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How to use planarity efficiently:
new tree-decomposition based algorithms

Frederic Dorn∗

Department of Informatics, University of Bergen, PO Box 7800, 5020 Bergen, Norway

Abstract

We prove new structural properties for tree-decompositions of planar graphs that we use to improve
upon the runtime of tree-decomposition based dynamic programming approaches for several NP-hard
planar graph problems. We give for example the fastest algorithm for PLANAR DOMINATING SET of
runtime3tw ·nO(1), when we take the treewidthtw as the measure for the exponential worst case behavior.
We also introduce a tree-decomposition based approach to solve non-local problems efficiently, such as
PLANAR HAMILTONIAN CYCLE in runtime6tw ·nO(1). From any input tree-decomposition, we compute
in timeO(nm) a tree-decomposition with geometric properties, which decomposes the plane into disks,
and where the graph separators form Jordan curves in the plane.

1 Introduction

Many separator results for topological graphs, especially for planar embedded graphs base on the fact that
separators have a structure that cuts the surface into two or more pieces onto which the separated subgraphs
are embedded on. The celebrated and widely applied (a.o., in many divide-and-conquer approaches) re-
sult of Lipton and Tarjan [21] finds in planar graphs a small sized separator. However, their result says
nothing about the structure of the separator, it can be any set of discrete points. Applying the idea of
Miller for finding small simple cyclic separators [22] in planar triangulations, one can find small separa-
tors whose vertices can be connected by a closed curve in the plane intersecting the graph only in vertices,
so-calledJordan curves(a.o. see [4]). Tree-decompositions have been historically the choice when solving
NP-hard optimization and FPT problems with a dynamic programming approach (see for example [7] for an
overview). Although much is known about the combinatorial structure of tree-decompositions (a.o, [6, 29]),
no result is known to the author relating to the topology of tree-decompositions of planar graphs. A branch-
decomposition is another tool, that was introduced by Robertson and Seymour in their proof of the Graph
Minors Theorem and the parameters of these similar structures, thetreewidth tw(G) and branchwidth
bw(G) of the graphG have the relationbw(G) ≤ tw(G) + 1 ≤ 1.5 bw(G) [25]. Recently, branch-
decompositions started to become a more popular tool than tree-decompositions, in particular for problems
whose input is a topologically embedded graph [10, 18, 11, 15, 14], mainly for two reason: the branchwidth
of planar graphs can be computed in polynomial time (yet there is no algorithm known for treewidth) with
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Table 1: Worst-case runtime expressed by treewidthtw and branchwidthbw of the input graph. The PLANAR

HAMILTONIAN CYCLE stands representatively for all planar graph problems posted in [15] such as METRIC TSP,
whose algorithms we can improve analogously. In [13], only those graph problems are improved upon, which are un-
weighted or of small integer weights. Therefor, we state the improvements independently for weighted and unweighted
graph problems. In some calculations, the fast matrix multiplication constantω < 2.376 is hidden.

Previous results New results
weighted PLANAR DOMINATING SET O(n2min{2 tw,2.38 bw}) O(n21.58 tw)

unweighted PLANAR DOMINATING SET O(n21.89 bw) O(n2min{1.58 tw,1.89 bw})

weighted PLANAR INDEPENDENTDOMINATING SET O(n2min{2 tw,2.28 bw}) O(n21.58 tw)

unweighted PLANAR INDEPENDENTDOMINATING SET O(n21.89 bw) O(n2min{1.58 tw,1.89 bw})

weighted PLANAR TOTAL DOMINATING SET O(n2min{2.58 tw,3 bw}) O(n22 tw)

unweighted PLANAR TOTAL DOMINATING SET O(n22.38 bw) O(n2min{2 tw,2.38 bw})

weighted PLANAR PERFECTTOTAL DOMINATING SET O(n2min{2.58 tw,3.16 bw}) O(n2min{2.32 tw,3.16 bw})

unweighted PLANAR PERFECTTOTAL DOMINATING SET O(n22.53 bw) O(n2min{2.32 tw,2.53 bw})

weighted PLANAR HAMILTONIAN CYCLE O(n23.31 bw) O(n2min{2.58 tw,3.31 bw})

