
Two birds with one stone: the best of
branchwidth and treewidth with one algorithm

Frederic Dorn and Jan Arne Telle

Department of Informatics, University of Bergen,
Bergen, Norway

Abstract. In this paper we introduce semi-nice tree-decompositions and
show that they combine the best of both branchwidth and treewidth.
We first give simple algorithms to transform a given tree-decomposition
or branch-decomposition into a semi-nice tree-decomposition. We then
give two templates for dynamic programming along a semi-nice tree-
decomposition, one for optimization problems over vertex subsets and
another for optimization problems over edge subsets. We show that the
resulting runtime will match or beat the runtimes achieved by doing dy-
namic programming directly on either a branch- or tree-decomposition.
For example, given a graph G on n vertices with path-, tree- and branch-
decompositions of width pw, tw and bw respectively, the Minimum Dom-
inating Set problem on G is solved in time O(n2min{1.58 pw,2 tw,2.38 bw})
by a single dynamic programming algorithm along a semi-nice tree-
decomposition.

1 Introduction

The three graph parameters treewidth, branchwidth and pathwidth were all
introduced by Robertson and Seymour as tools in their seminal proof of the
Graph Minors Theorem. The treewidth tw(G) and branchwidth bw(G) of a graph
G satisfy the relation bw(G) ≤ tw(G) + 1 ≤ 3

2 bw(G) [16], and thus whenever
one of these parameters is bounded by some fixed constant on a class of graphs,
then so is the other. Tree-decompositions have traditionally been the choice
when solving NP-hard graph problems by dynamic programming to give FPT
algorithms when parameterized by treewidth, see e.g. [5, 15] for overviews. Of
the various algorithmic templates suggested for this over the years the nice tree-
decompositions [14] with binary Join and unary Introduce and Forget operations
are preferred for their simplicity and have been widely used both for showing new
results, for pedagogical purposes, and in implementations. Tree-decompositions
are in fact moving into the computer science curriculum, e.g. twenty pages of a
new textbook on Algorithm Design [13] is devoted to this topic.

Recently there have been several papers [10, 7, 6, 12, 11, 8] showing that for
graphs of bounded genus the base of the exponent in the running time of these
FPT algorithms could be improved by instead doing the dynamic program-
ming along a branch-decomposition of optimal branchwidth. Dynamic program-
ming along either a branch- or tree-decomposition of a graph both share the

property of traversing a tree bottom-up and combining solutions to problems
on certain subgraphs that overlap in a bounded-size separator of the original
graph. But there are also important differences, e.g. the subgraphs mentioned
above are for tree-decompositions usually induced by subsets of vertices and
for branch-decompositions by non-overlapping sets of edges. Various optimiza-
tion tricks have been presented to speed up the algorithms, some of these come
from the field of tree-decompositions [3, 2] and others from the field of branch-
decompositions [10, 7]. As already mentioned it seems that for planar graphs
the branchwidth parameter is the better choice, at least for worst-case runtime.
There are other graph classes where treewidth is better. In most situations the
input graphs contain some graphs where branchwidth is better and others where
treewidth is better. If we already have implementations of heuristic algorithms
for both branchwidth and treewidth, then the better choice for the dynamic
programming stage will rely on the output of these heuristics for a given graph.
Both from a theoretical and also applied viewpoint it therefore seems necessary,
for each optimization problem, to design and possibly implement two separate
dynamic programming algorithms, one for tree-decompositions and another for
branch-decompositions. In this paper we show that a single dynamic program-
ming algorithm will suffice to get the best of both treewidth and branchwidth.

For this purpose we introduce semi-nice tree-decompositions that maintain
much of the simplicity of the nice tree-decompositions. However, the vertices
of a Join are partitioned into 3 sets D,E,F and the binary Join operation treat
vertices in each set differently in order to improve runtime. Symmetric Difference
vertices D are those that appear in only one of the children, Forget vertices F are
those for which all their neighbors have already been considered, and Expensive
vertices E are the rest (the formal definitions follow later.) We first show how to
transform a given branch-decomposition or tree-decomposition into a semi-nice
tree-decomposition. We then give two templates for dynamic programming on
semi-nice tree-decompositions, one for vertex subset problems and the other for
edge subset problems.

