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Abstract

This thesis studies drumloops, and the possibility to separate the different drumsounds from each
other. Drum onsets and the detection of these are thoroughly discussed. Different approaches for
detection and separation are discussed and a measure for correctness is presented.
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Introduction

Goal

The goal of this thesis is studying the possibility of developing a system that enables the user to
compose a new drum sequence by using an original drumloop as a template to work from. The
following functions must be present:

1. loading/saving samples (drumloops)

2. extract the onset of each drumsound

3. extracting the frequency boundaries a drumsound resides in

4. separate the drumsounds from each other

5. find replacement drumsounds from a database of samples if needed

6. rebuild a new drumloop as close as possible to the original one

7. a basic editor for composing new beats

The purpose of such a system is to change an original drumloop in a way not previously possible.
You can change the speed1 of the drumloop without changing its pitch2, in other words the BPM3.
You could mute selected drums in the loop, or change their position, or even swap a drum altogether.
The system is a composition tool where you can use an existing drumloop, separate its elements (the
individual drumsounds, e.g. bassdrum/hihat/snare) and re-compose the drumloop until a desired result
is achieved. The system can also be used to study at leisure the composition of a drumsequence from
for example an educational perspective.

Problem

The areas of research that needs the closest attention in order to make this system work, can be defined
by these three main problems:

1. extracting drumsound onsets and defining the frequency boundaries for a drumsound

1This effect is also called time-stretching or pitch-shifting. There exist good algorithms for doing this, but the algorithms
work on the drumloop as a sample (which it is) and not as a composition of different drumsounds.

2The pitch is the key of a sound. Even though drumsounds are not normally stationary signals, the often have a perceived
pitch.

3BPM - beats per minute.
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2. separating the drumsounds

3. finding matches of similar sounds in a database.

The first task of finding the onset and frequency boundaries of a drumsound was first taken lightly.
We thought that a relatively simple algorithm working in the frequency domain would be sufficient,
and we also originally combined the onset/frequency problem together with the separation problem.

As this thesis will show the first task was not as easily solved as first anticipated. In addition many
of the methods discussed in the thesis show that a clean separation of the problems as outlined above
not always is the best approach towards a solution.
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Chapter 1

Psychoacoustics and drum basics

1.1 Drum types

The standard classification of instruments following the Sachs-Hornbostel scheme (mentioned in the
Ph.D by W. Andrew Schloss) [Sch85], divides instruments into four main categories:

1. Idiophoneswhere the vibrating material is the same object that is played (free of any applied
tension), e.g. woodblocks, gongs, etc.

2. Membranophoneswhere the vibrating material is a stretched membrane, e.g. drums

3. Chordophoneswhere the vibrating material is one or more stretched strings e.g. lutes, zithers,
etc.

4. Aerophoneswhere the vibrating material is a column of air, e.g. flutes, oboes, etc.

We will be looking at sounds produced by only two of the main categories, namely idiophones and
membranophones. Mallet instruments (marimba, xylophone, vibraphone, glockenspiel) which might
be considered drums are more similar to piano and although being idiophones will not be included
here.

1.2 Frequency assumptions

The assumption that theoretically would make this composing system possible, is that you can find
some key attributes that define a drumsound and makes it unique.

Initially we were hoping that the frequency distribution would be more sparse for the different
drumsounds i.e. bassdrums occurring just in the lower parts of the frequency spectrum, hihats just in
the upper parts. This however turned out not to be totally true, as a drumsound usually spreads over
a relatively large frequency area, of course including the main area of which it resides in. As Schloss
says “The fact is that drums differ enormously in timbre and pitch clarity. Minute differences in shell
size and shape, and the thickness and type of membrane, contribute a great deal to the unique sound
of different drums” [Sch85].

When describing a particularly recording of Brazilian percussive music, Schloss, in his article on
the automatic transcription of percussive music, notes “... the extremely diverse percussion instru-
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ments cover an enormous bandwidth, from below 40 Hz to the limit of hearing1. Each instrument has
a wide spectrum, overlapping the others both in spectrum and in rhythmic patterns.” [Sch85].

One reason for our assumption of a more strict frequency distribution may have been caused by
the perceived pitch of certain drums. For example “The acoustics of the timpani have been described
briefly by Thomas Rossing, including the reasons these drums elicit a reasonable clear pitch, when in
fact they should be quite inharmonic [Ros82]” [Sch85].

The frequency distribution is still an attribute that can be used for describing a drumsound.

1.3 Attack

Another attribute that is normally present in a drumsound is a fast attack. Attack is the time from
the start of the sound to the time of peak intensity. Drumsounds are normally generated by hitting
surfaces, and the sound produced usually reaches its peak intensity in a short period of time. Sounds
that have been extensively changed by signal processing tools (e.g. reversed) may loose this attribute
and might be harder to detect.

1.3.1 Perceptual Attack Time

Still there is a problem in musical timing context that should be mentioned - the problem of Perceptual
Attack Time (PAT). As Schloss writes “the first moment of disturbance of air pressure is not the same
instant as the firstperceptof the sound, which in turn may not necessarily coincide with the time
the sound is perceived as arhythmic event. There inevitably will be some delay before the sound is
registered as anewevent, after it is physically in evidence.” [Sch85]:23.

We will not delve any deeper into this problem in this thesis as it actually can be largely ignored.
“It turns out that the actual ’delay’ caused by PAT in the case of drumsounds is quite small, because
the slope is typically rather steep.” [Sch85]:24. The test data used for our experiments with different
onset algorithms is subjectively crafted using our own perception of the drumsamples. “In trying
to define limits on temporal discrimination, researchers have not always agreed on their results; one
fact stands out, however - the ’ear’ is the most accurate sensory system in the domain of duration
analysis.” [Sch85]:20. Hence, if the system corresponds with the test data, it will also correlate with
our perception of the drumsamples and their onsets.

1.4 Decay

Also, drumsounds normally have a "natural" decay time, unless reverb has been added, it is a special
instrument or has been altered in a sample-editor. By decay we mean the time it takes from the
peak intensity until the drumsounds disappears, so not like the decay we know from ADSR envelopes
in synthesizers or samplers. Is is not however easy to give a general rule for the rate of decay for
drumsounds as it is with attack. Therefore, making any rules based on this attribute would make the
system less general.

1about 22 kHz when we are young
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1.5 Specific drumsounds

In this thesis some specific drumsounds will be mentioned and in order to make it possible for the
reader to know what kind off drums they are, here is a brief description with images.

1.6 Limits of temporal discrimination

When studying and trying to mimic the human auditory system it is important to understand the limits
of our perception of sound and temporal changes.

1.6.1 Separating close events

First of all for this thesis focused on rhythm and drum onsets in particular it is important to find out
what the limits of discriminability is in terms of time. What is the minimum duration between two
events that still can beperceivedby our ear as two distinct events? This is interesting because we want
to know what ’resolution’ our system for onset detection should operate in.

In a classical study by Ira Hirsch [Hir59] it was found that “it was possible to separate perceptually
two brief sounds with as little as 2 msec. between them; but in order to determine theorder of the
stimulus pair, about 15-20 msec. was needed” [Sch85]:22.

In this thesis 5 ms will be used as the lower limit for error in the system, for as Schloss claims: “In
the normal musical range, it is likely that to be within 5 msec. in determining attack times is adequate
to capture essential (intentional) timing information” [Sch85]:22.

1.6.2 Weber law

Weber’s law states that “the perceptual discriminability of a subject with respect to a physical attribute
is proportional to its magnitude, that isδx/x= k wherex is the attribute being measured, andδx is the
smallest perceptual change that can be detected.k is called theWeber ratio, a dimensionless quantity.”
[Sch85]:20.

In other words, if you examine something of a certain magnitude, your discriminability will vary
proportionally with the magnitude.

It would be interesting to see if this also applies to our hearing. “It turns out that, for very long
or very short durations [pauses between rhythmic events], Weber’s law fails, but in the area from
200 milliseconds to 2 seconds, a modified version of Weber’s law seems to hold, according to Getty
[Get75].” [Sch85]:20.