unweighted PLANAR HAMILTONIAN CYCLE O(n22.66 bw) O(n2min{2.58 tw,2.66 bw})

better constants for the upper bound than treewidth. Secondly, planar branch decompositions have geometri-
cal properties, i.e. they are assigned with separators that form Jordan curves. Thus, one can exploit planarity
in the dynamic programming approach in order to get an exponential speedup, as done by [15, 13]. We give
the first result which employs planarity obtained by the structure of tree-decompositions for getting faster
algorithms. This enables us to give the first tree-decomposition based algorithms for planar Hamiltonian-
like problems with slight runtime improvements compared to [15]. We emphasize our result in terms of the
width parameterstw andbw with the example of DOMINATING SET. The graph problem DOMINATING

SET asks for a minimum vertex setS in a graphG = (V,E) such that every vertex inV is either inS or
has a neighbor inS. Telle and Proskurowski [28] gave a dynamic programming approach based on tree-
decompositions with runtime9tw ·nO(1), and that was improved to4tw ·nO(1) by Alber et al [1]. Note that
in the extended abstract [2], the same authors first stated the runtime wrongly to be3tw · nO(1). Fomin and
Thilikos [18] gave a branch-decomposition based approach of runtime31.5 bw · nO(1). In an award winning
work [13], Dorn combined dynamic programming with fast matrix multiplication to get4bw ·nO(1) and for
PLANAR DOMINATING SET even3

ω
2 bw ·nO(1), whereω is the constant in the exponent of fast matrix mul-

tiplication (currently,ω ≤ 2.376). Exploiting planarity, we improve further upon the existing bounds and
give a3tw · nO(1) algorithm for PLANAR DOMINATING SET, representative for a number of improvements
on results of [3, 15, 16] as shown in Table 1.

Given any tree-decomposition as an input, we show how to compute a geometric tree-decomposition that
has the same properties as planar branch decompositions. Employing structural results on minimal graph
separators for planar graphs, we create in polynomial time aparallel tree-decomposition that is assigned
by a set of pairwise parallel separators that form pairwise non-crossing Jordan curves in the plane. In a
second step, we show how to obtain ageometrictree-decomposition, that has a ternary tree and is assigned
Jordan curves that exhaustively decompose the plane into disks (one disk being the infinite disk). In fact,
geometric tree-decompositions have all the properties in common with planar branch decompositions, that
are algorithmically exploited in [18] and [15].

Organization of the paper: after giving some preliminary results in Section 2, we introduce in Section 3
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our algorithm to compute a parallel tree-decomposition. In Section 4, we describe how Jordan curves and
separators in plane graphs influence each other and we get some tools for relating Jordan curves and tree-
decompositions in Section 5. Finally, we show how to compute geometric tree-decompositions and state in
Section 6 their influence on dynamic programming approaches. In Section 7, we argue how our results may
lead to faster algorithms when using fast matrix multiplication as in [13].

2 Preliminaries

A line is a subset of a surfaceΣ that is homeomorphic to[0, 1]. A closed curve onΣ that is homeomorphic
to a cycle is calledJordan curve. A planar graph embedded crossing-free onto the sphereS0 is defined as
a planegraph, where every vertex is a point ofS0 and each edge a line. In this paper, we consider Jordan
curves that intersect with a plane graph only in vertices. For a Jordan curveJ , we denote byV (J) the
verticesJ intersects with. For two Jordan curveJ, J ′, we defineJ + J ′ to be the symmetric difference of
J andJ ′.

Given a connected graphG = (V,E), a set of verticesS ⊂ V is called aseparatorif the subgraph induced
by V \ S is non-empty and has several components.S is called anu, v-separatorfor two verticesu andv
that are in different components ofG[V \ S]. S is aminimalu, v-separatorif no proper subset ofS is a
u, v-separator. Finally,S is aminimal separatorof G if there are two verticesu, v such thatS is a minimal
u, v-separator. For a vertex subsetA ⊆ V , wesaturateA by adding edges between every two non-adjacent
vertices, and thus, turningA into a clique.

