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Abstract Divide-and-conquer strategy based on variations of the Lipton-
Tarjan planar separator theorem has been one of the most common ap-
proaches for solving planar graph problems for more than 20 years. We
present a new framework for designing fast subexponential exact and pa-
rameterized algorithms on planar graphs. Our approach is based on geo-
metric properties of planar branch decompositions obtained by Seymour &
Thomas, combined with new techniques of dynamic programming on planar
graphs based on properties of non-crossing partitions. Compared to divide-
and-conquer algorithms, the main advantages of our method are a) it is a
generic method which allows to attack broad classes of problems; b) the ob-
tained algorithms provide a better worst case analysis. To exemplify our ap-
proach we show how to obtain an O(26.903

√

n
n

3/2 +n
3) time algorithm solv-

ing weighted Hamiltonian Cycle. We observe how our technique can be
used to solve Planar Graph TSP in time O(210.8224

√

n
n

3/2 +n
3). Our ap-

proach can be used to design parameterized algorithms as well. For example

we introduce the first 2O(
√

k)
k

O(1) · nO(1) time algorithm for parameterized
Planar k−cycle by showing that for a given k we can decide if a planar

graph on n vertices has a cycle of length ≥ k in time O(213.6
√

k
√

k n + n
3).

1 Introduction

The celebrated Lipton-Tarjan planar separator theorem [18] is one of the basic
approaches to obtain algorithms with subexponential running time for many prob-
lems on planar graphs [19]. The usual running time of such algorithms is 2O(

√
n) or

2O(
√

n log n), however the constants hidden in big-Oh of the exponent are a serious
obstacle for practical implementation. During the last few years a lot of work has
been done to improve the running time of divide-and-conquer type algorithms [3, 4].

One of the possible alternatives to divide-and-conquer algorithms on planar
graphs was suggested by Fomin & Thilikos [12]. The idea of this approach is very
simple: compute treewidth (or branchwidth) of a planar graph and then use the well
developed machinery of dynamic programming on graphs of bounded treewidth (or
branchwidth)[5]. For example, given a branch decomposition of width ` of a graph
G on n vertices, it can be shown that the maximum independent set of G can be
found in time O(2

3`
2 n). The branchwidth of a planar graph G is at most 2.122

√
n

and it can be found in time O(n3) [22] and [13]. Putting all together, we obtain
an O(23.182

√
nn + n3) time algorithm solving Independent Set on planar graphs.

Note that planarity comes into play twice in this approach: First in the upper bound

? This work was partially supported by Norges forskningsr̊ad project 160778/V30,
and partially by the Netherlands Organisation for Scientific Research NWO (project
Treewidth and Combinatorial Optimisation).



on the branchwidth of a graph and second in the polynomial time algorithm con-
structing an optimal branch decomposition. A similar approach combined with the
results from Graph Minors [20] works for many parameterized problems on planar
graphs [8]. Using such an approach to solve, for example, Hamiltonian cycle we end
up with an 2O(

√
n log n)nO(1) algorithm on planar graphs, as all known algorithms

for this problem on graphs of treewidth ` require 2O(` log `)nO(1) steps. In this paper
we show how to get rid of the logarithmic factor in the exponent for a number of
problems. The main idea to speed-up algorithms obtained by the branch decompo-
sition approach is to exploit planarity for the third time: for the first time planarity
is used in dynamic programming on graphs of bounded branchwidth.

Our results are based on deep results of Seymour & Thomas [22] on geometric
properties of planar branch decompositions. Loosely speaking, their results imply
that for a graph G embedded on a sphere Σ, some branch decompositions can be
seen as decompositions of Σ into discs (or sphere cuts). We are the first describing
such geometric properties of so-called sphere cut branch decompositions. Sphere
cut branch decompositions seem to be an appropriate tool for solving a variety of
planar graph problems. A refined combinatorial analysis of the algorithm shows that
the running time can be calculated by the number of combinations of non-crossing
partitions. To demonstrate the power of the new method we apply it to the following
problems.

