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How to use planarity efficiently:
new tree-decomposition based algorithms

Frederic Dorn

Department of Informatics, University of Bergen, PO Box 7800, 5020 Bergen, Norway

Abstract

We prove new structural properties for tree-decompositions of planar graphs that we use to improve
upon the runtime of tree-decomposition based dynamic programming approaches for several NP-hard
planar graph problems. We give for example the fastest algorithmifan/®R DOMINATING SET of
runtime3®™ .n?M  when we take the treewidthv as the measure for the exponential worst case behavior.
We also introduce a tree-decomposition based approach to solve non-local problems efficiently, such as
PLANAR HAMILTONIAN CYCLE in runtime6®™ -n®®) . From any input tree-decomposition, we compute
in time O(nm) a tree-decomposition with geometric properties, which decomposes the plane into disks,
and where the graph separators form Jordan curves in the plane.

1 Introduction

Many separator results for topological graphs, especially for planar embedded graphs base on the fact that
separators have a structure that cuts the surface into two or more pieces onto which the separated subgraphs
are embedded on. The celebrated and widely applied (a.o., in many divide-and-conquer approaches) re-
sult of Lipton and Tarjan [21] finds in planar graphs a small sized separator. However, their result says
nothing about the structure of the separator, it can be any set of discrete points. Applying the idea of
Miller for finding small simple cyclic separatoris [22] in planar triangulations, one can find small separa-
tors whose vertices can be connected by a closed curve in the plane intersecting the graph only in vertices,
so-calledJordan curvega.o. see[4]). Tree-decompositions have been historically the choice when solving
NP-hard optimization and FPT problems with a dynamic programming approach (see for example [7] for an
overview). Although much is known about the combinatorial structure of tree-decompositions|(a.o, [6, 29]),
no result is known to the author relating to the topology of tree-decompositions of planar graphs. A branch-
decomposition is another tool, that was introduced by Robertson and Seymour in their proof of the Graph
Minors Theorem and the parameters of these similar structuresretawidth tw(G) and branchwidth

bw(G) of the graphG have the relatiorbw(G) < tw(G) + 1 < 1.5bw(G) [25]. Recently, branch-
decompositions started to become a more popular tool than tree-decompositions, in particular for problems
whose input is a topologically embedded gréph [10, 18, 11, 15, 14], mainly for two reason: the branchwidth
of planar graphs can be computed in polynomial time (yet there is no algorithm known for treewidth) with
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Table 1: Worst-case runtime expressed by treewitthand branchwidttbw of the input graph. The IRNAR
HAMILTONIAN CYCLE stands representatively for all planar graph problems posted in [15] suctearIMTSP,

whose algorithms we can improve analogously./In [13], only those graph problems are improved upon, which are un-
weighted or of small integer weights. Therefor, we state the improvements independently for weighted and unweighted

graph problems. In some calculations, the fast matrix multiplication constan®.376 is hidden.

Previous results

New results

weighted RANAR DOMINATING SET
unweighted PANAR DOMINATING SET

O(nzmin{Q tw,2.38 bw}
O(n21489 bw)

O(n21.58 EW)
O(n2min{1.58 tw,1.89 bw})

weighted RANAR INDEPENDENTDOMINATING SET
unweighted PANAR INDEPENDENTDOMINATING SET

O(anin{? tw,2.28 bw})
O(n21‘89 bw)

O(n21,58 tw)
O(n2min{lA58 tw,1.89 bw})

weighted RANAR TOTAL DOMINATING SET
unweighted PANAR TOTAL DOMINATING SET

O(n2min{2.58 tw,3 bw})
O(TL22‘38 bw)

O(']’L22 tw)

weighted RANAR PERFECTTOTAL DOMINATING SET
unweighted PANAR PERFECTTOTAL DOMINATING SET

O(nzmin{2.58 tw,3.16 bw})
O(n22453 bw)