A chord in a cycleC of a graphG is an edge joining two non-consecutive vertices ofC. A graphH is called
chordalif every cycle of length> 3 has a chord. Atriangulationof a graphG = (V,E) is a chordal graph
H = (V,E′) with E ⊆ E′. The edges ofE′ \E are calledfill edges. We say,H is aminimal triangulation
of G if every graphG′ = (V,E′′) with E ⊆ E′′ ⊂ E′ is not chordal. Note that a triangulation of a planar
graph may not be planar—not to confuse with the notion of “planar triangulation” that asks for filling the
facial cycles with chords. Consider the following algorithm on a graphG that triangulatesG, known as
theelimination game[24]. Repeatedly choose a vertex, saturate its neighborhood, and delete it. Terminate
whenV = ∅. The order in which the vertices are deleted is called theelimination orderingα, andG+

α is
the chordal graph obtained by adding all saturating (fill) edges toG. Another way of triangulating a graph
G can be obtained by using a tree-decomposition ofG.

2.1 Tree-decompositions

Let G be a graph,T a tree, and letZ = (Zt)t∈T be a family of vertex setsZt ⊆ V (G), calledbags, indexed
by the nodes ofT . The pairT = (T,Z) is called atree-decompositionof G if it satisfies the following
three conditions:

• V (G) = ∪t∈T Zt,

• for every edgee ∈ E(G) there exists at ∈ T such that both ends ofe are inZt,

• Zt1 ∩ Zt3 ⊆ Zt2 whenevert2 is a vertex of the path connectingt1 andt3 in T .

The widthtw(T ) of the tree-decompositionT = (T,Z) is the maximum size over all bags minus one. The
treewidthof G is the minimum width over all tree-decompositions.
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Lemma 1. [8] Let T = (T,Z),Z = (Zt)t∈T be a tree-decomposition ofG = (V,E), and letK ⊆ V be
a clique inG. Then there exists a nodet ∈ T with K ⊆ Zt.

As a consequence, we can turn a graphG into another graphH ′ by saturating the bags of a tree-decomposition,
i.e., add an edge inG between any two non-adjacent vertices that appear in a common bag. Automatically,
we get that for every cliqueK in H ′, there exists a bagZt such thatK = Zt. Note that the width of the
tree-decomposition is not changed by this operation. It is known (e.g. in [29]) thatH ′ is a triangulation of
G, actually a so-calledk-tree. Although there exist triangulations that cannot be computed fromG with the
elimination game, van Leeuwen [29] describes how to change a tree-decomposition in order to obtain the
elimination orderingα and thusG+

α = H ′. For finding a minimal triangulationH that is a super-graph of
G and a subgraph ofG+

α , known as thesandwichproblem, there are efficientO(nm) runtime algorithms
(For a nice survey, we refer to [19]).

2.2 Minimal separators and triangulations

We want to use triangulations for computing tree-decompositions with “nice” separating properties. By
Rose et al [26], we have also the following lemma:

Lemma 2. LetH be a minimal triangulation ofG. Any minimal separator ofH is a minimal separator of
G.

Before we give our new tree-decomposition algorithm, we are interested in an additional property of mini-
mal separators. LetSG be the set of all minimal separators inG. Let S1, S2 ∈ SG. We say thatS1 crosses
S2, denoted byS1#S2, if there are two connected componentsC,D ∈ G\S2, such thatS1 intersects both,
C andD. If S1 does not crossS2, we say thatS1 is parallel to S2, denoted byS1||S2. Note that “||” is an
equivalence relation on a set of pairwise parallel separators.

Theorem 3. [23] Let H be a minimal triangulation ofG. Then,SH is a maximal set of pairwise parallel
minimal separators inG.