For vertex subset problems we improve the runtime for the Join update
operation during dynamic programming. Along the way we also simplify the
proof of monotonicity of table entries for domination-type problems of [2] by a
slight change in the definition of the vertex states used. Our results are also a
step towards meeting the ’research challenge’, first proposed in [3], of lowering to
O(nλk) the runtime of dynamic programming on treewidth k graphs for solving a
problem having λ vertex-states. For edge subset problems the two subgraphs for
whom solutions are combined in the Join operation are defined to not overlap
at all in edges. Edges on vertices common to the two subgraphs are instead
introduced in a later Forget operation. In their paper [6] on heuristics for TSP
(travelling salesman problem) Cook and Seymour state that when carrying out
dynamic programming to solve optimization problems that deal with edge sets
branchwidth is a more natural framework than treewidth. We claim that our
template shares this property of being a natural framework for edge set problems.

We employ this approach to various problems, such as dominating set prob-
lems, some of which had previously been solved for tree-decompositions in [17, 3]
and for branch-decompositions in [10], to TSP solved for branch-decompositions
in [6] and tree-decompositions in [4], and in the long version to this paper [9] to
(k, r)-center solved for branch-decompositions in [7]. In each case we match or
improve the running time of the algorithms given in those papers. We do this
by combining and extending the various optimization tricks for branchwidth
and treewidth used in those papers into our dynamic programming algorithm
on semi-nice tree-decompositions. Table 1 gives the resulting worst-case runtime
on various domination-type problems that are NP-hard for general graphs. For
treewidth the previous best results [3] arise from treating all vertices in the
Join as Expensive vertices, thus tw = E in column Join of Table 1 instead of
tw = D+E+F as we have. For branchwidth the entry for Minimum Dominating
set in the first row of Table 1 matches the previous best [10], while the results
for each of the other problems are new. We emphasize that for any problem this
is the first time that a single dynamic programming algorithm achieves the best
of both treewidth and branchwidth.

Table 1. The number of vertex states and time for a Join operation with Expensive
vertices E, Forgettable vertices F and Symmetric Difference vertices D. Worst-case
runtime expressed also by treewidth tw and branchwidth bw of the input graph, and
the cutoff point at which treewidth is the better choice. To not clutter the table, we
leave out pathwidth pw, allthough for each problem there is a cutoff at which pathwidth
would have been best.

States Join Total time tw faster

Min Dom set 3 O(3D+F 4E) O(n2min{2tw,2.38bw}) tw ≤ 1.19bw

Min/Max Ind Dom set 3 O(3D+F 4E) O(n2min{2tw,2.38bw}) tw ≤ 1.19bw

∃/Min/Max Perfect Code 3 O(3D4E+F) O(n2min{2tw,2.58bw}) tw ≤ 1.29bw

Min Perfect Dom set 3 O(3D4E+F) O(n2min{2tw,2.58bw}) tw ≤ 1.29bw

Max 2-Packing 3 O(3D4E+F) O(n2min{2tw,2.58bw}) tw ≤ 1.29bw

Min Total Dom set 4 O(4D+F 6E) O(n2min{2.58tw,3bw}) tw ≤ 1.16bw

∃/Min/Max Perf Total Dom 4 O(4D5F 6E) O(n2min{2.58tw,3.16bw}) tw ≤ 1.22bw

2 Semi-nice tree-decompositions

We use standard graph notation and terminology, e.g. for a subset S ⊆ V (G) of
the vertices of a graph G we let N(S) = {v 6∈ S : ∃u ∈ S∧uv ∈ E(G)} be the set
of vertices not in S that are adjacent to some vertex in S. For clarity we speak
of nodes of a tree and vertices of a graph. To simplify expressions involving the
cardinality of a set X, we write e.g. 2X when we actually mean 2|X|.