O(nzmin{2 tw,2.38 bw})
O(nzmin{2.32 tw,3.16 bw}

weighted RANAR HAMILTONIAN CYCLE
unweighted PANAR HAMILTONIAN CYCLE

0(7723‘31 bw)
0(77,22'66 bw)

)
O(n2min{2.32 tw,2.53 bw})
O(n2min{2.58 tw,3.31 bw})

)

O(n2min{2.58 tw,2.66 bw}

better constants for the upper bound than treewidth. Secondly, planar branch decompositions have geometri-
cal properties, i.e. they are assigned with separators that form Jordan curves. Thus, one can exploit planarity
in the dynamic programming approach in order to get an exponential speedup, as doné by [15, 13]. We give
the first result which employs planarity obtained by the structure of tree-decompositions for getting faster
algorithms. This enables us to give the first tree-decomposition based algorithms for planar Hamiltonian-
like problems with slight runtime improvements compared to [15]. We emphasize our result in terms of the
width parametersw andbw with the example of @DMINATING SET. The graph problem DMINATING

SET asks for a minimum vertex sétin a graphG = (V, E) such that every vertex il is either inS or

has a neighbor ity. Telle and Proskurowski [28] gave a dynamic programming approach based on tree-
decompositions with runtim@" - n°(1) and that was improved " - n1) by Alber et al [1]. Note that

in the extended abstract [2], the same authors first stated the runtime wronglto-be”(!). Fomin and

Thilikos [18] gave a branch-decomposition based approach of rusime” - n°(%) In an award winning

work [13], Dorn combined dynamic programming with fast matrix multiplication to4§&t- n©(1) and for

PLANAR DOMINATING SET even3? P¥.nO() wherew is the constant in the exponent of fast matrix mul-
tiplication (currentlyw < 2.376). Exploiting planarity, we improve further upon the existing bounds and

give a3*™ - n®W) algorithm for RANAR DOMINATING SET, representative for a number of improvements

on results of[3, 15, 16] as shown in Taple 1.

Given any tree-decomposition as an input, we show how to compute a geometric tree-decomposition that
has the same properties as planar branch decompositions. Employing structural results on minimal graph
separators for planar graphs, we create in polynomial tirparallel tree-decomposition that is assigned

by a set of pairwise parallel separators that form pairwise non-crossing Jordan curves in the plane. In a
second step, we show how to obtaiggometridree-decomposition, that has a ternary tree and is assigned
Jordan curves that exhaustively decompose the plane into disks (one disk being the infinite disk). In fact,
geometric tree-decompositions have all the properties in common with planar branch decompositions, that
are algorithmically exploited iri [18] and [15].

Organization of the paper: after giving some preliminary results in Sect[dn 2, we introduce in Secfion 3



our algorithm to compute a parallel tree-decomposition. In Seftion 4, we describe how Jordan curves and
separators in plane graphs influence each other and we get some tools for relating Jordan curves and tree-
decompositions in Sectign 5. Finally, we show how to compute geometric tree-decompositions and state in
Sectior] 6 their influence on dynamic programming approaches. In Seftion 7, we argue how our results may
lead to faster algorithms when using fast matrix multiplication as ih [13].

2 Preliminaries

A lineis a subset of a surface that is homeomorphic tf), 1]. A closed curve orX that is homeomorphic

to a cycle is calledlordan curve A planar graph embedded crossing-free onto the s@igige defined as
aplanegraph, where every vertex is a point®f and each edge a line. In this paper, we consider Jordan
curves that intersect with a plane graph only in vertices. For a Jordan dunwe denote by (.J) the
vertices.J intersects with. For two Jordan cunjeJ’, we defineJ + J’ to be the symmetric difference of
JandJ'.