3 Algorithm for a new tree-decomposition

Before we give the whole algorithm, we need some more definitions. For a graphG = (V,E), letK be the
set ofmaximal cliques, that is, the cliques that have no superset inV that forms a clique inG. LetKv be
the set of all maximal cliques ofG that contain the vertexv ∈ V . For a chordal graphH we define aclique
treeas a treeT = (K, E) whose vertex set is the set of maximal cliques inH, andT [Kv] forms a connected
subtree for each vertexv ∈ V . Vice versa, if a graphH has a clique tree, thenH is chordal. Even though
finding all maximal cliques of a graph is NP-hard in general, there exists a linear time modified algorithm
of [27], that exploits the property of chordal graphs having at most|V | maximal cliques. By definition, a
clique tree ofH is also a tree-decomposition ofH (where the opposite is not necessarily true). With [5],
we obtain a linear time algorithm computing the clique tree of a graphH. It follows immediately from
Lemma 1 that the treewidth of any chordal graphH equals the size of the largest clique. Let us define an
edge(Ci, Cj) in a clique treeT to be equivalent to the set of verticesCi ∩ Cj of the two cliquesCi, Cj in
H which correspond to the endpoints of the edge inT . For us, the most interesting property of clique trees
is given by [20]:
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Theorem 4. Given a chordal graphH and any clique treeT ofH, a set of verticesS is a minimal separator
of H if and only ifS = Ci ∩ Cj for an edge(Ci, Cj) in T .

We get our lemma following from Theorem 3 and Theorem 4:

Lemma 5. Given a clique treeT = (K, E) of a minimal triangulationH of a graphG. TransformT into
a tree-decompositionT of G, wheretw(T ) = tw(H), by deleting the fill edges from all vertex sets inK.
Then the set of all edges(Ci, Cj) in T form a maximal set of pairwise parallel minimal separators inG.

We call such a tree-decomposition ofG parallel. We give the algorithm in Figure 1.

Algorithm TransfTD

Input:GraphG = (V, E) with tree-decompositionT = (T,Z),Z = (Zt)t∈T .
Output:Parallel tree-decompositionT ′ of G with tw(T ′) ≤ tw(T ).

Triangulation step: Saturate every bagZt, t ∈ T ;
Output the chordal graphH′ = (V, E ∪ F ) with fill edgesF .

Minimal triangulation step: Compute a minimal triangulationH = (V, E ∪ F ′) of G with F ′ ⊆ F .
Clique tree step: Compute the clique tree ofH and turn it into a tree-decompositionT ′ of G.

Figure 1: Algorithm TransfTD .

The worst case analysis for the runtime ofTransfTD comes from theMinimal triangulation step, that
needs timeO(nm) for an input graphG = (V,E), (|V | = n, |E| = m).

4 Plane graphs and minimal separators

In the remainder of the paper, we consider2-connected plane graphs. The Jordan curve theorem (a.o. [12])
states that a Jordan curveJ on a sphereS0 divides the rest ofS0 into two connected parts, namely into two
open discs∆J and∆J , i.e., ∆J ∪ ∆J ∪ J = S0. Hence, every Jordan curveJ is a separator of a plane
graphG. Bouchitt́e et al [9] use results of [17] to show the following:

Lemma 6. [9] Every minimal separatorS of a 2-connected plane graphG forms the vertices of a Jordan
curve.

That is, in any crossing-free embedding ofG in S0, one can find a Jordan curve only intersecting withG in
the vertices ofS. Note that a minimal separatorS is not necessarily forming a unique Jordan curve. If an
induced subgraphG′ of G (possibly a single edge) has only two verticesu, v in common withS, andu, v
are successive vertices of the Jordan curveJ , thenG′ can be drawn on either side ofJ . This is the only
freedom we have to form a Jordan curve inG, since on one side ofJ , there is a connected subgraph ofG
that is adjacent to all vertices ofJ . We call two Jordan curvesJ, J ′ equivalentif they share the same vertex
set and intersect the vertices in the same order. Two Jordan curvesJ, J ′ crossif J andJ ′ are not equivalent
and one has vertices of the other on both sides.

Lemma 7. Let S1, S2 be two minimal separators of a2-connected plane graphG = (V,E) and eachSi

forms a Jordan curveJi, i = 1, 2. If S1||S2, thenJ1, J2 are non-crossing. Vice versa, if two Jordan curves
J1, J2 in G are non-crossing and∆Ji ∩ V and∆Ji

∩ V, (i = 1, 2) all are non-empty, then the vertex sets
Si = V (Ji), (i = 1, 2) are parallel separators.
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We say two non-crossing Jordan curvesJ1, J2 touchone another if they intersect in a non-empty vertex set
and if the symmetric differenceJ1 +J2 is the (possibly empty) union of Jordan curves, each having a single
edge on one side.