To conclude, the human auditory system works best in the ’musical range’ with intervals of 100 -
2000 ms. And people normally have the most accurate sense of temporal acuity in the range of 500 -
800 ms. [Sch85]:21-22.
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Name Description Image

Snare drum sharp short sound

Bass drum deep bass sound

Hihat thin light sound

Cymbal broad light sound

Tomtom different “pitched” sounds

Table 1.1: Overview of traditional modern drums.
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Chapter 2

Digital sound basics

This chapter is a brief introduction in digital sound processing. We give a thorough explanation of
the different DSP terms used in this thesis, and we explain and discuss the transformations and their
advantages and disadvantages.

2.1 LTI systems

In this thesis we only focus on discrete-time systems, specifically linear time-invariant (LTI) systems.
"A linear system has the property that the output signal due to a linear combination of two or more

input signals can be obtained by forming the same linear combination of the individual outputs. That
is, if y1(n) andy2(n) are the outputs due to the inputsx1(n) andx2(n) , then the output due to the
linear combination of inputs

x(n) = a1x1(n)+a2x2(n) (2.1)

is given by the linear combination of outputs

y(n) = a1y1(n)+a2y2(n) (2.2)

." [Orf96]:103.
"A time-invariant systemis a system that remains unchanged over time. This implies that if an

input is applied to the system today causing a certain output to be produced, then the same output will
also be produced tomorrow if the same input is applied." [Orf96]:104.

2.2 Waveform

A sound presented in the digital domain is called asample. With this we mean an array of numbers
representing the form of the sound. Asamplepointis onesuch number in a sample array. The numbers
in the array describe theamplitudeof the sound. Figure 2.1 shows how this looks graphically, and it
is called awaveform.

By amplitudewe mean a positive or negative value describing the position of the samplepoint
relative to zero. Notice thatmagnitudeis very similar, but bymagnitudewe mean a positive value de-
scribing theamplitudeof a signal. In other words magnitude is the amplitude of the wave irrespective
of the phase.
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Figure 2.1: Waveform of a drumsequence.

When we look at a waveform we are studying the sample in thetime-domain. Time is on the
horizontal axis and the amplitude is along the vertical axis.

2.3 FFT and the power spectrum

“In 19th century (1822 to be exact), the French mathematician J. Fourier, showed that any periodic
function can be expressed as an infinite sum of periodic complex exponential functions. Many years
after he had discovered this remarkable property of (periodic) functions, his ideas were generalized to
first non-periodic functions, and then periodic or non-periodic discrete time signals.” [Pol01].

The DFT’s (discrete Fourier transform) origin is the CFT (continuous Fourier transform) but since
our focus is on discrete-time systems we only discuss the DFT. The DFT equation in exponential form
is:

X(m) =
N−1

∑
n=0

x(n)e−i2πnm/N (2.3)

wherex(n) is a discrete sequence of time-domain sampled values (basically a sample) of the
continuous variablex(t), e is the base of natural logarithms andi is

√
−1. Equation 2.3 can based on

Euler’s relationshipe−iθ = cos(θ)− isin(θ) be changed into this rectangular form:

X(m) =
N−1

∑
n=0

x(n)[cos(2πnm/N)− isin(2πnm/N)] (2.4)

• X(m): themth DFT output

• m: the index of the DFT output in the frequency-domain

• x(n): the sample

• n: the time-domain index of the sample

• i:
√
−1
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• N: the number of samplepoints in the sample and the number of frequency points in the DFT
output [Lyo01]:49-51.

The point of the Fourier transform is to determine thephaseandamplitudeof the frequencies
in a signal. The result of a DFT is a sequence of complex numbers where the modulus describes the
amplitude and the argument describes the phase. If we want to study a sample in the frequency-domain
this can be done by performing the DFT (discrete Fourier transform), or its fast implementation FFT
(fast Fourier transform), on the sample and by using the result from the transform calculate a power
spectrum of the sample, see Figure 2.2.

Figure 2.2: Power spectrum of a drumsequence.

In Figure 2.2 the vertical-axis shows the power of the signal in dB and the horizontal-axis shows
the frequency in Hz. As we can see the sample has a peak in the lower parts of the spectrum and
gradually the power declines towards the upper frequencies. This presentation of the frequency parts
of the drumsequence does not tell us anything about their relation in time. If the sample being analyzed
was a frequency sweep the power spectrum would not tell us anything but the total amount of power
the different frequency components in the sample had.

Ignoring the negative frequencies returned from a DFT, calculating a power density-spectrum with
results from the discrete Fourier transform applied on a real (as opposed to complex) signal could be
implemented as shown in Figure 2.3.

// assuming FFT by four1(buffer-1, N, 1); from Numerical Recipes: www.nr.com
for (int k = 0; k <= N/2; k++) {

real = buffer[2*k];
imag = buffer[2*k+1];
ps.freq[k] = sampleRate*(double)k/(double)N;
ps.db[k] = 10. * log10( 4.*(real*real + imag*imag) / (double)N*N );

}

Figure 2.3: Calculation of the power-density spectrum.
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In Figure 2.3ps.db[] is a vector for the dB calculated,N1 is the size of the FFT binsize and
bu f f er[] is the vector the power spectrum calculation is performed on (the result returned from the
FFT algorithm).

2.4 STFT and the sonogram

STFT (short time Fourier transform) is based upon a series of segmented and overlapped FFTs that
are applied along the sample. These segments are often referred to aswindows. In the STFT, the
individual FFTs from these multiple windows are rendered as a 2D plot where the color or intensity
represent the power. This is know as a sonogram or spectrogram.

The purpose of using overlapping windows is to produce a time-frequency representation of the
data. A high degree of overlapping of the windows can result in a more accurate time-frequency
spectrum. Since the size of a FFT binsize decides the frequency resolution there is a fixed frequency
resolution when using STFT and the resolution is set mainly by the size of the windows2. The time
resolution is also set by the size of the windows. By using small windows one get good time resolu-
tion but poorer frequency resolution. And likewise, using larger windows will give better frequency
resolution but poorer time resolution. Overlapping can help to produce better time resolution, but
only to a certain degree. The window-size thus controls the tradeoff between frequency resolution
and time resolution, and it will be constant everywhere in the time-frequency spectrum. The STFT is
thus classified as a fixed or single resolution method for time-frequency analysis.

Figure 2.4 shows the result of STFT applied to a drumsequence. The color represent the power
of the signal, the horizontal-axis represent the time and the vertical-axis the frequency. Thus we are
looking at time-frequency representation of a sample. With this representation we can decide among
other things whether a signal isstationaryor not. A stationary signal is a signal whose average
statistical properties over a time interval of interest are constant.

Figure 2.4: Sonogram of the same drumsequence.

1If the binsize used is say 512 then one gets a resolution of 256, or N/2, frequency-bands.
2Zero-padding the windows can change the resolution somewhat
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2.4.1 STFT calculation synopsis

The way a sonogram is calculated is thus, block the signal into smaller parts, window these, and do
DFT/FFT on them. The number of bins decides the frequency resolution of the sonogram, and the
amount ofoverlappingdecides the time resolution. The blocking of the signal can be overlapped, so
that the second block spans over some parts of the first block, and the third block spans over parts of
the second. A usual amount of overlapping is 50%, which means that the blocking advances at steps
half the size of the bins.

2.5 Real-world signals and windowing

The DFT of sampled real-world signals gives frequency-domain results that can be misleading. “A
characteristics, known asleakage, causes our DFT results to be only an approximation of the true
spectra of the original input signal prior to digital sampling.” [Lyo01]:71. There are several reasons
for this, one being that the input data is not periodic, an actual requirement for the Fourier transform
to return the correct frequency components in the signal. Another reason is the fact that the DFT
will only produce correct results when the input data contains energy precisely at integral multiples
of the fundamental frequencyfs/N where fs is the samplerate andN is the DFT binsize or size of
the window if you will. This means that any sample that contains intermediate frequencies like for
example 1.5 fs/N will produce incorrect results. Actually “this input signal will show up to some
degree inall of the N output analysis frequencies of our DFT!” [Lyo01]:73. This characteristics is
unavoidable when we perform DFT on real-world finite-length samples.