A tree-decomposition (T,X) of a graph G is an arrangement of the vertex
subsets X of G, called bags, as nodes of the tree T such that for any two adjacent
vertices in G there is some bag containing them both, and for each vertex of G

the bags containing it induce a connected subtree. When we say bag we may
refer both to the tree node and the associated vertex subset, sometimes even
both at the same time, e.g. ’the intersection of two adjacent bags’. The width of
the tree-decomposition (T,X) is simply the size of the largest bag minus one.

A branch-decomposition (T, µ) of a graph G is a ternary tree T , i.e. with
all inner nodes of degree three, together with a bijection µ from the edge-set of
G to the leaf-set of T . For every edge e of T define a vertex subset of G called
mid(e) consisting of those vertices v ∈ V (G) for which e lies on the path in T
between two leaves whose mapped edges are incident to v (note that this is a
non-standard but equivalent way of defining these so-called middle sets.) The
width of (T, µ) is the size of the largest mid(e) thus defined.

For a graph G its treewidth and branchwidth is the smallest width of any tree-
decomposition and branch-decomposition of G, respectively, while its pathwidth
is the smallest width of a tree-decomposition (T,X) where T is a path.

We introduce semi-nice tree-decompositions and two lemmas on transforming
a given branch- or tree-decomposition into a semi-nice tree-decomposition. A
tree-decomposition (T,X) is semi-nice if T is a rooted binary tree with each
non-leaf of T being either a:

– Introduce node X with a single child C and C ⊂ X.
– Forget node X with a single child C and X ⊂ C.
– Join node X with two children B, C and X = B ∪ C.

For an Introduce node we call X \ C the ’introduced vertices’ and for a
Forget node C \ X the ’forgotten vertices’. It follows by properties of a tree-
decomposition that a vertex can be introduced in several nodes but is forgotten
in at most one node. Note that the nice tree-decompositions [14] require that
a Join node has X = B = C, Introduce has |X| = |C| + 1, and Forget has
|X| = |C| − 1, but are otherwise identical to the semi-nice tree-decompositions.

For a Join node X with children B, C and parent A (the root node being its
own parent) we define a partition of X = B ∪ C into 3 sets D, E, F :

– Symmetric Difference D = (C \B) ∪ (B \ C)
– Expensive E = A ∩B ∩ C

– Forgettable F = (B ∩ C) \A

D, E, F is a partition of X by definition. Note that if the parent A of X =
B ∪ C is an Introduce or Join node then B ∪ C ⊂ A and we get F = ∅. See
Figure 1. The Forgettable vertices are useful for any node whose parent is a
Forget node, and their definition for an Introduce or leaf node X with parent
A is simply F = X \ A. We say that a neighbor u of a vertex v ∈ X has been
considered at node X of T if u ∈ X or if u ∈ X ′ for some descendant node X ′ of
X. Clearly, if X is a Forget node forgetting v then all neighbors of v must have
been considered at X. For fast dynamic programming we want sparse semi-nice
tree-decompositions where vertices are forgotten as soon as possible.

ED D

B C

E

F

D

D

D

D

B C

A

Fig. 1. Two Venn diagrams illustrating the children B,C of a Join node X = B ∪ C
and its partition D, E, F . On the right the parent A is a Forget node represented by
the part of B ∪C above the dashed line. On the left the parent A is not a Forget node
and we then have B ∪C ⊂ A and F = ∅. In both cases what we call the New edges go
between B \ C and C \B.

Definition 1. A semi-nice tree-decomposition is sparse if whenever a node X
containing a vertex v ∈ X has the property that all neighbors of v have been
considered, then the parent of X is a Forget node forgetting v.

Note that for a Join node with Forget parent A and children B,C of a sparse
semi-nice tree-decomposition any vertex in B \A∪C has a neighbor in C \A∪B
and vice-versa.

Lemma 1. Given a tree-decomposition (T,X) of width k of a graph G with n
vertices, we can make it into a sparse semi-nice tree-decomposition (T ′,X ′) of
width k in time O(k2n) while keeping the E-sets in the partition of each Join
node as small as the given tree-decomposition allows.

For proofs see [9]. See Figure 2 for an illustration of the transformation from
a given branch-decomposition to a semi-nice tree-decomposition described in the
next lemma.