Lemma 8. Let two non-crossing Jordan curvesJ1, J2 be formed by two parallel separatorsS1, S2 of a
2-connected plane graphG. If J1 andJ2 touch, and there exists a Jordan curveJ3 ⊆ J1 + J2 such that
there are vertices ofG on both sides ofJ3, then the vertices ofJ3 form another separatorS3 that is parallel
to S1 andS2.

If J1 + J2 forms exactly one Jordan curveJ3 then we sayJ1 touchesJ2 nicely. Note that ifJ1 andJ2 only
touch in one vertex, the vertices ofJ1 + J2 may not form any Jordan curve. The following lemma gives a
property of “nicely touching”that we need later on.

Lemma 9. If in a 2-connected plane graphG, two non-crossing Jordan curvesJ1 andJ2 touch nicely, then
|V (J1) ∩ V (J2) ∩ V (J1 + J2)| ≤ 2.

5 Jordan curves and geometric tree-decompositions

We now want to turn a parallel tree-decompositionT into ageometrictree-decompositionT ′ = (T,Z),Z =
(Zt)t∈T whereT is a ternary tree and for every two adjacent edges(Zr, Zs) and(Zr, Zt) in T , the minimal
separatorsS1 = Zr ∩ Zs andS2 = Zr ∩ Zt form two Jordan curvesJ1, J2 that touch each other nicely.
Unfortunately, we cannot arbitrarily connect two Jordan curvesJ, J ′ that we obtain from the parallel tree-
decompositionT —even if they touch nicely, since the symmetric difference ofJ, J ′ may have more vertices
thantw(T ). We now give some structural results that will enable us to find above tree-decomposition.

Define for a vertex setZ ⊆ V the subset∂Z ⊆ Z to be the vertices adjacent inG to some vertices inV \Z.
Let G be planar embedded,Z connected, and∂Z form a Jordan curve. We define∆Z to be the closed disk,
onto whichZ is embedded and∆Z the open disk with the embedding ofZ without the vertices of∂Z. For
a non-leaf tree nodeX with degreed in a parallel tree-decompositionT , let Y1, . . . Yd be its neighbors. Let
TYi

be the subtree includingYi when removing the edge(Yi, X) from T . We defineGYi
⊆ G to be the

subgraph induced by the vertices of all bags inTYi
. ForYi, choose the Jordan curveJi formed by the vertex

set∂Yi = Yi ∩X to be the Jordan curve that has all vertices ofGYi
on one side andV (G) \ V (GYi

) on the
other. For each edgee with both endpoints being consecutive vertices ofJi we choose ife ∈ E(GYi

) or if
e ∈ E(G) \ E(GYi).

We say, a setJ of non-crossing Jordan curves isconnectedif for every partition ofJ into two subsets
J1,J2, there is a Jordan curve ofJ1 that touches a Jordan curve ofJ2. A setJ of Jordan curves isk-
connectedif for every partition ofJ into two connected setsJ1,J2, the Jordan curves ofJ1 touch the
Jordan curves ofJ2 in at leastk vertices. Note that if two Jordan curves touch nicely then they intersect in
at least two vertices.The proofs of the followings lemmas can be found in the appendix.

Lemma 10. For every inner nodeX of a parallel tree-decompositionT of a2-connected plane graph, the
collectionJX of pairwise non-crossing Jordan curves formed by∂X is 2-connected.

Lemma 11. Every bagX in a parallel tree-decompositionT can be decomposed intoX1, . . . , X` such
that each vertex set∂Xi forms a Jordan curve inG and

⋃`
i=1 ∂Xi = ∂X.

Lemma 12. In a decomposition of the sphereS0 by a 2-connected collectionJ of non-crossing Jordan
curves, one can repeatedly find two Jordan curvesJ1, J2 ∈ J that touch nicely, and substituteJ1 andJ2

byJ1 + J2 in J .
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We get thatX1, . . . X` andGY1 , . . . , GYd
are embedded inside of closed disks each bounded by a Jordan

curve. Thus, the unionD over all these disks together with the Jordan curvesJX fill the entire sphere
S0 onto whichG is embedded. Each subgraph embedded onto∆ ∪ J for a disk∆ ∈ D and a Jordan
curveJ bounding∆, forms either a bagXi or a subgraphGYj

. Define the collection of bagsZX =
{X1, . . . X`, Y1, . . . , Yd}. In Figure 2, we give the algorithmTransfTD II for creating a geometric tree-
decomposition using the idea of Lemma 8.