Planar Hamiltonian Cycle. The Traveling Salesman Problem (TSP) is
one of the most attractive problems in Computer Science and Operations Research.
For several decades, almost every new algorithmic paradigm was tried on TSP
including approximation algorithms, linear programming, local search, polyhedral
combinatorics, and probabilistic algorithms [17]. One of the first known exact ex-
ponential time algorithms is the algorithm of Held and Harp [14] solving TSP on
n cites in time 2nnO(1) by making use of dynamic programming. For some special
cases like Euclidean TSP (where the cites are points in the Euclidean plane and
the distances between the cites are Euclidean distances), several researchers inde-
pendently obtained subexponential algorithms of running time 2O(

√
n·logn)nO(1) by

exploiting planar separator structures (see e.g. [15]). Smith & Wormald [23] suc-
ceed to generalize these results to d-space and the running time of their algorithm

is 2dO(d) ·2O(dn1−1/d log n) +2O(d). Until very recent there was no known 2O(
√

n)nO(1)-
time algorithm even for a very special case of TSP, namely Planar Hamiltonian

Cycle. Recently, Dĕıneko et al. [7] obtained a divide-and-conquer type algorithm
of running time roughly 2126

√
nnO(1) for this problem. Because their goal was to get

rid of the logarithmic factor in the exponent, they put no efforts in optimizing their
algorithm. But even with careful analysis, it is difficult to obtain small constants in
the exponent of the divide-and-conquer algorithm due to its recursive nature.

In this paper we use sphere cut branch decompositions not only to obtain a
O(26.903

√
nn3/2 + n3) time algorithm for Planar Hamiltonian Cycle, but also

the first 2O(
√

n)nO(1) time algorithm for a generalization, Planar Graph TSP,
which for a given weighted planar graph G is a TSP with distance metric the shortest
path metric of G.

Parameterized Planar k-cycle. The last ten years were the evidence of a rapid
development of a new branch of computational complexity: Parameterized Com-
plexity (see the book of Downey & Fellows [9]). Roughly speaking, a parameterized
problem with parameter k is fixed parameter tractable if it admits an algorithm with
running time f(k)|I |β . Here f is a function depending only on k, |I | is the length of
the non-parameterized part of the input and β is a constant. Typically, f is an ex-
ponential function, e.g. f(k) = 2O(k). During the last two years much attention was

paid to the construction of algorithms with running time 2O(
√

k)nO(1) for different
problems on planar graphs. The first paper on the subject was the paper by Alber et

2



al. [1] describing an algorithm with running time O(270
√

kn) for the Planar Dom-

inating Set problem. Different fixed parameter algorithms for solving problems
on planar and related graphs are discussed in [3, 4, 8]. In the Planar k-Cycle

problem a parameter k is given and the question is if there exists a cycle of length
at least k in a planar graph. There are several ways to obtain algorithms solving

different generalizations of Planar k-Cycle in time 2O(
√

k log k)nO(1), one of the
most general results is Eppstein’s algorithm [10] solving the Planar Subgraph

Isomorphism problem with pattern of size k in time 2O(
√

k log k)n. By making use

of sphere cut branch decompositions we succeed to find an O(213.6
√

kk n + n3) time
algorithm solving Planar k-Cycle.

2 Geometric Branch Decompositions of Σ-plane Graphs

In this section we introduce our main technical tool, sphere cut branch decomposi-
tions, but first we give some definitions.

Let Σ be a sphere (x, y, z : x2 + y2 + z2 = 1). By a Σ-plane graph G we mean
a planar graph G with the vertex set V (G) and the edge set E(G) drawn (without
crossing) in Σ. Throughout the paper, we denote by n the number of vertices of G.
To simplify notations, we usually do not distinguish between a vertex of the graph
and the point of Σ used in the drawing to represent the vertex or between an edge
and the open line segment representing it. An O-arc is a subset of Σ homeomorphic
to a circle. An O-arc in Σ is called noose of a Σ-plane graph G if it meets G
only in vertices. The length of a noose O is |O ∩ V (G)|, the number of vertices it
meets. Every noose O bounds two open discs ∆1, ∆2 in Σ, i.e. ∆1 ∩ ∆2 = ∅ and
∆1 ∪ ∆2 ∪ O = Σ.