Given a connected graght = (V, F), a set of vertice$ C V is called aseparatorif the subgraph induced
by V'\ S is non-empty and has several componeftss called anu, v-separatorfor two verticesu andv

that are in different components 6V \ S]. S is aminimalw, v-separatorif no proper subset of is a

u, v-separator. FinallyS is aminimal separatoof G if there are two vertices, v such thatS' is a minimal

u, v-separator. For a vertex subsetC V, wesaturateA by adding edges between every two non-adjacent
vertices, and thus, turning into a clique.

A chordin a cycleC of a graph(z is an edge joining two non-consecutive vertice§'ofA graphH is called
chordalif every cycle of length> 3 has a chord. Ariangulationof a graphG = (V, E) is a chordal graph

H = (V,E')with E C E’. The edges of’ \ F are calledill edges We say,H is aminimal triangulation

of G if every graphG’ = (V, E”) with E C E” C E’is not chordal. Note that a triangulation of a planar
graph may not be planar—not to confuse with the notion of “planar triangulation” that asks for filling the
facial cycles with chords. Consider the following algorithm on a grépthat triangulates~, known as
theelimination gamd24]. Repeatedly choose a vertex, saturate its neighborhood, and delete it. Terminate
whenV = ). The order in which the vertices are deleted is calledeliaination orderinga, andGy is

the chordal graph obtained by adding all saturating (fill) edges. t&nother way of triangulating a graph

G can be obtained by using a tree-decompositio&' of

2.1 Tree-decompositions

Let G be a graphT atree, and leE = (Z;):cr be a family of vertex set&; C V(G), calledbags indexed
by the nodes of. The pair7 = (T, Z) is called atree-decompositionf G if it satisfies the following
three conditions:

[ ] V(G) - UteTZt,
o for every edge: € E(G) there exists & € T such that both ends efare inZ,,
e Zy, N Z, C Z;, whenevett is a vertex of the path connectimgandts in 7.

The widthtw(7") of the tree-decompositioh = (7, £) is the maximum size over all bags minus one. The
treewidthof G is the minimum width over all tree-decompositions.



Lemmal. [8] Let T = (T, 2), Z = (Z:):er be a tree-decomposition ¢f = (V, E), and letK C V be
a clique inG. Then there exists a nodec T with K C Z;.

As a consequence, we can turn a gréfhto another graplf’ by saturating the bags of a tree-decomposition,
i.e., add an edge i between any two non-adjacent vertices that appear in a common bag. Automatically,
we get that for every cliqué&’ in H', there exists a bag; such thatk’ = Z;. Note that the width of the
tree-decomposition is not changed by this operation. It is known (e.g.lin [29]Hthista triangulation of

G, actually a so-called-tree. Although there exist triangulations that cannot be computed €ronith the
elimination game, van Leeuwen [29] describes how to change a tree-decomposition in order to obtain the
elimination orderingx and thusGY = H’. For finding a minimal triangulatiod/ that is a super-graph of

G and a subgraph af}, known as thesandwichproblem, there are efficier@(nm) runtime algorithms

(For a nice survey, we refer to [19]).

2.2 Minimal separators and triangulations

We want to use triangulations for computing tree-decompositions with “nice” separating properties. By
Rose et all[26], we have also the following lemma:

Lemma 2. Let H be a minimal triangulation of7. Any minimal separator off is a minimal separator of
G.

Before we give our new tree-decomposition algorithm, we are interested in an additional property of mini-
mal separators. L&l be the set of all minimal separatorsGh Let S, 52 € S¢. We say thatS; crosses

S, denoted bys; #.5,, if there are two connected compone@tsD € G\ S, such thatS; intersects both,

C andD. If S; does not cross,, we say thatS; is parallel to Sz, denoted bys;||S2. Note that {|” is an
equivalence relation on a set of pairwise parallel separators.

Theorem 3. [23] Let H be a minimal triangulation of7. Then,Sy is a maximal set of pairwise parallel
minimal separators irt.