Lemma 2. Given a branch-decomposition (T, µ) of a graph G with n vertices
and m edges we can compute a sparse semi-nice tree-decomposition (T ′,X)
with O(n) nodes in time O(m) such that for any bag X of T ′ we have some
t ∈ V (T) with incident edges e, f, g such that X ⊆ mid(e)∪mid(f)∪mid(g) and
if X is a Join node with partition D,E, F then E ⊆ mid(e) ∩mid(f) ∩mid(g)
and F ⊆ mid(f) ∩mid(g) \mid(e) and D ⊆ mid(e) \mid(f) ∩mid(g).

3 Dynamic programming for vertex subset problems

In this section we give the algorithmic template for doing fast dynamic pro-
gramming on a semi-nice tree-decomposition (T,X) of a graph G to solve an
optimization problem related to vertex subsets on G. The runtime will in this
section be given simply as a function of the D,E, F partition of the Join bags,
and X \ F, F partition of the other bags. In the final section we will then ex-
press the runtimes by pathwidth, branchwidth or treewidth of the graph. We

1

3

2

6

4

7

5

10

1211

98

{a,b} {b,c}

{a,d}

{d,e}

{c,f}

{e,f}

{b,f}

{e,f,g} {d,g}

{d,e,f}

{f,g,h} {e,h}

{f,h}
{g,h}

{h,i}

{f,i}

{b,e}

{b,e,f}

{b,d,e}

{b,d,e}{b,d}

a b c

d e f

ihg

1
2

12
10

11

9

8

7

5

6
4

3

G
BD(G)

ab
bc

abd bde

bcf

bef

defg

efgh

fgh

fhi

hi
fi

gh

eh

dg

ef

cf

de
be

ad

bdef

bde

TD(G)

abd

bcf
defg

efgh

fhi

bdef

bd

bfdef

efg

fh

r

semi-nice TD(G)

Fig. 2. Algorithm: 1) Transform branch-decomposition into a tree-decomposition
on the same tree, 2) Transform tree-decomposition into a small tree-decomposition
having O(n) nodes, 3) Transform tree-decomposition into a sparse semi-nice tree-
decomposition. We illustrate the algorithm with above figure. On the upper left a 3×3
grid graph G. On the upper right an optimal branch-decomposition with leaves labeled
by edges of G as given by µ and the sets mid(e). Step 1) is well-known (see e.g. [10]
for a correctness proof): On the lower left a tree-decomposition formed with leaf-bags
given by µ−1 and inner bags given by the union of adjacent mid(e). In step 2) all
nodes outside the bold line are then removed. The edges drawn in a dashed line are
contracted. For step 3) we apply Lemma 1. On the lower right the resulting semi-
nice tree-decomposition with new nodes emphasized rectangularly and arranged below
arbitrary root node r.

introduce the template by giving a detailed study of the algorithm for Mini-
mum Dominating sets, and then consider generalizations to various other vertex
subset problems like Perfect Code, 2-Packings. We study these variants and the
(k, r)-center problem in the long version of this paper where we also give all
ommitted proofs [9].

As usual, we compute in a bottom-up manner along the rooted tree T a table
of solutions for each node X of T . Let GX denote the subgraph of G induced
by vertices {v ∈ X ′ : X′ = X or X ′ a descendant of X in T}. The table TableX

at X will store solutions to the optimization problem on GX indexed by certain
equivalences classes of solutions. The solution to the problem on G is found by
an optimization over the table at the root of T . To develop a specific algorithm
one must define the tables involved and then show how to Initialize the table at
a leaf node of T , how to compute the tables of Introduce, Forget and Join nodes
given that their children tables are already computed, and finally how to do the
Optimization at the root.

We use the Minimum Dominating Set problem as an example, whose tables
are described by the use of three so-called vertex states:

– Dom (Dominating)
– NbrD (Neighbor is Dominating)
– Free (Temporary state)

Each index s of TableX at a node X represents an assignment of states to vertices
in the bag X. For index s : X → {Dom,NbrD,Free} the vertex subset S of
GX is legal for s if:

– V (GX) \X = (S ∪N(S)) \X
– {v ∈ X : s(v) = Dom} = X ∩ S
– {v ∈ X : s(v) = NbrD} ⊆ X ∩N(S)

TableX(s) is defined as the cardinality of the smallest S legal for s, or we have
TableX(s) = ∞ if no S is legal for s.

