)�; " ` hone(s)i
(t1; : : : ; tn))
(t1; : : : ; ti�1; t0i ; ti+1; : : : ; tn)(�i; "i)�; " ` hsit1)" (�1; "1) : : : �n�1; " ` hsitn)" (�n; "n)�; " ` hone(s)i
(t1; : : : ; tn))" (�n; "n)
The one(s) strategy backtracks (undoes) all modifications to the variable environment
made by failing applications of s, but changes to the system state are kept.

Generic Traversal Strategies

An important feature of System S (and Stratego) is its ability to define signature-
independent (and thereby language-independent) traversal strategies. This support is

3.2. System S – Strategic Term Rewriting 61

the result of mixing primitive traversal operators and strategy combinators. The mix
yields the notion of generic traversal strategies. Examples of generic traversal strategies
are given in Table 3.1.

Each generic traversal strategy st(s) is parametrised with a strategy s that is applied
throughout a term according the traversal scheme specified by st. The argument
strategy s is used to insert language-specific rewriting logic, thereby instantiating the
generic strategy for a specific subject language and signature.

3.2.3 Building and Matching Terms

System S supports two complementary operations for applying patterns to terms:
match and build. Patterns are matched against terms using the match operator (?).
Variables in the pattern are bound to their respective subterms. Terms are instantiated
from patterns using the build operator (!). Variables are replaced by the terms they
have previously been bound to.

Term Matching The assertions for term matching are given below:9"0 : "0 wp " ^ "0(p) � t�; " ` h?pi t) t(�; "0) �"0 : ("0 wp " ^ "0(p) � t)�; " ` h?pi)" (�; ")
The semantics is compatible with the previously defined notion of match with vari-
able substitution �, with one exception: variables in p may already be bound. These
variables are not rebound, but the corresponding subterms of t must match the terms
bound by the variables of p. For example, a match of the pattern Plus(x,y) against the
term Plus(Int("0"),Int("1")) (attempts to) bind the variable x to the term Int("0").
The match fails if the variable x is already bound to a term that is not Int("x").

Term Building Term building is, in a sense, the inverse of matching. The build
semantics is defined as: �; " ` h!pit) "(p)(�; ")
With the environment " = [x 7! Int("0"); y 7! Int("1")℄, the expression !Plus(x,y)
will result in the the term Plus(Int("0"),Int("1")).

3.2.4 Variable Scoping

The static scoping of term variables x1; : : : ; xn can be controlled using the scope
operator fx1; : : : ; xn : sg. Given "0 = [y1 7!"; : : : ; yn 7!"℄ and "1 = [y1 7!t1; : : : yn 7! tn℄:

62 Chapter 3. Strategic Term Rewriting�; "0" ` h[y1=x1; : : : ; yn=xn℄si t) t0(�0; "1"0)�; " ` hfx1; : : : ; xn : sg t) t0(�0; "0) (y1; : : : ; yn fresh)
The operator introduces a new scope in which the strategy s is evaluated where the
variables x1; : : : ; xn have been replaced by fresh copies. This results in the usual
notion of variable scoping: After s finishes, any binding for xi, 1 � i � n introduced
by s is removed from the environment. The scope operator succeeds if s succeeds and
fails if s fails.

A useful syntactical abstraction over the scope operator is the where clause, later
used for defining conditional rewrite rules. A where(s)-clause temporarily saves the
current term, applies s to it, then restores the current term:where(s) � fx :?x; s; !xg
It follows from the previous definitions that all variable bindings due to s are kept ifs succeeds, and that where(s) fails iff s fails.

3.2.5 Rewrite Rules

The System S calculus can express rewrite rules with or without conditions, R
 andRu, respectively: Ru : pl ! pr � ?pl; !prR
 : pl ! pr where s � ?pl; where(s); !pr
The following is an example of a rewrite rule, named Simplify, defined in Stratego:Simplify:Add(Int(x), Int(y)) ! Int(z)where <addS> (x,y)) z
The condition of this rule consists of the application of the strategy addS to the tuple(x,y). (This tuple is the application of a nameless constructor with numeric arity
two.) The result is “assigned” to the variable z using another syntactic abstraction,
the) operator, defined as follows:s; ?p � s) p
3.2.6 Additional Constructs

This section defined the core constructs of the System S calculus which are neces-
sary for describing the language extensions proposed later in this dissertation. System

3.3. Stratego 63

Strategy Expression Meaning — (basic constructs)!p (build) Instantiate the term pattern p and make it the current term?p (match) Match the term pattern p against the current terms0 < s1 + s2 (left choice) Apply s0. If s0 fails, apply s1. Else, roll back, then apply s2.s0 ; s1 (composition) Apply s0, then apply s1. Fail if either s0 or s1 failsid, fail (identity, failure) Always succeeds/fails. Current term is not modifiedone(s) Apply s to one direct subterm of the current termall(s) Apply s to all direct subterms of the current subterm

Figure 3.3: Basic language constructs.S has several additional language constructs. These are presented informally using
examples in the next section. Each of the explained constructs is used in some of
the examples containing Stratego code throughout the following chapters, but un-
derstanding their precise and detailed semantics is not required. For a complete in-
troduction to all of Stratego, refer to the Stratego/XT manual [BKVV05]. Specific
caveats and considerations are noted along with the examples where pertinent.