Branch Decompositions and Carving Decompositions. A branch decomposi-
tion 〈T, µ〉 of a graph G consists of an un-rooted ternary (i.e. all internal vertices of
degree three) tree T and a bijection µ : L → E(G) between the set L of leaves of T
to the edge set of G. We define for every edge e of T the middle set mid(e) ⊆ V (G)
as follows: Let T1 and T2 be the two connected components of T \{e}. Then let Gi be
the graph induced by the edge set {µ(f) : f ∈ L∩V (Ti)} for i ∈ {1, 2}. The middle
set is the intersection of the vertex sets of G1 and G2, i.e., mid(e) := V (G1)∩V (G2).
The width bw of 〈T, µ〉 is the maximum order of the middle sets over all edges of
T , i.e., bw(〈T, µ〉) := max{|mid(e)| : e ∈ T}. An optimal branch decomposition of
G is defined by the tree T and the bijection µ which together provide the minimum
width, the branchwidth bw(G).

A carving decomposition 〈T, µ〉 is similar to a branch decomposition, only with
the difference that µ is the bijection between the leaves of the tree and the vertex
set of the graph. For an edge e of T , the counterpart of the middle set, called cut
set cut(e), contains the edges of the graph with end vertices in the leaves of both
subtrees. The counterpart of branchwidth is carvingwidth.

We will need the following result.

Proposition 1 ([12]). For any planar graph G, bw(G) ≤
√

4.5n ≤ 2.122
√

n.

Sphere Cut Branch Decompositions. For a Σ-plane graph G, we define a sphere
cut branch decomposition or sc-branch decomposition 〈T, µ, π〉 as a branch decom-
position such that for every edge e of T there exists a noose Oe bounding the two
open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only
in mid(e) and its length is |mid(e)|. Clockwise traversal of Oe in the drawing of G
defines the cyclic ordering π of mid(e). We always assume that the vertices of every
middle set mid(e) = V (G1) ∩ V (G2) are enumerated according to π.
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The following theorem provides us with the main technical tool. It follows almost
directly from the results of Seymour & Thomas [22] and Gu & Tamaki [13]. Since
this result is not explicitly mentioned in [22], we provide some explanations below.

Theorem 1. Let G be a connected Σ-plane graph of branchwidth ≤ ` without ver-
tices of degree one. There exists an sc-branch decomposition of G of width ≤ ` and
such a branch decomposition can be constructed in time O(n3).

Proof. Let G be a Σ-plane graph of branchwidth ≤ ` and with minimal vertex
degree ≥ 2. Then, I(G) is the simple bipartite graph with vertex V (G) ∪ E(G), in
which v ∈ V (G) is adjacent to e ∈ E(G) if and only if v is an end of e in G. The
medial graph MG of G has vertex set E(G), and for every vertex v ∈ V (G) there is
a cycle Cv in MG with the following properties:

1. The cycles Cv of MG are mutually edge-disjoint and have union MG;
2. For each v ∈ V (G), let the neighbors of v in I(G) be w1, . . . , wt enumerated

according to the cyclic order of the edges {v, w1}, . . . , {v, wt} in the drawing
of I(G); then Cv has vertex set {w1, . . . , wt} and wi−1 is adjacent to wi (1 ≤
i ≤ t), where w0 means wt.