Informally, the 3 constraints are that S is a dominating set of GX \X, that
vertices with state Dom are exactly X∩S, and that vertices with state NbrD have
a neighbor in S. Note that vertices with state Free are simply constrained not
to be in S. Since this is also a constraint on vertices with state NbrD a subset
S which is legal for an index s would still be legal even if some vertex with
state NbrD instead had state Free. This immediately implies the monotonicity
property TableX(t) ≤ TableX(s) for pairs of indices t and s where ∀v ∈ X either
t(v) = s(v) or t(v) = Free and s(v) = NbrD.

Let us also remark that the TableX data structure should be an array. To
simplify the update operations we should associate integers 0,1,2 with each ver-
tex state so that an index is a 3-ary string of length |X|. Moreover, the ordering
of vertices in the indices of TableX should respect the ordering in TableC for
any child node C of X and in case C is the only child of X then all vertices
in the larger bag should precede those in the smaller bag. We find this by com-
puting a total order on V (G) respecting the partial order given by the ances-
tor/descendant relationship of the Forget nodes forgetting vertices v ∈ V (G).

The table TableX at a Forget node X will have 3X indices, one for each of
the possible assignments s : X → {Dom, NbrD,Free}. We assume a machine
model with words of length 3X , to avoid complexity issues related to fast array
accesses. Assume Forget node X has child C with TableC already computed. The
correct value for TableX(s) is the minimum of {TableC(s+)} over all indices s+

where s+(v) = s(v) if v ∈ X and s+(v) ∈ {Dom, NbrD} otherwise. For this
reason we call the state Free a Temporary state. The Forget update operation
takes time O(3X2C\X).

Note that the Forget update operation had no need for the indices of the table
at the child where a forgotten vertex in C \X had state Free. This observation
allows us to save some space and time for the Forgettable vertices of a bag having
a Forget parent.

If X is a leaf node with Forgettable vertices F then TableX has only 3X\F 2F

indices, in accordance with the above observation, and is computed in a brute-
force manner. This takes time O(X3X\F 2F), since for each index s we must
check if TableX(s) should be equal to the number of vertices in state Dom, or
if there is a vertex in state NbrD with no neighbor in state Dom in which case
TableX(s) = ∞.

If X is an Introduce node with Forgettable vertices F and child C then
TableX has 3X\F 2F indices and the correct value at TableX(s) is:

– ∞ if TableC(s) = ∞ or if ∃x ∈ X \C with s(x) = NbrD but no neighbor of
x in state Dom.

– TableC(s) + |{v ∈ X \ C : s(v) = Dom}| otherwise

The Introduce update operation thus takes time O(X3X\F 2F).
The correct values for TableX at a Join node X with partition D, E, F and

children B, C are computed in three steps, where the last three steps account for
new adjacencies that have not been considered in any child table (we call these
’new edges’):

1. ∀s : TableX(s) = min{TableB(sb)+TableC(sc)−|B∩C∩{v : s(v) = Dom}|}
over (sb, sc) such that triple (s, sb, sc) is necessary (see below).

2. New = {uv ∈ E(G) : u ∈ B \ C ∧ v ∈ C \B}
3. ∀R ⊆ D : New(R) = {u ∈ D \R : ∃v ∈ R ∧ uv ∈ New}
4. ∀s : TableX(s) = TableX(s′) where s′(v) = Free if v ∈ D ∧ s(v) = NbrD ∧

v ∈ New({u : s(u) = Dom}) and otherwise s′(v) = s(v).