3 Algorithm for a new tree-decomposition

Before we give the whole algorithm, we need some more definitions. For a graplV, E), let IC be the

set ofmaximal cliquesthat is, the cliques that have no superseY¥ithat forms a clique irG. Let K, be

the set of all maximal cliques @ that contain the vertex € V. For a chordal grapiif we define alique
treeas atred’ = (K, £) whose vertex set is the set of maximal cliquegfinandT’[K, ] forms a connected
subtree for each verteaxe V. Vice versa, if a graplif has a clique tree, theH is chordal. Even though
finding all maximal cliques of a graph is NP-hard in general, there exists a linear time modified algorithm
of [27], that exploits the property of chordal graphs having at figstmaximal cliques. By definition, a
clique tree ofH is also a tree-decomposition &f (where the opposite is not necessarily true). With [5],
we obtain a linear time algorithm computing the clique tree of a gidphit follows immediately from
Lemmd] that the treewidth of any chordal grafifequals the size of the largest clique. Let us define an
edge(C;, C;) in a clique tre€l’ to be equivalent to the set of vertic€s N C; of the two cliques’;, C; in

H which correspond to the endpoints of the edg@'irFor us, the most interesting property of clique trees
is given by [20]:



Theorem 4. Given a chordal graptH and any clique tre& of H, a set of vertices' is a minimal separator
of H ifand only ifS = C; N C; for an edge(C;, C;) in T.
We get our lemma following from Theoregm 3 and Theofgm 4:

Lemma 5. Given a clique tred” = (K, £) of a minimal triangulationd of a graphG. TransformT into
a tree-decompositiol” of G, wheretw(7) = tw(H), by deleting the fill edges from all vertex setskin
Then the set of all edg€s’;, C;) in T form a maximal set of pairwise parallel minimal separatorgin

We call such a tree-decomposition@fparallel. We give the algorithm in Figufg 1.

Algorithm TransfTD

Input: GraphG = (V, E) with tree-decompositiod = (T, Z), Z = (Zt)teT-
Output:Parallel tree-decompositich’ of G with tw(7”) < tw(7).

Triangulation step: Saturate every bag;,t € T';

Output the chordal grapH’ = (V, E U F') with fill edgesF.
Minimal triangulation step: Compute a minimal triangulatiol = (V, E U F’) of G with F" C F.
Clique tree step: Compute the clique tree df and turn it into a tree-decompositiaf of G.

Figure 1: Algorithm TransfTD.

The worst case analysis for the runtimeToansfTD comes from theMinimal triangulation step, that
needs time)(nm) for an input graplG = (V, E), (V| = n, |E| = m).

4 Plane graphs and minimal separators

In the remainder of the paper, we consiflesonnected plane graphs. The Jordan curve theorem((alo. [12])
states that a Jordan curyeon a spher§ divides the rest 0§, into two connected parts, namely into two
open discsA ; andA+, i.e,, Ay U A7 U J = Sy. Hence, every Jordan curveis a separator of a plane
graphG. Bouchite et al [9] use results of [17] to show the following:

Lemma 6. [9] Every minimal separatolS of a 2-connected plane grap¥ forms the vertices of a Jordan
curve.

That is, in any crossing-free embedding®in Sy, one can find a Jordan curve only intersecting witin

the vertices of5. Note that a minimal separatéris not necessarily forming a unique Jordan curve. If an
induced subgrapt’ of G (possibly a single edge) has only two vertiee® in common withS, andu, v

are successive vertices of the Jordan cufyéhenG’ can be drawn on either side gt This is the only
freedom we have to form a Jordan curvednsince on one side af, there is a connected subgraph(éf
that is adjacent to all vertices df We call two Jordan curveg J’ equivalentf they share the same vertex
set and intersect the vertices in the same order. Two Jordan clryesrossif J and.J’ are not equivalent
and one has vertices of the other on both sides.

