
Harnessing the Driving Force of
Dependencies

Eva Burrows ∗

Department of Informatics, University of Bergen, Norway
March 15, 2010

P GM
Computational devices are rapidly evolving into massively parallel systems.
Multicore processors are standard, and high performance processors such as the
Cell BE processor [6] or graphics processing units (GPUs) featuring hundreds
of on-chip processors (e.g. [10]) are all developed to accumulate processing
power. They make parallelism commonplace, not only the privilege of expen-
sive high-end platforms. However, classical parallel programming paradigms
cannot readily exploit these highly parallel systems. In addition, each hardware
architecture comes along with a new programming model and/or application
programming interface (API). This makes the writing of portable, efficient par-
allel code difficult. As the number of processors per chip is expected to double
every other year or so, entering parallel processing into the mass market, soft-
ware needs to be parallelized and ported in an efficient way to massively
parallel, possibly heterogeneous, architectures.

RW
One way of transforming manycore power into real application performance
– as being adopted by most hardware vendors – is to provide libraries, APIs
or some ready-to-use software toolbox that help developers to annotate legacy
code with parallel constructs where possible (e.g. [11, 1, 2]), or to offer some
low-level cross-platform standardization (i.e. OpenCL [8]) which targets both
multicore CPUs and/or GPUs. While these approaches are undoubtedly for
the benefit of practicing program developers, they do not constitute a unified
parallel programming model. Computer science is in search for more radical
solutions. It investigates the possibility of a new high-level parallel program-
ming paradigm that can easily adapt to the era of commonly available parallel
computing devices as well as to the increasingly more accessible realm of high-
performance computing facilities.

One of the major issues in parallelizing applications is to deal with the
underlying inherent dependency structure of the program. Miranker and Win-
kler [9] suggested that program data dependency graphs can abstract how
parts of a computation depend on data supplied by other parts. This served as

∗http://www.ii.uib.no/~eva/

1

http://www.ii.uib.no/~eva/


a basis for parallelizing compilers ([12]), and proved the idea of embedding a
program’s communication structure into the hardware topology a reasonable
approach. However, automatic dependence analysis is difficult for the gen-
eral cases, and as a result parallelizing compilers cannot make the most of the
underlying dependencies.

D D – A P I
The constructive recursive approach developed by Haveraaen [7] allows the
modular separation of computation from dependency, such that both are pro-
grammable independently from each other. This also entails a separation be-
tween local dependencies of a function, and the global communication pattern
of the whole computation. The uniqueness of this approach consists in the fact
that dependencies are captured by algebraic abstractions – Data Dependency
Algebras (DDAs) – and turned into explicit, first class, programmable entities
in the program code, so that a parallelizing compiler can harness directly the
implicit driving force of dependencies. In a recent work [5] we pointed out
how this approach can serve as a basis for a hardware independent parallel
programming model.

M R D
I explore the role DDAs can play in parallel computing from the on-chip par-
allelism of microprocessors via GPUs, up to parallel machine networks. I
investigate algebraic properties that allow the combination and nesting of var-
ious DDAs to be used by a DDA-enabled compiler to generate efficient code.
In addition, my work includes the design of new language features with vari-
ous computational mechanisms targeting different hardware architectures (e.g.
sequential, CUDA, MPI, FPGA placements, etc) from the same DDA-based
program code. These are going to be implemented in the framework of the
Magnolia programming language [3, 4], which itself is under development.
Magnolia allows the definition of concepts to specify the interface and be-
haviour of abstract data types which are well-suited to express DDA concepts.
I am working on the design of the DDA related backend features of Magnolia.

I R
DDA abstractions allow us to modify at a high-level the way computations are
mapped onto a given (parallel) hardware. They give us full control over data
locality, and spatial placements of computations. The latter led us to the idea
that DDAs are suitable abstractions for defining FPGA placements, which is
going to be investigated in the near future.

DDAs can capture the space-time communication topology of modern par-
allel hardware, as it has been shown in particular for the CUDA model of
NVIDIA’s GPUs.

Practical experiments show that once the dependency pattern of a compu-
tation is defined in a separate module, this can be reused over various plat-
forms. This results in high portability, but at the cost of slightly less optimal
running times compared to fine-tuned platform specific program codes. A
DDA-enabled compiler with a proper optimizing mechanism in place however
is likely to alleviate this problem.

2



R
[1] Intel Parallel Studio. http://www.intel.com/go/parallel, 2009.

[2] Intel’s Ct. http://software.intel.com/en-us/data-parallel/, 2009.

[3] A. Bagge and M. Haveraaen. Interfacing concepts. In T. Ekman and
J. Vinju, editors, Proceedings of the ninth Workshop on Language Decsriptions
Tools and Applications LDTA 2009, pages 238–252, 2009.

[4] A. H. Bagge. Constructs & Concepts, Language Design for Flexibility and
Reliability. PhD thesis, Department of Informatics, University of Bergen,
Norway, October 2009.

[5] E. Burrows and M. Haveraaen. A hardware independent parallel pro-
gramming model. Journal of Logic and Algebraic Programming, 78:519–538,
2009.

[6] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell Broadband Engine
Architecture and its first implementation – A performance view. IBM
Journal of Research and Development, 51(5):559–572, 2007.

[7] M. Haveraaen. Efficient parallelisation of recursive problems using con-
structive recursion (research note). In Euro-Par ’00: Proceedings from the
6th International Euro-Par Conference on Parallel Processing, pages 758–761,
London, UK, 2000. Springer-Verlag.

[8] Khronos OpenCL Working Group. The OpenCL Specification. Version 1.0,
2009.

[9] W. L. Miranker and A. Winkler. Spacetime representations of computa-
tional structures. Computing, 32(2):93–114, 1984.

[10] NVIDIA. CUDA Programming Guide. Version 3.0, 2010.

[11] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. O’Reilly, 2007.

[12] M. Wolfe, editor. High Performance Compilers for Parallel Computing. Addi-
son Wesley; Reading, Mass., 1996.

3

http://www.intel.com/go/parallel
http://software.intel.com/en-us/data-parallel/

	Parallelism Going Mainstream
	Related Work
	Data Dependency -- A Programmable Interface
	My Research Directives
	Intermediate Results