2.5.1 Amplitude response

If we look at the amplitude response for anN sized DFT in terms of one specific bin,X(m), for a real
cosine input havingk cycles, it can be approximated by the sinc function:

X(m)≈ N
2
· sin[π(k−m)]

π(k−m)
(2.5)

In Equation 2.5m is the bin index. We can use Equation 2.5 to determine how much leakage
happens when using DFT.
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Figure 2.5: DFT positive frequency response due to anN-point input sequence containingk cycles
of a real cosine: (a) amplitude response as a function of bin indexm; (b) magnitude response as a
function of frequency in Hz. Figure from [Lyo01]:75.

Study Figure 2.5 and notice the main lobe and�sidelobes of the curve. Since the DFT is only
a sampled version of the continuous spectral curve, the DFT will only give correct analysis “when
the input sequence has exactly an integralk number of cycles (centered exactly in them = k bin)”
[Lyo01]:74. When this is the case no leakage occurs, ie. the sidelobes are zero.

Another characteristics with the DFT is that it leakage also wraps around. “The DFT exhibits
leakage wraparound about them = 0 andm = N/2 bins. And finally an effect know as scalloping
also contributes to the non-linear output from DFT. Consider Figure 2.5 and picture all the amplitude
responses for all the bins superimposed on the same graph at the same time. The rippled curve, almost
like a picket fence, illustrates the loss DFT has because some (most) frequencies are between the bin
frequency centers.
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2.5.2 Windowing

DFT leakage is troublesome because it can corrupt low-level signals in neighbouring bins, they will
drown in the leakage in not be registered as ’interesting’ frequency components.

Windowing is the process of altering the input data in a sequence, a window. In other words
windowing is applying a window function to a sequence of input data. The purpose of windowing is
to reduce the sidelobes we experienced in Figure 2.5. If these sidelobes are reduced the DFT leakage
will also be reduced.
The benefits of windowing the DFT input are:

• reduce leakage

• reduce scalloping loss

The disadvantages of windowing are:

• broader main lobe

• main lobe peak value is reduced (frequency resolution reduced)

However as Lyons puts it “the important benefits of leakage reduction usually outweigh the loss
in DFT frequency resolution.” [Lyo01]:83.

Figure 2.6 shows a signal before and after being applied a window function. The signal is not
periodic, and this will produce glitches, which again will result in frequency leakage in the spectrum.
The glitches can be reduced by shaping the signal so that the ends matches smoothly. By multiplying
the signal with the window function we force the ends of the signal to be zero, and then fit together.
Starting and ending with the same value is not enough to make the signal repeat smoothly, the slope
also has to be the same. The easiest way of doing this is to make the slope of the signal at the ends
to be zero. The window function has the property that its value and all its derivatives are zero at the
ends.
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Figure 2.6: Shows a signal before and after being applied a window function.

2.5.2.1 Rectangular window

A rectangular window is a window with no attenuation, or no distortion of the segment it is being
applied to. A rectangular window is the window function all other window functions are compared to
concerning measures of quality. The rectangular weighs (for a rectangular window) arew(n) = 1.
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The main lobe of the rectangular window is the most narrow, but the sidelobe is only -13 dB below
the main peak lobe. The rectangular window is also know as the uniform of boxcar window.

2.5.2.2 Hanning window

The Hanning window, Equation 2.6, is an excellent general-purpose window [Tecxx]. The Hanning
window has a reduced first sidelobe, -32 dB below the main peak lobe, and theroll off or fall off,
which means the amount of reduction in dB per octave, is -18 dB [Lyo01], [Bor98]. The Hanning
window is also know as raised cosine, Hann or von Hann window and can be seen in Figure 2.7.

w(n) = 0.5−0.5cos(
2Πn
N

), 0≤ n≤ N−1 (2.6)
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Figure 2.7: Shows the Hanning window function.

2.5.2.3 Hamming window

The Hamming window, Equation 2.7, has a an even lower first sidelobe than Hanning, at -43 dB.
The fall off on the the other hand is only -6 dB, the same as a rectangular window. “This means
that leakage three or four bins away from the center bin is lower for the Hamming window than for
the Hanning, and leakage a half dozen or so bins away from the center bin is lower for the Hanning
window then for the Hamming window” [Lyo01]:84. Figure 2.8 shows the Hamming window, notice
how the endpoints do not quite reach zero.

w(n) = 0.54−0.46cos(
2Πn
N

), 0≤ n≤ N−1 (2.7)
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Figure 2.8: Shows the Hamming window function.

2.5.2.4 Welch window

The Welch window, Equation 2.8, is also know as the parabolic window and can be seen in Figure
2.9.

w(n) = 1− (
n− N

2
N
2

)2, 0≤ n≤ N−1 (2.8)
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Figure 2.9: Shows the Welch window function.

2.5.3 Window function tables of merits

Table 2.1 shows a comparison between the different window functions used in the analysis program
in this thesis.

• Sidelobe: the attenuation to the top of the highest sidelobe

• Fall off: the rate of fall in dB off to the side lobe

• Coherent Power Gain: the normalised DC gain

• Worst Case Processing Loss: the ratio of input signal-to-noise to output signal-to-noise, includ-
ing scalloping loss for the worst case
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Window function Sidelobe (dB) Fall off
(dB/octave)

Coherent
power gain

Worst case
processing
loss (dB)

Rectangular -13 -6 1.00 3.92
Hanning -32 -18 0.50 3.18
Hamming -43 -6 0.54 3.10
Welch -26

Table 2.1: Sidelobe, fall off and other descriptive values for window functions used in the thesis. All
the values are from [Bor98] except for Welch window function.

Window function Best for these
signal types

Frequency
resolution

Spectral leak-
age

Amplitude
accuracy

Rectangular Transients &
Synchronous
Sampling

Best Poor Poor

Hanning Random Good Good Fair
Hamming Random Good Fair Fair
Welch Random Good Good Fair

Table 2.2: Recommended usage and quality of window function where signal is arbitrary non-
periodic. The table taken from [Tecxx].

Table 2.2 shows a recommended usage of the same window functions as in Table 2.1. As a note the
best window to prevent spectral leakage is the Blackman window function, and the best for amplitude
accuracy is a Flat Top window [Tecxx], these were not included in the table since they are not used in
the analysis program.

2.6 Wavelet

The problem with STFT is finding the correct window function and FFT binsize to use. The size
controls both the time and frequency resolution for the whole analysis.

“The problem with STFT is the fact whose roots go back to what is known as theHeisenberg
Uncertainty Principle. This principle originally applied to the momentum and location of moving
particles, can be applied to time-frequency information of a signal. Simply, this principle states that
one cannot know the exact time-frequency representation of a signal, i.e., one cannot know what
spectral components exist at what instances of times. What onecan know are thetime intervalsin
which certainband of frequenciesexist, which is aresolutionproblem.” [Pol01].

Choosing the correct binsize and window function is application specific, there are no magic solu-
tions. And as Polikar notes, finding a good binsize and window function “could be more difficult then
finding a good stock to invest in” [Pol01]. The wavelet transform solves this dilemma of resolution to
some extent.

The biggest difference between the wavelet transform and sliding FFT is that the resolution of
the time and frequency axes change for wavelets, as with sliding FFT they stay the same. Generally
speaking we can say that the lower frequencies of a sample has poor time resolution but accurate
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frequency resolution using the wavelet transform. High frequencies have accurate time resolution but
poor frequency resolution. The wavelet transform is because of this called a multiresolution analysis.
“Multiresolution analysis is designed to give good time resolution and poor frequency resolution at
high frequencies and good frequency resolution and poor time resolution at low frequencies. This
approach makes sense especially when the signal at hand has high frequency components for short
durations and low frequency components for long durations. Fortunately, the signals that are encoun-
tered in practical applications are often of this type.” [Pol01].