We describe and count the necessary triples of indices (s, sb, sc) for the Join
update using the method of [10], by first considering the number of necessary
vertex state triples (s(v), sb(v), sc(v)) such that vertex state sb(v) and sc(v) in
B and C respectively will yield the vertex state s(v) in X:

– v ∈ B \ C ⊆ D: 3 triples (Dom,Dom,-), (NbrD,NbrD,-), (Free,Free,-)
– v ∈ C \B ⊆ D: 3 triples (Dom,-,Dom), (NbrD,-,NbrD), (Free,-,Free)
– v ∈ F : 3 triples (Dom,Dom,Dom), (NbrD,Free,NbrD), (NbrD,NbrD,Free)
– v ∈ E: 4 triples (Dom,Dom,Dom), (NbrD,Free,NbrD), (NbrD,NbrD,Free),

(Free,Free,Free)

Lemma 3. The Join update just described for a node X with partition D, E, F
is correct and takes time O(3D+F 4E).

For a proof see [9]. Finally, at the root node R of T we compute the smallest
dominating set of G by the minimum of {TableR(s) : s(v) ∈ {Dom, NbrD}∀v ∈
R}. This takes time O(2R). Correctness of the algorithm follows by induction
on the tree-decomposition, in the standard way for such dynamic programming
algorithms. For the timing we have the Join operation usually being the most
expensive, although there are graphs, e.g. when pathwidth=treewidth, for which
the leaf Initialization or Introduce operations are the most expensive. However,
the Forget and Root optimization operations will never be the most expensive.

Theorem 1. Given a semi-nice tree-decomposition (T,X) of a graph G on n
vertices we can solve in time O(n(max{4E3D+F } + max{X3X\F 2F })) the Min
Dominating Set Problem on G with maximization over Join nodes of T with
partition D, E, F and over Initialization and Introduce nodes with bag X and
Forgettable set F , respectively.

For problems over vertex subsets having other domination-type constraints
we get slightly different runtimes. A general class of such constraints are param-
eterized by two subsets of natural numbers σ and ρ. A subset of vertices S is a
(σ, ρ)-set if ∀v ∈ S we have |N(v) ∩ S| ∈ σ and ∀v 6∈ S we have |N(v) ∩ S| ∈ ρ
[17]. Some well-studied and natural types of (σ, ρ)-sets are when σ is either
all natural numbers N, all positive numbers N+, or {0}, and with ρ being ei-
ther all positive numbers, or {1}. The six resulting constraints are Dominating
set (σ = N, ρ = N+); Perfect Dominating Set (σ = N,ρ = {1}); Independent
Dominating set (σ = {0},ρ = N+); Perfect Code (σ = {0},ρ = {1}); Total Dom-
inating set (σ = N+, ρ = N+); Total Perfect Dominating set (σ = N+,ρ = {1}).
For Perfect Code and Total Perfect Dom set it is NP-complete simply to de-
cide if a graph has any such set, for Ind Dom set it is NP-complete to find
either a smallest or largest such set, while for the remaining three problems it
is NP-complete to find a smallest set. The thesis [1] considers these six con-
straints, and give dynamic programming algorithms on nice tree-decompositions
that take into account monotonicity properties to arrive at fast runtimes. See
column Join in Table 1 for an overview of our results and [9] for exact calcula-
tions. The previous best results for these problems [1] correspond to our results
when treating all vertices as Expensive, so we have moved closer to the goal of
λD+E+F time for a problem with λ vertex states. These algorithms can of course
be extended also to more general (σ, ρ)-sets. For example, if σ = {0, 1, ..., p} and
ρ = {0, 1, ..., q} we are asking for a subset S ⊆ V (G) such that S induces a
subgraph of maximum degree at most p with each vertex in V (G) \ S having at
most q neighbors in S. For this case we would use p+ q +2 vertex states and get
runtime O((p + q + 2)D(s(p) + s(q))E+F), where s(i) is the number of pairs of
ordered non-negative integers summing to i. Thus, for the Maximum 2-Packing
problem (also known as Max Strong Stable set), which is of this form with p = 0
and q = 1, we get an O(3D4E+F) algorithm.

4 Dynamic Programming for edge subset problems

Problems like Hamiltonian cycle and Travelling Salesman ask for a subset of
edges of the input graph with a given property. An index of the table storing
solutions to subproblems will likewise represent a class of edge subsets of the
subgraph considered so far. Consider a Join node X with children B,C, and
assume that B and C store solutions for the subgraphs G′B and G′C . For these
edge subset problems the Join operation at X is simplified if we can assume that
the two subgraphs G′B and G′C do not overlap in edges. To accomplish this we
define the subgraph G′X for edge subset problems to be the graph we get from
taking the subgraph GX as used for vertex subset problems and removing all
edges having both endpoints in the set X.