Lemma 7. Let Sy, Se be two minimal separators of Zzconnected plane grap¥ = (V, E) and eachS;
forms a Jordan curvd;, i = 1, 2. If S1]|Se, thenJ, J; are non-crossing. Vice versa, if two Jordan curves
Ji,J2 in G are non-crossing and ;, NV and A7-N V, (i = 1,2) all are non-empty, then the vertex sets
S; =V (J;), (i = 1,2) are parallel separators.



We say two non-crossing Jordan curvgs.J, touchone another if they intersect in a non-empty vertex set
and if the symmetric differencé, + J; is the (possibly empty) union of Jordan curves, each having a single
edge on one side.

Lemma 8. Let two non-crossing Jordan curves, J, be formed by two parallel separatofs, S, of a
2-connected plane grapff. If J; and J; touch, and there exists a Jordan curyg C J; + J such that
there are vertices aff on both sides of;, then the vertices of; form another separatof; that is parallel
to S; and.Ss.

If J, + J5 forms exactly one Jordan curvg then we say/; touches/; nicely. Note that if.J; and.J; only
touch in one vertex, the vertices &f + J> may not form any Jordan curve. The following lemma gives a
property of “nicely touching”that we need later on.

Lemma 9. Ifin a 2-connected plane grap&, two non-crossing Jordan curves and.J; touch nicely, then
|V(J1) N V(JQ) n V(Jl + JQ)‘ < 2.

5 Jordan curves and geometric tree-decompositions

We now want to turn a parallel tree-decompositiointo ageometridree-decompositio’ = (T, 2), Z =
(Z)ter whereT is a ternary tree and for every two adjacent eddgs Z,) and(Z,., Z;) in T', the minimal
separatorss; = Z,. N Z; andSy = Z, N Z; form two Jordan curvedy, J, that touch each other nicely.
Unfortunately, we cannot arbitrarily connect two Jordan curieg that we obtain from the parallel tree-
decompositio —even if they touch nicely, since the symmetric differencd,af’ may have more vertices
thantw (7). We now give some structural results that will enable us to find above tree-decomposition.

Define for a vertex sef C V the subsedZ C Z to be the vertices adjacent@to some vertices iy \ Z.
Let G be planar embedded, connected, andZ form a Jordan curve. We defie, to be the closed disk,
onto whichZ is embedded and ; the open disk with the embedding Bfwithout the vertices ob~Z. For
a non-leaf tree nod& with degreed in a parallel tree-decompositiah, let Y7, . . . Yy be its neighbors. Let
Ty, be the subtree includiny; when removing the edg@;, X) from T. We defineGy, C G to be the
subgraph induced by the vertices of all bag%in. ForY;, choose the Jordan curvgformed by the vertex
setdY; = Y; N X to be the Jordan curve that has all vertice&gf on one side an#f (G) \ V(Gy;) on the
other. For each edgewith both endpoints being consecutive verticeg/pive choose it € E(GYy,) or if

e € E(G)\ E(Gy,).

We say, a set/ of non-crossing Jordan curvesdsnnectedf for every partition of 7 into two subsets

J1, Jo, there is a Jordan curve ¢f; that touches a Jordan curve @. A setJ of Jordan curves i%-
connectedf for every partition of 7 into two connected sets:, J», the Jordan curves qf; touch the
Jordan curves aff; in at leastk vertices. Note that if two Jordan curves touch nicely then they intersect in
at least two vertices.The proofs of the followings lemmas can be found in the appendix.

Lemma 10. For every inner nodeX of a parallel tree-decompositioh of a 2-connected plane graph, the
collection Jx of pairwise non-crossing Jordan curves formedby is 2-connected.

Lemma 11. Every bagX in a parallel tree-decompositiof can be decomposed int®,, ..., X, such
that each vertex sétX; forms a Jordan curve i and |J_, 9X; = 0X.

Lemma 12. In a decomposition of the sphefg by a 2-connected collectiof of non-crossing Jordan
curves, one can repeatedly find two Jordan cur¥gs/, € 7 that touch nicely, and substitutg and Js
by J1+ Jo inJ.