2.6.1 DWT - discrete wavelet transform

The DWT’s (discrete wavelet transform) origin is the CWT (continuous wavelet transform). In the
CWT, Equation 2.9, the transformed signal is a function of two variables,τ and s, which are the
translation and scaleparameters.ψ is the wavelet basis functionor the mother waveletand ∗ is
complex conjugation.

CWTψ
x (τ,s) = Ψψ

x (τ,s) =
1√
|s|

∫
x(t)ψ(

t− τ

s
)dt (2.9)

“The wavelet analysis is a measure of the similarity between the basis functions (wavelets) and
the signal itself. Here the similarity is in the sense of similar frequency content. The calculated CWT
coefficients refer to the closeness of the signal to the waveletat the current scale.” [Pol01]. Figure
2.10 shows the results from a CWT and DWT analysis.

Figure 2.10: Shows the difference from using CWT and DWT. Image fromwww.wavelet.org.
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Chapter 3

Testing

To solve the problem of analyzing and separating a drumsequence, we need to experiment with differ-
ent algorithms. In order to choose one algorithm or method instead of another, we have to have some
kind of measure that tells us which is best.

One way of doing this is to run a number of different drumsequences (custom made, where one
knows the correct separation beforehand) through the system, and compare the results from the system
with the correct ones. This is a legitimate way of doing this kind of measure, but it would probably
yield even better results if a set of questions were defined that determine the effectiveness of the
different algorithms. By classifying the test data into different levels and measuring the correctness
of each algorithm and how they perform on the different data we can achieve more finely grained test
results. One type of leveling is to use the complexity of overlapping as a distribution indicator.

3.1 Overlapping drumsounds

A drumsequence consists of different drumsounds mixed together. These drumsounds can when com-
bined overlap each other in various ways.

1. overlapping in time

2. overlapping in frequency

3. overlapping in timeandfrequency.

3.1.1 Overlapping in time

Overlapping in time means that there are more than one drumsound played simultaneously (e.g. Like
a bassdrum and a hihat). The question of separating drumsounds that are only overlapping in time
could then be a filtering problem. One would have to define the different areas the drumsounds reside
in, and then use the proper filters. Figure 3.1 gives an example of two drumsounds overlapping in
time.

18



Figure 3.1: Overlapping in time. FFT binsize 256, linear energy plot, Hanning window.

3.1.2 Overlapping in frequency

Overlapping in frequency means that there are two drumsounds that inhabit the same frequencies.
These drumsounds are not played simultaneously but exist in the same drumsequence (e.g. The same
drumsound played twice, with a pause between). To separate drumsounds that are just overlapping in
frequency, one solution is to find the start and stop samplepoints of the drumsounds and just separate
these from the original drumsequence. Figure 3.2 gives an example of two drums overlapping in
frequency.

Figure 3.2: Overlapping in frequency. FFT binsize 256, linear energy plot, Hanning window.
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3.1.3 Overlapping in both time and frequency

The last kind of overlapping is in both time and frequency. This is the most normal form of over-
lapping in our problem domain (drumsequences). An example of this is two drumsounds played
simultaneously with overlapping frequencies, like a snare-drum and a hihat. Both of these drums are
in the higher frequency area. A separation of this kind is not easily solved by either filtering or find-
ing the start and stop samplepoints of the drumsounds involved. Figure 3.3 gives an example of two
drumsounds overlapping in both time and frequency.

Figure 3.3: Overlapping in both time and frequency. FFT binsize 256, linear energy plot, Hanning
window.

3.2 Levels

By using overlapping as a measure of complexity the following levels can be defined.

3.2.1 Level One - no overlapping in time

At this level there is a pause between each drumsound. This means that there might be overlapping
frequencies, but this is not an issue since the different drums are in different time-areas of the drum-
sequence. Questions asked to determine the effectiveness of an algorithm at this level could be:

1. how many drumsounds are separated

2. how accurately is the onset of each drumsound detected

3. how accurately is the end of each drumsound detected

4. how does it perform on weak drumsounds.

Typical problem drumsequences could include weak hihats and reversed hihats1 etc.

1To detect drumsounds of this type accurately is not expected by this system.
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3.2.2 Level Two - no overlapping in frequency

On the second level we have no overlapping in frequency. This means two drumsounds do not share
the same frequency-area of a drumsequence, but they could be played simultaneously (i.e. overlapping
in time). It should be noted however that this scenario is quite rare as drumsounds typically occupy a
broad frequency-area.

Questions asked to determine the effectiveness of an algorithm at this level could be:

1. how many drumsounds are separated

2. how accurately is the onset of each drumsound detected

3. how accurately is the end of each drumsound detected

4. how accurately are the highest frequency-limits of a drum detected

5. how accurately are the lowest frequency-limits of a drum detected

6. how accurately are the drums separated.

One might think that finding the start and end points of a drumsound on level two would be the
same task as it is on level one, this is not necessarily so. On level two we can have drumsounds
overlapping in time, this could mean that two sounds are played simultaneously, and an accurate
algorithm would distinguish the two drums as separate drums and separate start times.

Since we have overlapping in time, meaning we have mixed signals, the detection of frequency
limits are also measured. We look upon a drumsound here as a rectangle (viewed in a multirate-view)
which has an upper and lower frequency limit, and an onset and end point. The detection of the limits
might be a separate problem from the actual separation of the different drumsounds. Therefore the
quality of the separation of drumsounds are also questioned (e.g. This might be a test of the accuracy
of the filters used in extracting the different drums. It is no simple matter to make ideal digital filters.

The reason why the accuracy (or quality if you like) of the separation is not tested on level one is
because this will be covered in the start/stop test. Separation on level one is just to extract the data
found from drum onset to end without any filtering.

Typical problem drumsequences on level two could include drumsounds that reside in very near
frequency areas, or drumsounds that have got weaker frequency-parts that still are crucial to the overall
"feel" of the drumsound. Also, drumsounds that have weaker frequency-parts in the middle of their
total frequency-span might prove very difficult to separate correctly and should be included in the test
set (they might be taken for two drums instead of one).

3.2.3 Level Three - weak overlapping in time and frequency

On the third level we have got what we call weak overlapping in time and frequency. With this we
mean that we can "block" the different drumsounds i.e. draw unique polygons along the time and
frequency-areas a drumsound occupies, and the polygons will not share the same areas. Here we look
on the drumsounds as polygons rather than rectangles. Questions asked to determine the effectiveness
of an algorithm at this level could be:

1. how many drumsounds are separated

2. how accurately are the higher frequency-limits of a drum detected
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3. how accurately are the lower frequency-limits of a drum detected

4. how accurately are the drums separated.

Testing for the start and end points of a drumsound is not that interesting at this level. What is
interesting is to measure the quality of the detection of the frequency-limits, and the separation of the
drumsound. What makes it different from level two is that the detection and separation has to handle
changing frequency-limits.

Typical problem drumsequences could be the same as used in level two thatalsohas weak over-
lapping.

3.2.4 Level Four - true overlapping in time and frequency

On the fourth level we have true overlapping. With this we mean that we have overlapping in both
frequency and time, and it is not possible to "block" the drumsounds in different unique polygons. An
example of this could be two similar drums played at the same time. Questions asked to determine
the effectiveness of an algorithm at this level could be:

1. how many drumsounds are separated

2. how accurately is the onset of each drumsound detected

3. how accurately is the end of each drumsound detected

4. how accurately are the higher frequency-limits of a drum detected

5. how accurately are the lower frequency-limits of a drum detected

6. how accurately are the drums separated.

At this level it becomes interesting again to look at the start and end points detected. Since we have
true overlapping we can have two very similar sounds played almost at the same time. These should
be detected as different drums with different start points. This is different from level two, because
in level two we didn’t have overlapping in frequency (but possibly in time), and the overlapping in
frequency adds new complexity to the problem.