In a bond carving decomposition of a graph, every cut set is a bond of the graph,
i.e., every cut set is a minimal cut. Seymour & Thomas ((5.1) and (7.2) [22]) show
that a Σ-plane graph G without vertices of degree one is of branchwidth ≤ ` if
and only if MG has a bond carving decomposition of width ≤ 2`. They also show
(Algorithm (9.1) in [22]) how to construct an optimal bond carving decompositions
of the medial graph MG in time O(n4). A refinement of the algorithm in [13] give
running time O(n3). A bond carving decomposition 〈T, µ〉 of MG is also a branch
decomposition of G (vertices of MG are the edges of G) and it can be shown (see
the proof of (7.2) in [22]) that for every edge e of T if the cut set cut(e) in MG is
of size ≤ 2`, then the middle set mid(e) in G is of size ≤ `. It is well known that
the edge set of a minimal cut forms a cycle in the dual graph. The dual graph of a
medial graph MG is the radial graph RG. In other words, RG is a bipartite graph
with the bipartition F (G)∪V (G). A vertex v ∈ V (G) is adjacent in RG to a vertex
f ∈ F (G) if and only if the vertex v is incident to the face f in the drawing of G.
Therefore, a cycle in RG forms a noose in G.

To summarize, for every edge e of T , cut(e) is a minimal cut in MG, thus cut(e)
forms a cycle in RG (and a noose Oe in G). Every vertex of MG is in one of the
open discs ∆1 and ∆2 bounded by Oe. Since Oe meets G only in vertices, we have
that Oe ∩ V (G) = mid(e). Thus for every edge e of T and the two subgraphs G1

and G2 of G formed by the leaves of the subtrees of T \ {e}, Oe bounds the two
open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2.

Finally, with a given bond carving decomposition 〈T, µ〉 of the medial graph MG,
it is straightforward to construct cycles in RG corresponding to cut(e), e ∈ E(T ),
and afterwards to compute ordering π of mid(e) in linear time. ut

Non-Crossing Matchings. Together with sphere cut branch decompositions, non-
crossing matchings give us the key to our later dynamic programming approach. A
non-crossing partitions (ncp) is a partition P (n) = {P1, . . . , Pm} of the set S =
{1, . . . , n} such that there are no numbers a < b < c < d where a, c ∈ Pi, and b, d ∈
Pj with i 6= j. A partition can be visualized by a circle with n equidistant vertices
on it’s border, where every set of the partition is represented by the convex polygon
with it’s elements as endpoints. A partition is non-crossing if these polygons do not
overlap. Non-crossing partitions were introduced by Kreweras [16], who showed that
the number of non-crossing partitions over n vertices is equal to the n-th Catalan
number:
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CN(n) =
1

n + 1

(

2n

n

)

∼ 4n

√
πn

3
2

≈ 4n (1)

A non-crossing matching (ncm) is a special case of a ncp, where |Pi| = 2 for
every element of the partition. A ncm can be visualized by placing n vertices on a
straight line, and connecting matching vertices with arcs at one fixed side of the line.
A matching is non-crossing if these arcs do not cross. The number of non-crossing
matchings over n vertices is given by:

M(n) = CN(
n

2
) ∼ 2n

√
π(n

2 )
3
2

≈ 2n (2)

3 Planar Hamiltonian Cycle

In this section we show how sc-branch decompositions in combination with ncm’s
can be used to design subexponential parameterized algorithms. In the Planar

Hamiltonian Cycle problem we are given a weighted Σ-plane graph G = (V, E)
with weight function w : E(G) → N and we ask for a cycle of minimum weight
through all vertices of V . We can formulate the problem in a different way: A
labelling H : E(G) → {0, 1} is Hamiltonian if the subgraph GH of G formed by
the edges with positive labels is a spanning cycle. Find a Hamiltonian labelling H
minimizing

∑

e∈E(G) H(e) · w(e). For an edge labelling H and vertex v ∈ V (G) we

define the H-degree degH(v) of v as the sum of labels assigned to the edges incident
to v. Though the use of labellings makes the algorithm more sophisticated, it is
necessary for the understanding of the latter approach for Planar Graph TSP.
Let 〈T, µ, π〉 be a sc-branch decomposition of G of width `. We root T by arbitrarily
choosing an edge e, and subdivide it by inserting a new node s. Let e′, e′′ be the new
edges and set mid(e′) = mid(e′′) = mid(e). Create a new node root r, connect it to s
and set mid({r, s}) = ∅. Each internal node v of T now has one adjacent edge on the
path from v to r, called parent edge eP , and two adjacent edges towards the leaves,
called left child eL and right child eR. For every edge e of T the subtree towards
the leaves is called the lower part and the rest the residual part with regard to e.
We call the subgraph Ge induced by the leaves of the lower part of e the subgraph
rooted at e. Let e be an edge of T and let Oe be the corresponding noose in Σ. The
noose Oe partitions Σ into two discs, one of which, ∆e, contains Ge.