Definition 2. For edge subset problems the subgraph G′X of G for which solu-
tions are stored in a table at node X of the tree T is the graph on vertex set
V (G′X) = {v ∈ X ′ : X ′ = X or X ′ a descendant of X in T} and edge set
E(G′X) = {uv ∈ E(G) : {u, v} ⊆ V (G′X) and at most one of u and v in X}.

The implication is that the Join update is simplified, since there is no overlap
of edges in the two subgraphs. The Introduce operation becomes trivial, simply
adding isolated vertices to the existing subgraph. Likewise, the Initialize-Table
operation is trivial since it considers a subgraph without edges. On the other
hand the Forget operation becomes more complicated. Let X be a Forget node
with child B, thus with B \X the forgotten vertices. Note that an edge between
a forgotten vertex u ∈ B \ X and a vertex v ∈ X has not been considered so
far in the algorithm, since it does not belong to G′B . However, such an edge
does belong to G′X and it will in fact be considered for the first time during
the Forget operation at X. This consideration of new adjacencies performed by
the Forget operation for edge problems is almost identical to what is performed
by the Introduce operation for vertex problems. The Root-Optimization step at
root node X becomes trivial since we simply ensure that |X| = 1, by a preceding
Forget operation.

A comparison with the template given for vertex problems and the one just
described shows that for edge problems the Forget-operation is more compli-
cated but the other operations are less complicated. However, note that the gain
we get in the runtime of the Join operation for vertex subset problems from
the Forgettable vertices F is no longer easily achieved under the edge subset
template, since the vertices in F have not had all their adjacencies considered
at the time of the Join.

Cook and Seymour [6] give a heuristic algorithm for the Traveling Sales-
man Problem (TSP). Their paper contains a subroutine which for a subgraph
of the input graph solves the TSP problem exactly by dynamic programming
along a branch-decomposition. Their paper is not focused on runtime but we
can estimate the running time of their dynamic programming algorithm for ex-
act solution of TSP on a heuristically generated branch-decomposition of width k
as O(c1.5 k logkm) for some constant c. Their update operation on middle sets of

the branch-decomposition is directly transferred as the update we need for our
Join operation, as the subgraphs we are considering do not overlap in edges.
When forgetting vertex v we have to consider all neighbors of v in X since these
edges have not been accounted for earlier. In the Forget-operation we do this
independently for every index of TableX and every forgotten vertex. Compared
to their algorithm, the runtime for our more complicated Forget-operation gives
only an additional polynomial factor in the size of the Forget node X. Without
going into details in this extended abstract we claim that a dynamic program-
ming algorithm solving TSP on a semi-nice tree-decomposition can in this way
be developed exactly as in the paper [6] and with the same exponential runtime.

5 Runtime by branchwidth, treewidth or pathwidth

In this section we assume that we are given a branch-decomposition of width
bw or a tree-decomposition of width tw and first transform these into a semi-
nice tree-decomposition by the algorithms of Section 2. We then run any of the
algorithms described in Sections 3 or 4 to express the runtime to solve those
problems as a function of bw or tw. This runtime will match or improve the
best results achieved by dynamic programming directly on the branch- or tree-
decompositions. For a proof see the long version [9].

Theorem 2. We can solve Minimum Dominating set by dynamic program-
ming on a semi-nice tree-decomposition in time: O(23 log4 3bwn) = O(22.38 bwn)
if given a branch-decomposition (T, µ) of width bw; O(22 twn) if given a tree-
decomposition of width tw; O(21.58 pwn) if given a path-decomposition of width
pw; and O(2min{1.58 pw,2 tw,2.38 bw}) if given all three. For other domination-type
problems we get runtimes as in Table 1.