We get thatX;,... X, andGy,, ..., Gy, are embedded inside of closed disks each bounded by a Jordan
curve. Thus, the unio® over all these disks together with the Jordan curygsfill the entire sphere

Sp onto whichG is embedded. Each subgraph embedded dnto J for a disk A € D and a Jordan
curve J boundingA, forms either a bag\; or a subgraplGy,. Define the collection of baggX =
{X1,...X,,Y1,..., Yy}, In Figure[2, we give the algorithffransfTD Il for creating a geometric tree-
decomposition using the idea of Lemfrja 8.

Algorithm TransfTD Il

Input: GraphG = (V, E) with parallel tree-decompositioh = (T, Z), Z = (Zt)ter-
Output:Geometric tree-decompositiai’ of G with tw(7") < tw(7T).

For each inner bag with neighborsyi, ..., Yy {
Disconnection step: ReplaceX by X1,... X, (Lemmg 1}). SeB™ = {X1,... X, Y1,...,Yq}.
Reconnection step: Until |Z2¥X| =1 {

Find two bagsZ; andZ; in ZX such that Jordan curvg + J;

bounds a disk wittZ; U Z; (Lemmd 13);

SetZ;; = (Z; + Z;) U (Z; N Z;) and conneck; andZ; to Z;;;

In 2% substituteZ; andZ; by Z;;. }}

Figure 2: Algorithm TransfTD II .

Since by Lemma|9|V (0Z; N 9Z; N 0Z;;)| < 2, we have that at most two vertices in all three bags are
contained in any other bag &X. Note that geometric tree-decompositions have a lot in common with
sphere-cut decompositiofistroduced in[[15]), namely that both decompositions are assigned with vertex
sets that form “sphere-cutting” Jordan curves. For our new dynamic programming algorithm, we use much
of the structured results obtained [in [15].

6 Jordan curves and dynamic programming

We show how to improve the existing algorithm of Alber et[al [1] for weighted¥aR DOMINATING

SET. The algorithm is based on dynamic programmingnice tree-decompositiorend has the running
time4tv(7) . ,9)Our algorithm is a dynamic programming approach on geometric tree-decompositions
of time 3*¥(7) . 0 Since it is of similar structure to those [n [15] and|[18], we restate the technique in
the appendix and give here only the new idea. Namely, to exploit the planar structure of the nicely touching
separators to improve upon the runtime. [Ih [1], the worst case in the runtime forAR DOMINATING

SET is determined by the number of vertices that are in the intersection of three adjacentdag¥ssing

the notion of [15] for a geometric tree-decomposition, we partition the vertex sets of thre@ hdgs Z;

into setsL, R, F, I, where Z,. is adjacent taZ,, Z;. The setsL, R, F' represent the vertices that are in
exactly two of the bags. Let us consider theersectionset! := 907, N 0Z; N dZ;. By Lemm@,|[| < 2.
Thus,! is not any more part of the runtime calculation for which we refer the reader to the appendix.

7 Conclusion

A natural question to pose, is it possible to solueARAR DOMINATING SET in time 2.99"(7) . n0(1)
and equivalently, PANAR INDEPENDENT SET in 1.99™(7) . nO(1)2 Though, we cannot give a positive



answer yet, we have a formula that needs the property “well-balanced” separators in a geometric tree-
decompositior7 : we assume that the three séisk, F' are of equal cardinality for every three adjacent
bags. SincdL| + |R| + |F| < tw, we thus have thaltZ|, |R|,|F| < 4. Applying the fast matrix
multiplication method from[[13] for example toLRNAR INDEPENDENT SET, this leads to &% (7).

n®(M) algorithm, wherev < 2.376. Does every planar graph have a geometric tree-decomposition with

well-balanced separators?