Also detection of the limits of a drumsound in the frequency area is highly interesting to measure
at this level. Since we have true overlapping the drumsounds will be mangled together and trying to
define the silhouette that defines the boundaries of each drumsound will be difficult.

The separation of true overlapped drumsounds will also be very interesting to measure at this
level. A goal here is of course to include as little as possible of the other drumsounds occupying the
same time and frequency-area.

Typical problem drumsequences will be as mentioned above similar or even identical drumsounds
played at the same time. They could also include weak drumsounds mixed on top of strong ones (e.g.
a weak hihat played together with a strong snare).

3.3 Measure of correctness for onset extraction

At the moment there are no standard for measuring the correctness of an onset extraction algorithm.
Different methods have been proposed and it is natural to use these, and if possible extend them and
enhance them to better suit our needs.
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In the article "Issues in Evaluating Beat Tracking Systems" by Goto and Muraoka [GM97] they say
"Because most studies have dealt with MIDI signals or used onset times as their input, the evaluation
of audio-based beat tracking has not been discussed enough".

Also Rosenthal mentions in his paper "Emulation of human rhythm perception" [Ros92a] that
evaluating the ideas behind many of the previous systems is not a straightforward task, and that dif-
ferent researchers have worked on different aspects of the problem.

One such aspect is the measure of correctness for onset extraction from audio material.

3.3.1 What is a correct onset

A drum onset is defined as the time where the drumsound starts (or the magnitude reaches a certain
peak). A correctly extracted onset has a time equal to the original onset, within a certain threshold.
For my test this threshold has been subjectively set to +/- 5 ms unless noted otherwise in the test
results.

3.3.2 Klapuri correctness

The measure of correctness used in Anssi Klapuris paper [Kla99] worked by getting a percentage
based upon the total numbers of onsets, the number of undetected onsets, and the erroneous extra
onsets detected:

correct=
total−undetected−extra

total
·100% (3.1)

Wheretotal is the number of onsets in the original sample,undetectedis the number of missed
detections,extra is the number of erroneous detections.

This seems like a reasonable measure but as we look closer at it we find that it is possible to get
negative percentages, and even negative percentages below -100%. As an example let us imagine an
algorithm tried on a drumsequence with 6 onsets in it. The imagined algorithm extracts 3 correct
onsets, misses 3 and also has 4 extra onsets detected. The calculated correctness would in this case
be:

−16.7%=
6−3−4

6
·100% (3.2)

Not a really good measure for this example. The onset extraction algorithm does get half of the
onsets correct so anegativepercentage for its correctness seems pretty harsh.

3.3.3 Error rate, derived measure correctness

A measure of error instead of a measure of correctness could be better for certain situations. Error
rates are usually allowed to be above 100%, and when the error rates get small enough, it turns out
to be more convenient to use error rates, since small numbers are more intuitive, for humans, than
numbers very close to 100.

error rate=
undetected+extra

total
·100% (3.3)

Wheretotal is the number of onsets in the original sample,undetectedis the number of missed
detections andextra is the number of erroneous detections.
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It would also be possible to derive a measure of correctness from the error rate:

correctness= (1− undetected+extra
total

) ·100% (3.4)

As we see this is actually exactly the same as the correctness values used by Klapuri above.

3.3.4 Suggested correctness

Borrowing some of the ideas from Klapuri we suggest a new measure of correctness that tries to
improve on the scaling of the percentage but still penalize wrong detections:

correct=
detected
onsets

· (1− extra
estimated

) ·100% (3.5)

Wheredetectedis the number of correctly detected onsets in the estimate,onsetsis the number of
actual onsets in the original sample,extra is the number of erroneous detected onsets in the estimate
(estimated - detected) andestimatedis the total number of onsets in the estimate.

This equation suits our needs better as it is always in the scale from 0..100% and extra onsets are
penalized but not as harshly as in the method used by Klapuri. If we use the same example as above
with this method we get a correctness of 21.4%.

3.3.5 Table of behaviors

Below is a table showing the behavior of the different methods mentioned above when given varied
inputs:

row onsets estimated detected undetected extra Klapuri % suggested %
1 6 6 6 0 0 100 100
2 6 0 0 6 0 0 01

3 6 6 0 6 6 -100 0
4 6 6 1 5 5 -66.7 2.8
5 6 7 3 3 4 -16.7 21.4
6 6 6 3 3 3 0 25
7 6 5 3 3 2 16.7 30
8 6 20 3 3 17 -233.3 7.5
9 30 25 20 10 5 50 53.3
10 30 35 20 10 15 16.7 38.1

Table 3.1: Table of behaviors.

It is interesting to notice how the suggested measure rewards more restrictive onset extraction
algorithms. If we look at the example where we have the same number of correct detections, but
variations in the total estimated number of onsets (row 5,6 and 7) we see a variation from 21.4% to
30%.

Also if the number of estimated onsets gets very large in comparison to the actual number of
onsets we still get a positive percentage but a small one (7.5%), even though half of the onsets in the
original sample has been detected (row 8).

1division by zero

24



Chapter 4

Algorithms and their applications

There are different ways of attacking the problem and trying to solve it. The previous chapters have
tried to separate the problem in different stages, and in order to to get an understanding of the problem
this can be beneficial. But, as stated before, some methods do not follow this strict classification
and attack the problem from different angles. Here we classify the different approaches into different
categories.

4.1 Finding and defining areas of a drumsound

This problem is a combination of both finding the start and end points of a drumsound, and finding its
frequency boundaries. To do this one has to set some practical limits to when a drumsound actually
starts, and how weak a signal can become before it is looked upon as neglectable/silent.

4.1.1 RMS/MAX analysis

RMS analysis1 works on the amplitude of the drumsequence (i.e. in the time domain, on the wave-
form) and describes the variation of the magnitude in the sample. It calculates the RMS value for
small parts of the sample and produces a new array, a vector, that can be used in predicting where a
drum starts and ends. For a vectorv with N elements (which are samplepoints from the whole sample)
the RMS value would be:

RMS=

√
v2

1 +v2
2 + · · ·+v2

N

N
(4.1)

This is calculated for each buffer, and the end result is a new vector.
By MAX analysis we have the same approach as with the RMS that we step through the whole

sample buffer-wise, but instead of calculating the RMS value, we find the element inv with the highest
value and return this. The resulting MAX vector, which has the same length as the RMS vector has a
faster attack and is more sensitive to changes in the magnitude. Figure 4.1 show the result on doing
MAX and RMS analysis on a drumsequence.

1Root Mean Square.
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Figure 4.1: RMS and MAX analysis. RMS is blue, MAX is the dotted red.

4.1.2 Frequency-band decibel-threshold analysis

The RMS/MAX analysis operate in the time-domain of a sample. We could also use a similar analysis
in the time-frequency domain, operating on the power-density spectrum produced when calculating
the sonogram of a sample.

Instead of looking at the amplitude of the sample, the decibel2 value for each frequency-band is
analyzed. The climb in dB between the previous and current value is measured, and if above a certain
threshold, notifies a possible drum being played. The number of hits at each time interval (a sonogram
is divided into time and frequency) is counted, and if above a threshold, signifies that a drumhasbeen
hit. Figure 4.2 shows a pseudo implementation of the analysis.

for (i=0;i<bands;i++){
for (j=0;j<length_of_band;j++) {

if (sgram[i][j] > dBThreshold)
if ((sgram[i][j] - prev_sgram_value) > dbClimbThreshold) regHit(j);

}
}
traverses_hits {

if (hits_at_same_time > hitThreshhold) regDrum(time);
}

Figure 4.2: Pseudo implementation of theFrequency-band decibel-thresholdalgorithm.
2Decibel, dB, describes the intensity of a signal.
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This method is discussed in Chapter 6. Figure 4.3 shows a result from the analysis, the yellow
line is the onset of drumsounds predicted by the analysis.