We call a labelling P [e] : E(Ge) → {0, 1} a partial Hamiltonian labelling if the
subgraph GP[e] induced by the edges with positive labels satisfies the following
properties:

• For every vertex v ∈ V (Ge) \ Oe, the P [e]-degree degP[e](v), i.e. the sum of
labels assigned by P [e] to the edges incident to v, is two.

• Every connected component of GP[e] has two vertices in Oe with degP[e](v) = 1
for e 6= {r, s}; For e = {r, s}, GP[e] is a cycle.

Observe that GP[e] forms a collection of disjoint paths, and note that every
partial Hamiltonian labelling of G{r,s} is also a Hamiltonian labelling.

For dynamic programming we need to keep for every edge e of T the information
on which vertices of the disjoint paths of GP[e] of all possible partial Hamiltonian
labellings P [e] hit Oe ∩ V (G) and for every vertex v ∈ Oe ∩ V (G) the information
if degP[e](v) is either 0, or 1, or 2.

And here the geometric properties of sc-branch decompositions in combination
with ncm’s come into play. For a partial Hamiltonian labelling P [e] let P be a path
of GP[e]. We scan the vertices of V (P ) ∩ Oe according to the ordering π and mark
with ’1[’ the first and with ’1]’ the last vertex of P on Oe. We also mark by ’2’

5



the other ’inner’ vertices of V (P ) ∩ Oe. If we mark in such a way all vertices of
V (GP[e]) ∩ Oe, then given the obtained sequence with marks ’1[’, ’1]’, ’2’, and ’0’,
one can decode the complete information on which vertices of each path of V (GP[e])
hit Oe. This is possible because Oe bounds the disc ∆e and the graph GP[e] is in
∆e. The sets of endpoints of every path are the elements of an ncm. Hence, with
the given ordering π the ’1[’ and ’1]’ encode an ncm.

For an edge e of T and corresponding noose Oe, the state of dynamic pro-
gramming is specified by an ordered `-tuple te := (v1, . . . , v`). Here, the vari-
ables v1, . . . , v` correspond to the vertices of Oe ∩ V (G) taken according to the
cyclic order π with an arbitrary first vertex. This order is necessary for a well-
defined encoding for the states when allowing v1, . . . , v` to have one of the four
values: 0, 1[, 1], 2. Hence, there are at most O(4`|V (G)|) states. For every state, we
compute a value We(v1, . . . , v`). This value is equal to W if and only if W is the
minimum weight of a partial Hamiltonian labelling P [e] such that:

1. For every path P of GP[e] the first vertex of P ∩Oe in π is represented by 1[ and
the last vertex is represented by 1] . All other vertices of P ∩Oe are represented
by 2.

2. Every vertex v ∈ (V (Ge) ∩ Oe) \ GP[e] is marked by 0.

We put W = +∞ if no such labelling exists. For every vertex v the numerical part
of its value gives degP[e](v).

To compute an optimal Hamiltonian labelling we perform dynamic programming
over middle sets mid(e) = O(e) ∩ V (G), starting at the leaves of T and working
bottom-up towards the root edge. The first step in processing the middle sets is to
initialize the leaves with values (0, 0), (1[, 1]). Then, bottom-up, update every pair
of states of two child edges eL and eR to a state of the parent edge eP assigning a
finite value WP if the state corresponds to a feasible partial Hamiltonian labelling.