3.3 Stratego

Stratego is a domain-specific language for writing program transformation libraries
and components. It is based on the System S rewriting calculus. The language
provides rewrite rules for expressing basic transformations, programmable rewriting
strategies for controlling the application of rules, concrete syntax for expressing the
patterns of rules in the syntax of the object language, and dynamic rewrite rules
for expressing context-sensitive transformations, thus supporting the development of
transformation components at a high level of abstraction. The program object model
used for representing subject programs are terms.

In the next sections, the parts of Stratego which are relevant for comprehend-
ing the remainder of this dissertation are explained in detail. A short description is
given in Figure 3.3 and Figure 3.4 of the core Stratego language constructs offered
to the programmer. The following sections informally describe additional features of
Stratego.

3.3.1 Signatures, Patterns and Terms

Stratego supports the declaration of signatures for describing the abstract (or con-
crete) syntax of subject languages. Stratego signatures are very close to the concept
of language (as opposed to algebraic) signatures described previously. Consider the
following example:

64 Chapter 3. Strategic Term Rewriting

Strategy Expression Meaning — (syntacic sugar)\pl -> pr\ Anonymous rewrite rule from term pattern pl to pr?x�p Equivalent to ?x ; ?p; bind current term to x then match p<s> p Equivalent to !p ; s; build p then apply ss => p Equivalent to s ; ?p; match p on result of s
Figure 3.4: Syntactic sugar.

1 signature
2 sorts Exp Stmt
3
onstru
tors
4 Var : String ! Var
5 : Var ! Exp
6 Int : String ! Exp
7 Float : String ! Exp
8 Plus : Exp � Exp ! Exp
9 Assign : Var � Exp ! Stmt

This example illustrates the following differences between Stratego and algebraic sig-
natures:� Stratego signatures are not named. A program written in Stratego may have

several signature declarations. The sorts and constructors from all of these
declarations will be combined into one implicit “super signature”.� Only the arity of constructors is guaranteed by the Stratego language, i.e. it
is a one-sorted system which allows synonym names for its sort. Given the
signature above, the constructor Plus may be applied to any two subterms.
Their sorts are never checked. Additionally, sorts need not be declared before
they are used in constructor definitions, e.g. lines 7–8 above, where the sortVar is undeclared. It is considered good form to declare all sorts, however. A
separate tool, called format-
he
k, can be applied to a term to check if it is
valid with respect to a given signature.� Stratego has builtin (primitive) sorts and special term syntax for strings (String),
lists (List(x)), tuples (Tuple(x)), integer (Int) and real (Real) numbers. The
sort Term is used (by convention) to indicate an “any” sort. That is, any term
may be inserted where a Term is expected.� Nameless constructors of arity one are allowed, and these are called injections.
Injections declare the terms of the argument sort may be placed wherever the
target sort is allowed. In effect, injections declare their argument sort to be a
subsort of the target sort, and are used by the format-
he
k tool.

3.3. Stratego 65

Strategy Meaningrules(rd1 ... rdn) define rules rd1; : : : ; rdn{|r1, ..., rn: s|} start new scope for rule names r1; : : : ; rns1 /r1; : : : ; rnn s2 fork rule sets r1; : : : ; rn, apply s1 then s2, intersect rule sets/r1; : : : ; rnn* s apply s until rule sets r1; : : : ; rn reach fixpoint

Rule definition (rd) MeaningR : p1 ! p2where s introduce rule RR :+ p1 ! p2where s extend rule R with another left-hand side p1 (and r.h.s. p2)R :- p undefine rules R with left-hand side p
Table 3.2: Essential basics of dynamic rules.

3.3.2 Congruences

A feature of System S (but not unique to it) is the combination of term traversals and
rewriting into one compact construct, called congruences. Consider the following
constructor:C : S1 � ... � Sn ! S
A congruence for this constructor is defined as the following rewrite rule with higher-
order parameters s1; : : : ; sn:
(s1; : : : ; sn) :
(x1; : : : ; xn) !
(y1; : : : ; yn) where hs1ix1) y1; : : : ; hsnixn) yn
Given the above definition of a congruence and the previous definition of a rewrite
rule, the expressionPlus(s0, s1)
syntactically expands to the following:?Plus(x0,x1) ; where(<s0> x0 => x0' ; <s1> x1 => x1') ; !Plus(x0',x1')
While congruences are syntactically succinct, they mix data traversal strategies and
term rewriting logic. This ties rewriting programs to very specific signatures and
impairs reuse across subject languages.

3.3.3 Scoped, Dynamic Rules

Stratego supports the notion of dynamic rewrite rules that may be introduced and
removed dynamically at runtime. These rules are used to capture and propagate
context through the rewriting strategies. Figure 3.2 gives a brief summary of the
dynamic rule basics.