Figure 4.3: Shows the results from theFrequency-band decibel-thresholdanalysis. The yellow lines
signifies the estimated onsets of the drums in the drumsequence.

If you study the green areas displaying the power of the signal at a specific time and frequency,
you will see that some weaker parts are not detected as drumsounds.

4.1.3 Mean decibel-threshold analysis

Both theRMS/MAXanalysis, and theFrequency-band decibel-threshold analysisfail to detect two
drums hit at the same time, they will register only as one drum. As an extension to the Frequency-
band decibel-threshold analysis we have tried to make an algorithm that also detects multiple drums
using the finds from it. It calculates mean values of smaller buffers at the position a drum is reported
to have been hit. In other words, it iterates over the whole frequency spectrum at a specified position,
if it finds sections above a certain threshold, it signifies that a drum occupies this area.
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Figure 4.4: Shows the results from theMean decibel-thresholdanalysis. The added red lines show the
detected frequency boundaries of the drumsounds detected.

In Figure 4.4 the red lines signify the finds of the Mean decibel-threshold analysis. The lines
visualize the estimated upper and lower frequency limits of the drumsounds. The results shown here
are not accurate, as an example study the latest detected onset. The frequency limit of this drumsound
is detected lower than it is, and the upper frequency limit is also detected inaccurately.

In Figure 4.5 follows a pseudo-implementation of theMean decibel-threshold analysis:

for (i=0;i<frequencies-bufferLength;i++) {

// calculates meanvalue of a small buffer
calculateMeanValue(i,bufferLength);

// define start of lower frequency limit for drum, else define start of
// upper frequency limit of drum
if ((meanValue > dBMeanThreshold) && (!drumStart)) startDrum(i);
else if ((meanValue < dBMeanThreshold) && (drumStart))

endDrum(i+bufferLength);
}

Figure 4.5: Pseudo implementation of theMean decibel-thresholdalgorithm.

Chapter 6 includes a discussion of Frequency-band decibel-threshold analysis and Mean decibel-
threshold analysis. The conclusion for both are simple, they are too simple and need to be improved.
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4.2 Separating drums

If one want to separate the drums found in the above mentioned methods, there are different ways
of doing this. If the drumsounds are not overlapping in time, it is only a question of finding the
start/end-points and separation is performed by extracting the wanted parts in the drumsequence.

For more complex overlapping filtering is a solution. A filter works like a barrier that keeps
out certain frequencies, and let others pass. Filtering can be done in either the time or the frequency-
domain. In the time-domain there are two usual methods of filtering, IIR and FIR filters. IIR stands for
infinite impulse response, FIR stands forfinite impulse response. Linear time-invariant (LTI) systems
can be classified into FIR or IIR types depending on whether their impulse response has finite or
infinite duration [Orf96]:98. The impulse response of a system (or a filter as in this case) is the output
of the system when given a unit impulse3. A FIR filter has impulse responseh(n) that extends only
over a finite time interval, say 0≤ n≤M, and is identically zero beyond that [Orf96]:108:

{h0,h1,h2, · · · ,hM,0,0,0, · · ·}

An IIR filter has no such finite duration, hence infinite impulse response. Thenth output for a
generalM-tap FIR filter is described in Equation 4.2 [Lyo01]:165.x(n) is the original sample,h(m)
are filter coefficients.

y(n) =
M−1

∑
m=0

h(m)x(n−m) (4.2)

Equation 4.3 describes the equation for IIR filters, wherex(n) is the original sample,y(n) previous
filter output andb(m) anda(k) are filter coefficients.

y(n) =
M−1

∑
m=0

b(m)x(n−m)+
K−1

∑
k=0

a(k)y(n−k) (4.3)

In the frequency-domain filtering is done in another way. In the time-domain convolution is used
to filter. Now because of the transformation to frequency domain, multiplying in the frequency-
domain is the same as convolution in the time domain. Hence, multiplying the data in the frequency
domain is the same as filtering.

4.3 Finding andseparating a drumsound

The two problems of defining the onset and frequency limits of a drum, and then separating it, can
be done in one step. The method below does not find the different drums as the methods described
above, it just separates what it believes to be different signals.

4.3.1 ICA - Independent component analysis

Blind source separation (BSS) is a known academic problem, and actually a problem related to the
drum-separation problem: Given two linearmixesof two signals (which we know to be independent),
find the signals using these two mixes. Put another way, imagine two people talking together and this
is digitally recorded (sampled) using two microphones. The voice of each person is recorded by both
microphones. Using the two sampled recordings, separate each voice from each other.

3δ (n)≡ {
(1, f or n=0

0, f or n6=0

)
also know as theunit sample vector[PM96]:45.
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"Source signals are denoted by a vector

s(t) = (s1(t), · · · ,sn(t))T , t = 0,1,2, · · ·

and there is the assumption that each component ofs(t) is independent of each other." "Without
loss of generality, we assume the source signals(t) to be zero mean. Observations are represented by

x(t) = (x1(t), · · · ,xn(t))T

they correspond to the recorded signals. In the basic blind source separation problem, we assume
that observations are linear mixtures of source signals:

x(t) = As(t)

whereA is an unknown linear operator. A Typical example of linear operators is ann× n real
valued matrix." "The goal of blind source separation is to find a linear operatorB such that the com-
ponents of the reconstructed signals

y(t) = Bx(t)

are mutually independent, without knowing the operatorA and the probability distribution of
source signals(t). Ideally we expectB to be the inverse of operatorA" [MIZ9x]:2-3.

“Popular approaches of solving the blind source separation problem using independent component
analysis are based on the following three strategies:

1. factoring the joint probability density of the reconstructed signals by its margins

2. decorrelating the reconstructed signals through time, that is, diagonalizing the covariance ma-
trices at every time, and

3. eliminating the cross-correlation functions of the reconstructed signals as much as possible”
[MIZ9x]:3.

The difference between this thesis problem and the blind source separation problem is that you
usually operate with more mixes in BSS. In this thesis we operate on mono or stereo samples this
gives at most two mixes. With ICA you need at least as many mixes as the signals that you want to
extract. In other words with ICA it would only be possible to at most extract two different drums from
a drumsequence, and this is not enough for complete drumsequences. Forpartsof a drumsequence
where we suspect that the sample might contain only two distinct drumsounds ICA could still be
applied.

Overcomplete independent component analysistries to alleviate this problem, and tries to solve
the BSS problem when there are more sources than mixes [LS98]. Common for both overcomplete
and normal ICA is that you have to have at least twomixes. For drumsequences this is still interesting
if you have samples recorded in stereo and Overcomplete ICA could possibly be used as the analysis
tool for complete drumsequences.

4.4 Finding, separating and match finding

If you were to substitute the drumsounds a drumsequence consist of with similar drumsounds from a
database, one way of doing this could be with cross-correlation.
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4.4.1 Cross-correlation

Cross-correlationbetween two vectors (samples)x andy can be defined as a sequencer

rxy(l) =
n

∑
i=1

x(i)y(i− l), l = 0,±1,±2, · · · ,±n (4.4)

A maybe easier way to understand cross-correlation is to picture yourself two vectorsx andy
which are shifted in relation to each other, one to the left, the other to the right. For each shift, the
corresponding elements of each vector are multiplied and added.

Figure 4.6: Waveform of hihat-sample with zero-padding.

In Figure 4.6 we have the waveform of a hihat with zero-padding before and after the actual signal.
This is auto-correlated4 , and as we can see in Figure 4.7 there is a distinct peak at the position where
the vectors are aligned to each other.

4It means that the vector being correlated is being correlated with itself.
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Figure 4.7: Auto-correlation of hihat-sample.

This distinct peak is what is being used to determine which of the different samples from the
database that are the closest match. An example of two drumsounds that are not too similar, the
Figure 4.8 shows the cross-correlation between a hihat and a bassdrum.

Figure 4.8: Cross-correlation between a hihat and a bassdrum.