Algorithm TransfTD II

Input:GraphG = (V, E) with parallel tree-decompositionT = (T,Z),Z = (Zt)t∈T .
Output:Geometric tree-decompositionT ′ of G with tw(T ′) ≤ tw(T ).

For each inner bagX with neighborsY1, . . . , Yd {
Disconnection step: ReplaceX by X1, . . . X` (Lemma 11). SetZX = {X1, . . . X`, Y1, . . . , Yd}.
Reconnection step: Until |ZX | = 1 {

Find two bagsZi andZj in ZX such that Jordan curveJi + Jj

bounds a disk withZi ∪ Zj (Lemma 12);
SetZij = (Zi + Zj) ∪ (Zi ∩ Zj) and connectZi andZj to Zij ;
In ZX : substituteZi andZj by Zij . }}

Figure 2: Algorithm TransfTD II .

Since by Lemma 9,|V (∂Zi ∩ ∂Zj ∩ ∂Zij)| ≤ 2, we have that at most two vertices in all three bags are
contained in any other bag ofZX . Note that geometric tree-decompositions have a lot in common with
sphere-cut decompositions(introduced in [15]), namely that both decompositions are assigned with vertex
sets that form “sphere-cutting” Jordan curves. For our new dynamic programming algorithm, we use much
of the structured results obtained in [15].

6 Jordan curves and dynamic programming

We show how to improve the existing algorithm of Alber et al [1] for weighted PLANAR DOMINATING

SET. The algorithm is based on dynamic programming onnice tree-decompositionsand has the running
time4tw(T ) · nO(1). Our algorithm is a dynamic programming approach on geometric tree-decompositions
of time 3tw(T ) · nO(1). Since it is of similar structure to those in [15] and [18], we restate the technique in
the appendix and give here only the new idea. Namely, to exploit the planar structure of the nicely touching
separators to improve upon the runtime. In [1], the worst case in the runtime for PLANAR DOMINATING

SET is determined by the number of vertices that are in the intersection of three adjacent bagsr, s, t. Using
the notion of [15] for a geometric tree-decomposition, we partition the vertex sets of three bagsZr, Zs, Zt

into setsL,R, F, I, whereZr is adjacent toZs, Zt. The setsL,R, F represent the vertices that are in
exactly two of the bags. Let us consider theIntersectionsetI := ∂Zr ∩ ∂Zs ∩ ∂Zt. By Lemma 9,|I| ≤ 2.
Thus,I is not any more part of the runtime calculation for which we refer the reader to the appendix.

7 Conclusion

A natural question to pose, is it possible to solve PLANAR DOMINATING SET in time 2.99tw(T ) · nO(1)

and equivalently, PLANAR INDEPENDENT SET in 1.99tw(T ) · nO(1)? Though, we cannot give a positive
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answer yet, we have a formula that needs the property “well-balanced” separators in a geometric tree-
decompositionT : we assume that the three setsL,R, F are of equal cardinality for every three adjacent
bags. Since|L| + |R| + |F | ≤ tw, we thus have that|L|, |R|, |F | ≤ tw

3 . Applying the fast matrix
multiplication method from [13] for example to PLANAR INDEPENDENT SET, this leads to a2

ω
3 tw(T ) ·

nO(1) algorithm, whereω < 2.376. Does every planar graph have a geometric tree-decomposition with
well-balanced separators?

Acknowledgments. The author thanks Fréd́eric Mazoit for some enlightening discussion on Theorem 3.
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8 Appendix

8.1 Proof of Lemma 8

Let Gi, Gi be the subgraphs ofG separated byJi(i = 1, 2). Since the vertex setV (J3) is a subset ofV (J1) ∪ V (J2)
we have thatV (J3) ∩ (V (Gi) ∪ V (Gi) = ∅(i = 1, 2). HenceS3 = V (J3) is parallel to both,Si = V (Ji)(i = 1, 2).