66 Chapter 3. Strategic Term Rewriting

The expression rules(R: t -> r) creates a new rule in the rule set for R. The
scope operator {| R : s |} introduces a new scope for the rule set R around the
strategy s. Dynamic rule scopes are dynamic – they follow the flow of the program.
Variable scopes, on the other hand, are static – they follow the grammatical structure
of the program text. Changes (additions, removals) to the rule set R done by the strat-
egy s are undone after s finishes (both in case of failure and success of s). Sometimes,
multiple rules in a rule set R may match. For example, the rule extension rules(R :+t -> r) may be used several times with overlapping left hand sides. To get the results
of all matching rules in R, one may use bagof-R. The additional operations relating
to dynamic rewrite rules will be explained in the context of constant propagation, in
Chapter 5.

The following example illustrates an application of dynamic rules to the prob-
lem of propagating variable constants. This example will be expanded upon in later
chapters. The rule PropConstAssign must be applied to terms representing variable
assignments in the subject language. If the right hand side of the assignment is a con-
stant, the dynamic rule PropConst is added. This dynamic rule maps a given subject
language variable to its known constant.PropConstAssign:Assign(Var(x), e) ! Assign(Var(x), e')whereprop-
onst> e) e'; if <is-value> e' then rules(PropConst : Var(x) ! e')else rules(PropConst :- Var(x)) end
If the constant is not known, i.e. the term e is not a value, any previous mappings for
this subject language variable is removed.

Concrete Syntax Patterns

Concrete syntax patterns supplement term patterns and may sometimes result in
more succinct transformation programs. Syntax patterns are by convention enclosed
in “semantic brackets” (|[℄|). They will be expanded in-place by the Stratego com-
piler to their equivalent AST term patterns.?|[e0 := e1 + e2 ℄| � ?Assign(e0, Plus(e0), Plus(e2))
The grammar used to parse the concrete syntax must be specified to the compiler.
The grammar is defined using a parser from the XT collection of transformation
components described below.

3.3. Stratego 67

3.3.4 Overlays

Overlays may be thought of as “term macros” and are used to abstract pattern match-
ing over terms. Consider the following overlay declaration:PlusOne(x) = Plus(x, Int("1"))
When compiling a program where this overlay is defined, the Stratego compiler will
substitute every occurrence of the term PlusOne(x) with the term Plus(x,Int("1")),
for example:?PlusOne(Int("42")) overlay expansion���������! ?Plus(Int("42"),Int("1"))
The x in this case is not a Stratego variable. Overlay substitution may be consid-
ered a “meta-rewriting” pre-processor step where all constant terms and patterns in a
given Stratego program are expanded. After this pre-processing is finished, “normal”
compilation resumes.

3.3.5 Modules

Stratego programs are organised into modules. Each module corresponds to a file,
and is divided into typed sections. A module may import any number of other
modules. A module import is (almost) equivalent to textual inclusion of the imported
module1. Circular dependencies are allowed. Each section type, e.g. strategies,overlays and rules, specifies which declarations are allowed within that section. One
exception exists: both strategies and rules may be declared freely within both rules
and strategies sections.

3.3.6 Stratego/XT

A short note on the name “Stratego/XT” is necessary. The Stratego language was
designed to support the development of transformation components at a high level
of abstraction. It is distributed together with XT, a collection of flexible, reusable
transformation components and declarative languages for deriving new components.
Complete software transformation systems are composed from these components.
The composition of Stratego and XT is named Stratego/XT.

The traditional usage pattern of Stratego/XT is illustrated in Figure 3.5. The de-
veloper starts by constructing or reusing a syntax definition for the subject languageL. This definition is used to automatically derive a language infrastructure, such as
a parser, pretty printer and a signature declaration for the abstract syntax of L. The
developer may then write transformations using the derived infrastructure against
the language L. The robustness and quality of the infrastructure is to a large extent

1The module name and the import declarations are removed.

68 Chapter 3. Strategic Term Rewriting

Figure 3.5: Derivation of language infrastructures from syntax definitions (gram-
mars).

determined by the accuracy and quality of the grammar. For many mainstream lan-
guages, constructing a solid grammar is highly non-trivial. Consequently, robust and
practical mechanisms for easily reusing existing language infrastructures is therefore
desirable.

3.4 Summary

This chapter discussed the strategic programming methodology, a programming ap-
proach where data traversal patterns are separated from the data processing logic. It
described (a subset of) the System S core calculus which applies the principles of
strategic programming to term rewriting. The result is a clear separation between
rewrite rules, which perform data processing, and generic traversals with combina-
tors, which are used to encode data traversals. In the context of program transfor-
mations, the separation enables independent reuse of language specific rewrite rules
and rule application strategies. This promotes language independence by allowing
generic strategies to be reused across language specific rule sets. Basic elements of
term rewriting theory were also introduced, together with their relation to universal
algebra.