As we can see this peak is not as distinct as the above from the auto-correlation.
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4.5 Beat Tracking / Onset extraction algorithms

One area of research that is closely related to the beat extraction problems studied in this thesis is
beat tracking. Beat tracking5 is what we humans do when we listen to a piece of music and follow it
by hand-clapping or foot-tapping. "Identifying the temporal location of downbeats is a fundamental
musical skill that comes naturally to most people. Even people without musical training can tap
their foot with the beat when they hear a musical performance and can generally perform this task
with ease and precision even in the face of unusual rhythms, musical expressiveness, and imprecise
performances." [AD90]

It is important to understand that even though we can perform this task with ease, making a
computer system doing the same thing is difficult. "In a reasonable model of human auditory pro-
cesses, many other processes act on the incoming auditory data. These include: parsing the music
into separate events, separating the music into streams, noting repeated patterns, parsing the harmonic
structure, recognizing instruments, and so on." [RGM94].

The main difference between beat extraction/beat separation and beat tracking is that with beat
extraction the system doesn’t need to "understand" the rhythm. The whole point with a beat tracking
system is to be able to predict when the next beat will occur. This is not so with a beat extraction
system - here the goal is to find and separate the different sounds that a drumloop consist of. Of
course, it could be argued that "understanding" the rhythm might help in the extraction process.

The similarities between the problems are that both beat tracking and beat extraction need to find
the onset times of drumsounds. In order to try to predict the rhythmic structure of an audio signal one
needs to know the onset times of the drums6, and in order to separate out the different drumsounds
one needs to know at least where they start.

4.5.1 Different approaches

Various beat tracking related systems have been undertaken in recent years [DMR87]; [DH89]; [AD90];
[Dri91]; [Ros92b]; [DH94]; [Ver94]; [Lar95]; [GM95]; [GM96]; [Sch98]. These differ mainly in two
categories:

1. What form of signals they use as their input data (audio or MIDI7).

2. If the systems operate in real-time or not.

Now obviously the systems working on audio signals are the most interesting in our case, this is
because these systems will run into more of the same problems as with beat extraction. Whether the
system runs in real-time or not isn’t that important, but strangely enough the systems operating on
audio signals often also are real-time systems [GM96] and [Sch98].

4.6 BTS

Masataka Goto and Yoichi Muraoka has developed a beat tracking system BTS that tracks the beat for
popular music in which drums maintain the beat. In their experiment using music from commercially
distributed compact discs, the system correctly tracked beats in 40 of 42 popular songs [GM95]. The
main features of their system are:

5or Rhythm tracking.
6or other instruments depending on what kind of music one is processing.
7or similar derivatives thereof.
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1. The system manages multiple agents that maintain multiple hypotheses of beats.

2. The system use musical knowledge stored as drum patterns to make context-dependent deci-
sions.

3. All processes are performed based on how reliable detected events and hypotheses are.

4. Frequency-analysis parameters for onset detection are dynamically adjusted.

4.6.1 System Description

The BTS system assumes that the time-signature of the music is 4/4 and that the tempo of the beat is
from 65 M.M.8 To 185 M.M. Also, the system expects the beat to be almost constant.

Figure 4.9: The figure shows an overview of the BTS system. Image from [GM95].

Figure 4.9 show the main features of the BTS system. The two main stages in the system is
Frequency AnalysisandBeat Prediction. In the Frequency analysis stage onset time is extracted in
different frequency bands. Also, the onset time for bass drum (BD) and snare drum (SD) is also
found. In the Beat Prediction stage the data from the previous stage is used by multiple agents that
have different hypotheses which try to predict the beat. These agents are run in parallel. Finally the
beat predicted by the most reliable hypothesis is then transmitted to other applications who want to
use the information.

8The number of quarter notes pr. minute.
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4.6.2 Frequency Analysis

Finding the onset times are obtained by the following process. The frequency spectrum (the power
spectrum) is calculated by FFT. Each time the FFT is applied to the digitized signal, the window of
the FFT is shifted to the next time position. The frequency resolution is determined by the window
size. The time resolution is determined by the time shift of each FFT window.

Figure 4.10: Explains extracting onset components. Image from [GM95].

The onset components and their degree of onset (rapidity of increase in power) are extracted from
the frequency spectrum. The way this is done in BTS is that one regards the frequency component
p(t, f ) that fulfills the conditions: { p(t, f ) > pp

np > pp

wherep(t, f ) is the power of the spectrum of frequencyf at timet, ppandnpare given by:

pp= max(p(t−1, f ), p(t−1, f ±1), p(t−2, f ))
np= min(p(t +1, f ), p(t +1, f ±1)).

In effect, these conditions extract components whose power have been increasing. Figure 4.10
gives a graphical presentation of the analysis.

The degree of onsetd(t, f ) is given by:

d(t, f ) = p(t, f )− pp+max(0, p(t +1, f )− p(t, f )).

4.6.3 Finding onset times

The onset time is found by peak-finding inD(t) along the time axis.D(t) is the sum of the degree of
onset fromd(t, f ):

D(t) = ∑
f

d(t, f ).

35



D(t) is linearly smoothed by convolution kernel before the peak time and peak value ofD(t) are
calculated. The onset time is given by this peak time.

4.6.4 Detecting BD and SD

The BTS system finds the bassdrums and the snaredrums in the analyzed signal by examining the
frequency histogram for the onset components. The characteristic frequency for BD is given by the
lowest peak of the histogram, and the SD is given by the maximum peak of the histogram above the
frequency of BD, see Figure 4.11.

Figure 4.11: Shows detection of BD and SD. Image from [GM95].

4.6.5 Beat prediction

Using the results from the frequency analysis stage BTS uses multiple agents that interpret the results
and maintain their own hypotheses, each of which consists of next time predicted, its beat type, its
reliability and current IBI9.

The end result is a system capable of following a beat without loosing track of it, even if some
hypotheses become wrong. The interesting parts of this system for this thesis is especially the way
onset components are found.

4.7 Onset detection using psychoacoustic knowledge

Inspired by the works of Goto [GM95];[GM96] and Scheirer [Sch98] Anssi Klapuri designed a system
where he uses psychoacoustic knowledge to perform onset detection. The system utilizes band-wise

9The inter-beat-interval is the temporal difference between two successive beats.
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processing and a psychoacoustic model of intensity coding to combine the results from the separate
frequency bands [Kla99].

4.7.1 System overview

Figure 4.12: System overview. Image from [Kla99].

As we can see from Figure 4.12, the signal is first normalized to 70 dB using the model of loudness
proposed Moore et al. [MGB97]. Then a filterbank divides the signal into 21 non-overlapping bands.
These bands are processed andonset componentsare determined. Finally the onset components are
combined to yield onsets.

4.7.2 Filtering of the bands

Klapuri uses a filterbank with nearly critical-band filters which cover the frequencies from 44 Hz to 18
kHz. The lowest three among the required 21 filters are one-octave band-pass filters. The remaining
eighteen are third-octave band-pass filters. All subsequent calculations can be done one at a time.

To ease the computations each filter is full-wave rectified10 and then decimated by 18011. Am-
plitude envelopes are calculated by convolving the band-limited signals with a 100 ms half-Hanning
(raised cosine) window. This window system performs much of the same energy integration as the
human auditory system, preserving sudden changes, but masking rapid modulation [Sch98],[McA92].
Figure 4.13 shows the band-wise processing.

10out(x) = abs( f ilter(x)).
11Every 180th sample value is chosen.
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Figure 4.13: Processing at each frequency band. Image from [Kla99].

4.7.3 Onset component detection

What is interesting in Klapuri’ system is that he tries to answer the problems met in other systems
of a similar kind. These systems determine onset detection based on the calculation of a first order
difference function of the signal amplitude envelopes and taking the maximum rising slope as an onset
or an onset component.