Let OL, OR, and OP be the nooses corresponding to edges eL, eR and eP . Due
to the definition of branch decompositions, every vertex must appear in at least
two of the three middle sets and we can define the following partition of the set
(OL ∪OR ∪OP )∩ V (G) into sets I := OL ∩OR ∩ V (G) and D := OP ∩ V (G) \ I (I
stands for ’Intersection’ and D for ’symmetric Difference’). The disc ∆P bounded
by OP and including the subgraph rooted at eP contains the union of the discs ∆L

and ∆R bounded by OL and OR and including the subgraphs rooted at eL and eR.
Thus |OL ∩OR ∩OP ∩ V (G)| ≤ 2. The vertices of OL ∩OR ∩OP ∩ V (G) are called
portal vertices.

We compute all valid assignments to the variables tP = (v1, v2, . . . , vp) corre-
sponding to the vertices mid(eP ) from all possible valid assignments to the variables
of tL and tR. For a symbol x ∈ {0, 1[, 1], 2} we denote by |x| its ’numerical’ part. We
say that an assignment cP is formed by assignments cL and cR if for every vertex
v ∈ (OL ∪ OR ∪ OP ) ∩ V (G):

1. v ∈ D: cP (v) = cL(v) if v ∈ OL ∩ V (G), or cP (v) = cR(v) otherwise.
2. v ∈ I \ OP : (|cL(v)| + |cR(v)|) = 2.
3. v portal vertex: |cP (v)| = |cL(v)| + |cR(v)| ≤ 2.

We compute all `-tuples for mid(eP ) that can be formed by tuples corresponding
to mid(eL) and mid(eR) and check if the obtained assignment corresponds to a
labelling without cycles. For every encoding of tP , we set WP = min{WP , WL +
WR}.

For the root edge {r, s} and its children e′ and e′′ note that (Oe′∪Oe′′ )∩V (G) = I
and O{r,s} = ∅. Hence, for every v ∈ V (GP[{r,s}]) it must hold that degP[{r,s}](v) is
two, and that the labellings form a cycle. The optimal Hamiltonian labelling of G
results from mint{r,s}

{Wr}.
Analyzing the algorithm, we obtain the following lemma.
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Lemma 1. Planar Hamiltonian Cycle on a graph G with branchwidth ` can
be solved in time O(23.292``n + n3).

Proof. By Theorem 1, an sc-branch decomposition T of width ≤ ` of G can be
found in O(n3).

Assume we have three adjacent edges eP , eL, and eR of T with |OL| = |OR| =
|OP | = `. Without loss of generality we limit our analysis to even values for `,
and for simplicity assume there are no portal vertices. This can only occur if |I | =
|D ∩ OL| = |D ∩ OR| = `

2 .
By just checking every combination of `-tuples from OL and OR we obtain a

bound of O(`42`) for our algorithm.
Some further improvement is apparent, as for the vertices u ∈ I we want the

sum of the {0, 1[, 1], 2} assignments from both sides to be 2.
We start by giving an expression for Q(`, m): the number of `-tuples over `

vertices where the {0, 1[, 1], 2} assignments for vertices from I is fixed and contains
m 1[’s and 1]’s. The only freedom is thus in the `/2 vertices in D∩OL and D∩OR,
respectively:

Q(`, m) =

`
2 ,2
∑

i=m%2

( `
2

i

)

2
`
2−iCN(

i + m

2
) (3)

This expression is a summation over the number of 1[’s and 1]’s in D ∩ OL

and D ∩ OR, respectively. The starting point is m%2 (m modulo 2), and the 2 at
the top of the summation indicates that we increase i with steps of 2, as we want

i + m to be even (the 1[’s and 1]’s have to form a ncm). The term
( `

2
i

)

counts the

possible locations for the 1[’s and 1]’s, the 2
`
2−i counts the assignment of {0, 2} to

the remaining `/2 − i vertices, and the CN( i+m
2 ) term counts the ncm’s over the

1[’s and 1]’s. As we are interested in exponential behaviour for large values of ` we
ignore that i + m is even, and use that CN(n) ≈ 4n:

Q(`, m) ≈
`
2

∑

i=0

( `
2

i

)

2
`
2−i2i+m = 2

`
2+m

`
2

∑

i=0

( `
2

i

)

= 2`+m (4)