Acknowledgments The author thanks Ederic Mazoit for some enlightening discussion on Thedrgém 3.
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Appendix

8.1 Proof of Lemmal8

LetG;, G; be the subgraphs ¢ separated by; (i = 1, 2). Since the vertex sét(.J3) is a subset of/ (J1) U V(J2)

we have that/(J3) N (V(G;) UV (G;) = 0(i = 1,2). HenceSs = V (J3) is parallel to bothS; = V(J;)(i = 1,2).

8.2 Proof of Lemmal10

We first show that7x is connected. Assume thaty is not connected, that is, there is a partition®f into 71, J>
such that7; is connected but no Jordan curve@f touches any Jordan curve gt. We have two cases: first assume



that no vertex of the Jordan curves@f is adjacent to any vertex in a Jordan curveff Each vertex of the Jordan
curves of7; is adjacent to some vertices Xy := X \ UZ:1 Y%, for the neighbord7, ..., Y, of X. Hence, thereis a
Jordan curveJ, formed exclusively by vertices i such that7; is on one side ofly and 7. on the other. Suppose,
there is a pair of vertices, v whereu is a vertex of somé&; bounded by the Jordan curve € J; andw is a vertex of
someY; bounded by the Jordan curve € J>. By Lemmaf_'}’,Jo is non-crossing/; and.J;. ChooseJy minimal, i.e.,
no subset of/(Jo) forms a Jordan curve. Thug,(Jy) C X, is a minimalu, v-separator that is parallel to the maximal
Sa set of pairwise parallel minimal separatorsdn That is contradicting the maximality &f. For the second case
assume there are some ed@gsC E(X) between Jordan curvesiii and Jordan curves ifiz. Then there is a closed
curveC; separating7: from 7> touching some (or none) vertices & and crossing the edges 8%;. TurnC); into

a Jordan curvd, »: for each crossed edge move the curve to one endpoint @falternately to a vertex of; and a
vertex of 7. Then,J; 2 is neither an element Qf; nor of 72, and with Lemm{]? and the same arguments as above,
V(J1,2) is a minimal separator parallel . what again is a contradiction to the maximality& .

Now we prove that7x is 2-connected. First note théat itself is 2-connected. Thus, if7 is only 1-connected, there
must be a path (or edge) Xy from some partition7; to 72, if 71 and/7- intersect only in one vertex. The proof is
very similar to the first case, so we only sketch it. The only difference is that we now assume that there is one vertex
in the intersection of the Jordan curves/af with those of7,. As in both previous cases, we find a minimal separator
S. In the first caseS C X, U {w} and in the second C X, U {w} U V(E,) for the edges’; with one endpoint in

Jh and the other inf2. Again, we obtain a contradiction sinéeis parallel toS¢.

8.3 Proof of Lemmall

Let X have neighbord7, ..., Y;. Due to Lemmg 09X forms a2-connected set of Jordan curves, each bounding
a disk inside which one of the subgrapfis; is embedded onto. If we remove the disks; forall 1 < j < d and

the set of Jordan curve$x from the sphere, we obtain a collecti@hy of ¢ disjoint open disks each bounded by a
Jordan curve of7x . Note that! < max{d, | X|}. Let Z; be the subgraph iX N A; for such an open disk; € Dx

for 1 < i < £. Then eacl; is either empty or consisting only of edges or subgraph§ ahd the closed disk; is
bounded by a Jordan curvi formed by a subset d@1.X. We setX; = Z; U V (J;) with 9.X; the vertices ofJ;.

8.4 Proof of Lemmal12

RemovingJ from Sy decomposeS§, into a collectionD of open discs each bounded by a Jordan curvg.ifror each
A; € D bounded byJ; € J there is a “neighboring” disk\, € D bounded byJ> € J such that the intersection
J1 N Jp forms aline ofSy. Then,J; + J2 boundsA; U A,. Replace, /i, J2 by Js in 7 and continue until7| = 1,
that is, we are left with one Jordan curve separafingto two open disks.