For certain classes of graphs, e.g. grid graphs, pathwidth is indeed the best
parameter. The runtime we get for Minimum Dominating set as a function of
branchwidth bw is essentially the same as that achieved by the algorithm of [10]
working directly on the branch-decomposition (the runtime there is expressed
with multiplicative factor m instead of our n but for a graph with branchwidth
bw we have m = O(n bw).) See Table 1 for a summary of the results for each
domination-type problem. For the TSP problem we have already argued in Sec-
tion 4 that our algorithm matches the runtime of the algorithm of [6] that works
directly on a branch-decomposition.

Acknowledgements. We would like to thank Jochen Alber and Rolf Nie-
dermeier for suggesting the comparison of dynamic programming approaches on
tree-decompositions and branch-decompositions.

References

1. J. Alber, Exact algorithms for np-hard problems on networks: Design, analysis,
and implementation, PhD Thesis, Universität Tübingen, (2002).

2. J. Alber, H. Bodlaender, H. Fernau, T. Kloks, and R. Niedermeier, Fixed
parameter algorithms for Dominating Set and related problems on planar graphs,
Algorithmica, 33 (2002), pp. 461–493.

3. J. Alber and R. Niedermeier, Improved tree decomposition based algorithms
for domination-like problems, in LATIN’02: Theoretical informatics (Cancun),
vol. 2286 of Lecture Notes in Computer Science, Berlin, 2002, Springer, pp. 613–
627.

4. S. Arnborg and A. Proskurowski, Linear time algorithms for np-hard problems
restricted to partial k-trees, Discrete Applied Math, 23 (1989), pp. 11–24.

5. H. Bodlaender, Treewidth: Algorithmic techniques and results., in MFCS’97:
Mathematical Foundations of Computer Science 1997, 22nd International Sym-
posium (MFCS), vol. 1295 of Lecture Notes in Computer Science, Springer, 1997,
pp. 19–36.

6. W. Cook and P. Seymour, Tour merging via branch-decomposition, INFORMS
Journal on Computing, 15 (2003), pp. 233–248.

7. E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos, Fixed-
parameter algorithms for the (k, r)-center in planar graphs and map graphs, in
ICALP’03: Automata, languages and programming, vol. 2719 of Lecture Notes in
Comput. Sci., Berlin, 2003, Springer, pp. 829–844.

8. F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin, Efficient ex-
act algorithms on planar graphs: Exploiting sphere cut branch decompositions, in
ESA’05: 13th Annual European Symposium on Algorithms, vol. 3669 of Lecture
Notes in Comput. Sci., Berlin, 2005, Springer, pp. 95–106.

9. F. Dorn and J. Telle, Two birds with one stone: the best of
branchwidth and treewidth with one algorithm, long version, (2005).
http://www.ii.uib.no/∼frederic/DT.pdf.

10. F. V. Fomin and D. M. Thilikos, Dominating sets in planar graphs: branch-
width and exponential speed-up, in SODA’03: Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), New York,
2003, ACM, pp. 168–177.

11. , Fast parameterized algorithms for graphs on surfaces: Linear kernel and
exponential speed-up, in ICALP’04:Automata, Languages and Programming: 31st
International Colloquium, vol. 3142 of Lecture Notes in Computer Science, Berlin,
2004, Springer, pp. 581–592.

12. , A simple and fast approach for solving problems on planar graphs., in
STACS’04: 22nd Ann. Symp. on Theoretical Aspect of Computer Science, vol. 2996
of Lecture Notes in Computer Science, Berlin, 2004, Springer, pp. 56–67.

13. J. Kleinberg and E. Tardos, Algorithm design, Addison-Wesley, 2005.
14. T. Kloks, Treewidth, vol. 842 of Lecture Notes in Computer Science, Springer-

Verlag, Berlin, 1994. Computations and approximations.
15. B. Reed, Treewidth and tangles, a new measure of connectivity and some applica-

tions, Surveys in Combinatorics, 1997.
16. N. Robertson and P. Seymour, Graph minors X. Obstructions to tree-

decomposition., Journal of Combinatorial Theory Series B, 52 (1991), pp. 153–190.
17. J. A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems

on partial k-trees, SIAM J. Discrete Math, 10 (1997), pp. 529–550.