8.2 Proof of Lemma 10

We first show thatJX is connected. Assume thatJX is not connected, that is, there is a partition ofJX into J1,J2

such thatJ1 is connected but no Jordan curve ofJ1 touches any Jordan curve ofJ2. We have two cases: first assume
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that no vertex of the Jordan curves ofJ1 is adjacent to any vertex in a Jordan curve ofJ2. Each vertex of the Jordan
curves ofJ1 is adjacent to some vertices inX0 := X \

Sd
k=1 Yk, for the neighborsY1, . . . , Yd of X. Hence, there is a

Jordan curveJ0 formed exclusively by vertices inX0 such thatJ1 is on one side ofJ0 andJ2 on the other. Suppose,
there is a pair of verticesu, v whereu is a vertex of someYi bounded by the Jordan curveJi ∈ J1 andv is a vertex of
someYj bounded by the Jordan curveJj ∈ J2. By Lemma 7,J0 is non-crossingJi andJj . ChooseJ0 minimal, i.e.,
no subset ofV (J0) forms a Jordan curve. Thus,V (J0) ⊆ X0 is a minimalu, v-separator that is parallel to the maximal
SG set of pairwise parallel minimal separators inG. That is contradicting the maximality ofSG. For the second case
assume there are some edgesEJ ⊆ E(X) between Jordan curves inJ1 and Jordan curves inJ2. Then there is a closed
curveCJ separatingJ1 from J2 touching some (or none) vertices ofX0 and crossing the edges ofEJ . TurnCJ into
a Jordan curveJ1,2: for each crossed edgee, move the curve to one endpoint ofe, alternately to a vertex ofJ1 and a
vertex ofJ2. Then,J1,2 is neither an element ofJ1 nor ofJ2, and with Lemma 7 and the same arguments as above,
V (J1,2) is a minimal separator parallel toSG what again is a contradiction to the maximality ofSG.

Now we prove thatJX is 2-connected. First note thatG itself is 2-connected. Thus, ifJ is only 1-connected, there
must be a path (or edge) inX0 from some partitionJ1 to J2, if J1 andJ2 intersect only in one vertex. The proof is
very similar to the first case, so we only sketch it. The only difference is that we now assume that there is one vertexw
in the intersection of the Jordan curves ofJ1 with those ofJ2. As in both previous cases, we find a minimal separator
S. In the first case,S ⊆ X0 ∪ {w} and in the secondS ⊆ X0 ∪ {w} ∪ V (EJ) for the edgesEJ with one endpoint in
J1 and the other inJ2. Again, we obtain a contradiction sinceS is parallel toSG.

8.3 Proof of Lemma 11

Let X have neighborsY1, . . . , Yd. Due to Lemma 10,∂X forms a2-connected set of Jordan curves, each bounding
a disk inside which one of the subgraphsGYj is embedded onto. If we remove the disks∆Yj for all 1 ≤ j ≤ d and
the set of Jordan curvesJX from the sphere, we obtain a collectionDX of ` disjoint open disks each bounded by a
Jordan curve ofJX . Note that̀ ≤ max{d, |X|}. Let Zi be the subgraph inX ∩∆i for such an open disk∆i ∈ DX

for 1 ≤ i ≤ `. Then eachZi is either empty or consisting only of edges or subgraphs ofG and the closed disk∆i is
bounded by a Jordan curveJi formed by a subset of∂X. We setXi = Zi ∪ V (Ji) with ∂Xi the vertices ofJi.

8.4 Proof of Lemma 12

RemovingJ from S0 decomposesS0 into a collectionD of open discs each bounded by a Jordan curve inJ . For each
∆1 ∈ D bounded byJ1 ∈ J there is a “neighboring” disk∆2 ∈ D bounded byJ2 ∈ J such that the intersection
J1 ∩ J2 forms a line ofS0. Then,J1 + J2 bounds∆1 ∪∆2. Replace,J1, J2 by J3 in J and continue until|J | = 1,
that is, we are left with one Jordan curve separatingS0 into two open disks.