8.5 Algorithm of Section[6

Given a geometric tree-decompositidn= (T, £), Z = (Z:):e1, We rootT by arbitrarily choosing a nodeas aroot.
Each internal node of T' now has one adjacent node on the path feamr, called theparent nodeand two adjacent
nodes toward the leaves, called ttéldren nodesTo simplify matters, we call them tHeft child and theright child.

Let T; be a subtree df’ rooted at node. G is the subgraph ofr induced by all bags df;. For a subselV of V' (G)
let w(U) denote the total weight of vertices iA. That is,w(U) = 3, ., w.. Define a set of subproblems for each
subtre€;.

Alber et al. [1] introduced the so-called “monotonicity”-property of domination-like problems for their dynamic pro-
gramming approach that we will use, too. For every nbdeT’, we use three colors for the vertices of bag
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black: represented by, meaning the vertex is in the dominating set.
white: represented b, meaning the vertex has a neighboiGip that is in the dominating set.
gray: represented bg, meaning the vertex has a neighboGrthat is in the dominating set.

For a bagZ; of cardinality¢, we define acoloring ¢(Z;) to be a mapping of the verticé%, to an¢-vector over the
color-set{0, 1, 2} such that each vertex € Z, is assigned a color, i.ez(u) € {0, 1,2}. We further define the weight
w(c(Z)) to be the minimum weight of the vertices 6f; in the minimum weight dominating set with respect to the
coloringc¢(Z;). If no such dominating set exists, we sefc(Z;)) = +oo. We store all colorings of;, and for two
child nodes, we update each two colorings to one of the parent node.

Before we describe the update-process, let us make the following comments:

We defined the color “gray” according to the monotonicity property: for a verterlored gray, we do not have (or
store) the information it is already dominated by a vertex @, or if  still has to be dominated i& \ G;. Thus, a
solution with a vertex colored white has at least the same the weight as the same solution eatbred gray.

By the definition of bags, for three adjacent nodes ¢, the vertices 0bZ,. have to be in at least on &2, and9oZ:.
The reader may simply recall that the parent bag is formed by the union of the vertices of two nicely touching Jordan
curves.

For the sake of a refined analysis, we partition the bags of parentrrauaie left childs and right childt into four sets
L, R, F, I as follows:

e Intersection! := 0Z, N 0Z, N 0Z;,
e ForgetF := (Zs U Zy) \ 0Zy,
e Symmetric differencé := 0Z, N8Zs \ I andR := 0Z, N dZ; \ I.

We defineF”’ to be actually those vertices &f that are only in(0Zs U 8Z;) \ 8Z,. The vertices oft" \ F’ do not
exist in Z, and hence are irrelevant for the continuous update process. We say that a cgl&ring formedby the
coloringsc: (Z,) andcz (Z;) subject to the following rules:

(R1) Foreveryvertexs € LUR: ¢(u) = c1(u) ande(u) =
(R2) Foreveryvertex, € F' eitherc(u) = ¢1(u) = c2(u)

(R3) For every vertexs € I c(u) € {1,2} = c(u) = c1(u
c1(u) # ca(u).

), respectively.

ca(u
lore(u) = 0Acr(u), c2(u) € {0,2}Ac1(u) # ca(u).
) = c2(u) ande(u) = 0 = c1(u), c2(u) € {0,2} A

We definel. to be the vertices € Z, N Z; for whichc¢(u) = 1 and update the weights by:

w(ce(Zy)) = min{w(c1(Zs)) + w(c2(Z:)) — w(Ue)|e, c2 formse}

The number of steps by whieh(c(Z,)) is computed for every possible coloring &f is given by the number of ways
a colorc can be formed by the three ruléB1), (R2), (R3), i.e

3ILIFIR]  gIF'l | 4I1]

steps.

By Lemmd 9,/7| < 2 and sinceL| + |R| + |F| < tw(T) we need at most™(7) . n steps to computes all weights
w(c(Z,)) that are usually stored in a table assigned to Bag
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