We can now count the total cost of forming an `-tuple from OP . We sum over i: the
number of 1[’s and 1]’s in the assignment for I :

C(`) =

`
2

∑

i=0

( `
2

i

)

2
`
2−iQ(`, i)2 (5)

Straightforward calculation by approximation yields:

C(`) ≈
`
2

∑

i=0

( `
2

i

)

2
`
2−i22`+2i = 2

5`
2

`
2

∑

i=0

( `
2

i

)

2i = 2
5`
2 3

`
2 = (4

√
6)` (6)

By Proposition 1 and Lemma 1 we achieve the running time O(26.987
√

nn3/2+n3)
for Planar Hamiltonian Cycle.

3.1 Forbidding Cycles

We can further improve upon the previous bound by only forming encodings that
don’t create a cycle. As cycles can only be formed at the vertices in I with numerical
part 1 in both OL and OR, we only consider these vertices. Note that within these
vertices both in OL and OR every vertex with a 1] has to be paired with a 1[,
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whereas a 1[ could be paired with a 1] that lies in D. We encode every vertex by a
{1[, 1]}2 assignment, where the first corresponds to the state in OL, and the second
to the state in OR. For example |1[1[, 1]1]| corresponds to a cycle over two vertices.
We obtain the following combinatorial problem: given n vertices with a {1[, 1]}2

assignment to every vertex, how many combinations can be formed that induce no
cycles and pair every 1] with a 1[ at the same side?

Exact counting is complex, so we use a different approach. We try to find some
small z such that |B(b)| is O(zn). Let B(i) denote the set of all feasible combinations
over i vertices: B(0) = ∅, B(1) = {|1[1[|}, B(2) = {|1[1[, 1[1[|, |1[1[, 1]1[|, |1[1[, 1[1]|},
etc. Note that |1[1[, 1]1]| is not included in B(2) as this is a cycle. We map all items
of B(i) to a fixed number of classes C1, . . . , Cm and define xi = {xi1, . . . , xim}T as
the number of elements in each class.

Suppose we use two classes: C1 contains all items | . . . , 1[1[|, and C2 contains all
other items. Note that adding 1]1] to items from C1 is forbidden, as this will lead to
a cycle. Addition of 1[1[ to items from C2 gives us items of class C1. Addition of 1[1]

or 1]1[ to either class leads to items of class C2, or can lead to infeasible encodings.

These observations show that A =

(

1 1
2 3

)

. As the largest real eigenvalue of A is

2 +
√

3, we have z ≤ 3.73205.
Using these two classes eliminated all cycles over two consecutive vertices. By

using more classes we can prevent larger cycles, and obtain tighter bounds for z.
With only three classes we obtain z ≤ 3.68133. This bound is definitely not tight,
but computational research suggests that z is probably larger than 3.5. By using
the value 3.68133 for z we obtain the following result:

Theorem 2. Planar Hamiltonian Cycle is solvable in O(26.903
√

nn3/2 + n3).

4 Variants

In this section we will discuss results on other non-local problems on planar graphs.

Longest Cycle on Planar Graphs. Let C be a cycle in G. For an edge e of sc-
branch decomposition tree T , the noose Oe can affect C in two ways: Either cycle C
is partitioned by Oe such that in Ge the remains of C are disjoint paths, or C is
not touched by Oe and thus is completely in Ge or G \ E(Ge).

With the same encoding as for Planar Hamiltonian Cycle, we add a counter
for all states te which is initialized by 0 and counts the maximum number of edges
over all possible vertex-disjoint paths represented by one te. In contrast to Planar

Hamiltonian Cycle, we allow for every vertex v ∈ I that |cL(v)|+ |cR(v)| = 0 in
order to represent the isolated vertices. A cycle as a connected component is allowed
if all other components are isolated vertices. Then all other vertices in V (G)\V (GP )
of the residual part of T must be of value 0. Implementing a counter Z for the actual
longest cycle, a state in tP consisting of only 0’s represents a collection of isolated
vertices with Z storing the longest path in GP without vertices in mid(e). At the
root edge, Z gives the size of the longest cycle. Thus, Planar Longest Cycle is
solvable in time O(27.223

√
nn3/2 + n3).

k-Cycle on Planar graphs is the problem of finding a cycle of length at least a
parameter k. The algorithm on Longest Cycle can be used for obtaining param-
eterized algorithms by adopting the techniques from [8, 11].