8.5 Algorithm of Section 6

Given a geometric tree-decompositionT = (T,Z),Z = (Zt)t∈T , we rootT by arbitrarily choosing a noder as aroot.
Each internal nodet of T now has one adjacent node on the path fromt to r, called theparent node, and two adjacent
nodes toward the leaves, called thechildren nodes. To simplify matters, we call them theleft child and theright child.

Let Tt be a subtree ofT rooted at nodet. Gt is the subgraph ofG induced by all bags ofTt. For a subsetU of V (G)
let w(U) denote the total weight of vertices inU . That is,w(U) =

P
u∈U wu. Define a set of subproblems for each

subtreeTt.

Alber et al. [1] introduced the so-called “monotonicity”-property of domination-like problems for their dynamic pro-
gramming approach that we will use, too. For every nodet ∈ T , we use three colors for the vertices of bagZt:
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black: represented by1, meaning the vertex is in the dominating set.

white: represented by0, meaning the vertex has a neighbor inGt that is in the dominating set.

gray: represented by2, meaning the vertex has a neighbor inG that is in the dominating set.

For a bagZt of cardinality`, we define acoloring c(Zt) to be a mapping of the verticesZt to an`-vector over the
color-set{0, 1, 2} such that each vertexu ∈ Zt is assigned a color, i.e.,c(u) ∈ {0, 1, 2}. We further define the weight
w(c(Zt)) to be the minimum weight of the vertices ofGt in the minimum weight dominating set with respect to the
coloringc(Zt). If no such dominating set exists, we setw(c(Zt)) = +∞. We store all colorings ofZt, and for two
child nodes, we update each two colorings to one of the parent node.

Before we describe the update-process, let us make the following comments:

We defined the color “gray” according to the monotonicity property: for a vertexu colored gray, we do not have (or
store) the information ifu is already dominated by a vertex inGt or if u still has to be dominated inG \ Gt. Thus, a
solution with a vertexv colored white has at least the same the weight as the same solution withv colored gray.

By the definition of bags, for three adjacent nodesr, s, t, the vertices of∂Zr have to be in at least on of∂Zs and∂Zt.
The reader may simply recall that the parent bag is formed by the union of the vertices of two nicely touching Jordan
curves.

For the sake of a refined analysis, we partition the bags of parent noder and left childs and right childt into four sets
L, R, F, I as follows:

• IntersectionI := ∂Zr ∩ ∂Zs ∩ ∂Zt,

• ForgetF := (Zs ∪ Zt) \ ∂Zr,

• Symmetric differenceL := ∂Zr ∩ ∂Zs \ I andR := ∂Zr ∩ ∂Zt \ I.

We defineF ′ to be actually those vertices ofF that are only in(∂Zs ∪ ∂Zt) \ ∂Zr. The vertices ofF \ F ′ do not
exist inZr and hence are irrelevant for the continuous update process. We say that a coloringc(Zr) is formedby the
coloringsc1(Zs) andc2(Zt) subject to the following rules:

(R1) For every vertexu ∈ L ∪R : c(u) = c1(u) andc(u) = c2(u), respectively.

(R2) For every vertexu ∈ F ′ eitherc(u) = c1(u) = c2(u) = 1 or c(u) = 0∧c1(u), c2(u) ∈ {0, 2}∧c1(u) 6= c2(u).

(R3) For every vertexu ∈ I c(u) ∈ {1, 2} ⇒ c(u) = c1(u) = c2(u) andc(u) = 0 ⇒ c1(u), c2(u) ∈ {0, 2} ∧
c1(u) 6= c2(u).

We defineUc to be the verticesu ∈ Zs ∩ Zt for which c(u) = 1 and update the weights by:

w(c(Zr)) = min{w(c1(Zs)) + w(c2(Zt))− w(Uc)|c1, c2 formsc}
.

The number of steps by whichw(c(Zr)) is computed for every possible coloring ofZr is given by the number of ways
a colorc can be formed by the three rules(R1), (R2), (R3), i.e.,

3|L|+|R| · 3|F
′| · 4|I|

steps.

By Lemma 9,|I| ≤ 2 and since|L| + |R| + |F | ≤ tw(T ) we need at most3tw(T ) · n steps to computes all weights
w(c(Zr)) that are usually stored in a table assigned to bagZr.
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