Before we proceed, let us remind the notion of a minor. A graph H obtained by
a sequence of edge-contractions from a graph G is said to be a contraction of G. H
is a minor of G if H is the subgraph of a some contraction of G. Let us note that
if a graph H is a minor of G and G contains a cycle of length ≥ k, then so does G.

We need the following combination of statements (4.3) in [21] and (6.3) in [20].
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Theorem 3 ([20]). Let k ≥ 1 be an integer. Every planar graph with no (k×k)-grid
as a minor has branchwidth ≤ 4k − 3.

It easy to check that every (
√

k×
√

k)-grid, k ≥ 2, contains a cycle of length ≥ k−
1. This observation combined with Theorem 3 suggests the following parameterized
algorithm. Given a planar graph G and integer k, first compute the branchwidth of
G. If the branchwidth of G is at least 4

√
k + 1 − 3 then by Theorem 3, G contains

a (
√

k + 1 ×
√

k + 1)-grid as a minor and thus contains a cycle of length ≥ k. If
the branchwidth of G is < 4

√
k + 1 − 3 we can find the longest cycle in G in time

O(213.6
√

k
√

k n + n3). We conclude with the following theorem.

Theorem 4. Planar k-Cycle is solvable in time O(213.6
√

k
√

k n + n3).

By standard techniques (see for example [9]) the recognition algorithm for Pla-

nar k-Cycle can easily be turned into a constructive one.

Planar Graph TSP. In the Planar Graph TSP we are given a weighted Σ-
plane graph G = (V, E) with weight function w : E(G) → N and we are looking for
a shortest closed walk that visits all vertices of G at least once. Equivalently, this is
TSP with distance metric the shortest path metric of G. The algorithm for Planar

Graph TSP is very similar to the algorithm for Planar Hamiltonian Cycle so
we mention here only the most important details. Every shortest closed walk in G
corresponds to the minimum Eulerian subgraph in the graph G′ obtained from G
by adding to each edge a parallel edge. Since every vertex of an Eulerian graph is of
even degree we obtain an Eulerian labelling E : E(G) → {0, 1, 2} with the subgraph
GE of G formed by the edges with positive labels is a connected spanning subgraph
and for every vertex v ∈ V the sum of labels assigned to edges incident to v is
even. Thus the problem is equivalent to finding an Eulerian labelling E minimizing
∑

e∈E(G) E(e) · w(e).

In contrast to the approach for Planar Hamiltonian Cycle, the parity plays
an additional role in dynamic programming, and we obtain a bit more sophisticated
approach.

Theorem 5. Planar Graph TSP is solvable in time O(210.8224
√

nn3/2 + n3).

5 Conclusive Remarks

In this paper we introduce a new algorithm design technique based on geometric
properties of branch decompositions. Our technique can be also applied to con-
structing 2O(

√
n) · nO(1)-time algorithms for a variety of cycle, path, or tree sub-

graph problems in planar graphs like Hamiltonian Path, Longest Path, and
Connected Dominating Set, and Steiner Tree among others. An interest-
ing question here is if the technique can be extended to more general problems,
like Subgraph Isomorphism. For example, Eppstein [10] showed that Planar

Subgraph Isomorphism problem with pattern of size k can be solved in time

2O(
√

k log k)n. Can we get rid of the logarithmic factor in the exponent (maybe in
exchange to a higher polynomial degree)?

The results of Cook & Seymour [6] on using branch decomposition to obtain
high-quality tours for (general) TSP show that branch decomposition based algo-
rithms work much faster than their worst case time analysis shows.

Together with our preliminary experience on the implementation of a similar
algorithm technique for solving Planar Vertex Cover in [2], we conjecture that
sc-branch decomposition based algorithms perform much faster in practice.
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