Klapuri discovered in simulations that the first order difference function reflects well the loudness
of an onsetting sound, but its maximum values fail to mark the time of an onset precisely. This he
argues is due to two reasons. "First, especially low sounds may take some time to come to the point
where their amplitude is maximally rising, and thus that point is crucially late from the physical onset
of a sound and leads to an incorrect cross-band association with the higher frequencies. Second, the
onset track of a sound is most often not monotonically increasing, and thus we would have several
local maxima in the first order difference function near the physical onset" [Kla99].

To handle these problems Klapuri began by calculating the first order difference functionD(t):

D(t) =
d
dt

A(t) (4.5)

whereA(t) denotes the amplitude envelope function.D(t) is set to zero where the signal is below
a minimum audible field. Then the first order difference function is divided by the amplitude envelope
function to get a first orderrelative difference function W, (the amount of change in relation to the
signal level). This is the same as differentiating the logarithm of the amplitude envelope,

W(t) =
d
dt

logA(t). (4.6)

ThisW(t) is then used both for detecting onset components, and determining their onset time. Re-
ferring Moore [Moo95] it is claimed that the smallest detectable change in intensity is approximately
proportional to the intensity of the signal. This holds for intensities from about 20 dB to about 100 dB.
Thus the onset components are detected by a simple peak picking operation, which looks for peaks
above a global threshold in the relative difference functionW(t).

"The relative difference function effectively solves the above mentioned problems by detecting
the onset times of low sounds earlier and, more importantly, by handling complicated onset tracks,
since oscillations in the onset track of a sound do not matter in relative terms after its amplitude has
started rising" [Kla99]. This is shown graphically in the Figure 4.14.
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Figure 4.14: Onset of a piano sound. First order absolute (dashed) and relative (solid) difference
functions of the amplitude envelopes of six different frequency bands. Image from [Kla99].

4.7.4 Intensity of onset components

To determine the intensity of an onset component the intensity is picked from the first order difference
functionD(t) multiplied by the center frequency of the band.

Components that are closer than 50 ms to each other are dropped out based on their intensity. The
one with the highest intensity remains.

4.7.5 Combining the results

The final onsets for the overall signal was calculated as follows.
First the onset components from the different bands were sorted in time order, and were regarded

as actual sound onset candidates. Then each onset candidate was assigned a loudness value based on
a simplified loudness model from Moore et al. [Kla99]. Doing this for each onset candidate yielded a
vector of candidate loudness’ as a function of their times.

Candidates under a certain threshold were dropped and candidates in the vector closer than 50 ms
to a louder candidate were also dropped. Among equally loud but too close candidates the middle one
(median) was picked and the others dropped. Using a simple peak picking operation on the remaining
vector gave the final onset detections.

4.7.6 Conclusion

The method described above seems to be giving robust and accurate onset detections in a diverse set of
real-world music samples. "Experimental results show that the presented system exhibits a significant
generality in regard to the sounds and signal types involved. This was achieved without higher-level
logic or a grouping of the onsets." [Kla99].
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Of the 10 musical pieces tested on the system all but two were over 84% correct in their onset
detections. The remaining two were symphony orchestra pieces where individual onsets often are
smoothed out. Very strong amplitude modulations were also present in these pieces and this confused
the system.

The onset detection method here seems even more fitted than the one described by Goto and Mu-
raoka [GM95] for their BTS system and should be tested in this thesis. Also, the suggested measure
of the correctness by Klapuri has been analysed and has inspired the measure of correctness we chose
for this thesis, see Chapter 3.

4.8 Onset detection by wavelet analysis

Another approach in the same area has been done using wavelet analysis. The problem is the same,
namely detecting the onset of sounds and also this system needs no prior knowledge of the input
signal, and do not use higher-level logic to calculate their detections.

Crawford Tait and William Findlay uses a semitone-based wavelet analysis "to generate a time-
frequency plane of modulus values, that is then transformed according to metrics derived from the
study of auditory perception. The plane is then viewed as a series of vectors, and calculation of the
distance between groups of vectors adjacent in time shows peaks in the distance function at onset
locations. The final stage of interpretation involves detecting peaks in this function, and classifying
the peak as onsets, or otherwise" [TF95].

The reason for their approach is that they felt that the existing systems were either to specialized
and made generalization difficult [GM95], or that they relied on pitch-detection which might be a
potentially more complex problem and rendered detection of unpitched sounds difficult. Also time-
frequency decomposition of audio signals has traditionally been achieved using Fourier analysis, and
"its linear division of the frequency scale does not correspond well with our perception of pitch"
[TF95].

4.8.1 Wavelet analysis

The analysis is based solely on the modulus plane, and uses the harmonic wavelet analysis of Newland
[New95]. It allows a semitone division of the frequency scale, which makes it suited for musical input.

The computed modulus values are mapped to dot densities and plotted against time as shown in
Figure 4.15.
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Figure 4.15: Modulus values from clarinet solo. Image from [TF95].

4.8.2 Transformations of the modulus plane

The modulus plane is first mapped to a logarithmic scale to enhance significant features.
A weighting is applied to each level of the scale based on the work of Stevens [Ste72]. This will

compensate for the human auditory systems varying sensitivity to different frequencies.
Finally, adaptive normalization of the modulus plane is performed. This is necessary because the

quieter notes in a passage tend to be dwarfed out by the louder notes [TF95].
The resulting new modulus plane can be studied in Figure 4.16.
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Figure 4.16: Detected onsets on modulus plane of clarinet piece. Image from [TF95].

4.8.3 Highlighting onsets

“In order to investigate time varying behavior, the plane of modulus values is divided into vectors, each
constituting a slice through the plane at the highest time resolution. Vectors are compared by treating
them as points in N dimensional space (if N semitone bands are being analyzed), and considering the
distance between them as given by the Euclidean norm:

di j =

√
N−1

∑
k=0

(Mik−M jk)2 (4.7)

whereMik is the modulus value for semitonek in the vector at timei, and semitone levels 0 to
N−1 at timesi and j are being considered. A vector distance will thus exist if a change in frequency
and/or amplitude takes place between the two point in time under consideration." [TF95].

Further, the average between two vectors in adjacent sliding windows is calculated. They represent
the state of the modulus plane for a short interval, and peaks in the calculated function are evident even
when only gradual changes occur between notes. The output is somewhat smoothed, but even further
smoothing is applied to aid in peak detection.

"The peaks are detected by simply locating points at which series of successive increases are
followed by a series of successive decreases. A small threshold is also introduced, and peaks must be
separated by at least the minimum note length." [TF95].

This method demands further purging because spurious onsets are detected. Some offsets are
detected as onsets, and some erroneous onsets are also detected. This is done by classifying each peak
based on the behavior of the modulus plane around its location in time. The resulting onsets finally
detected can be studied in the figure above. All onsets for the clarinet piece are detected except the
last one.
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4.8.4 Conclusion

This system has not been tested with as many real-life musical piece samples, but shows promise.
"The harmonic wavelet transform provides a useful tool for analysis of all kind of sound, but more
work is required in its practical application ... We feel that the onset detection method mentioned
herein performs well on a variety of cases, however the classification of peaks could be improved."
[TF95].

Also the fact that this method does not rely on pitch-detection (none of the methods described in
this thesis does so) might possibly make it suitable for inharmonic sounds. "The benefit of not relying
on pitch perception, widens the scope of possible applications considerably." [TF95]. To show this an
onset detection of footsteps with increasing music in the background was performed, see Figure 4.17.

Figure 4.17: Detected onsets of footsteps with background music. Image from [TF95].

Still, this method seems to rely a bit more on experimental values for the different test cases to
perform optimally. Further the smoothing performed might contribute to skewing the detected onset
times as it does for STFT using Savitzky-Golay smoothing, see Chapter 6.
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Chapter 5

The analysis program

5.1 System overview

The analysis system consist of two parts. We are trying to follow the MVC paradigm with a clear
separation of the model, the view and the controller in the implementation. The one part is the actual
analysis and processing classes, they also contain the data structure needed to store the samples,
spectrograms and so on. The other part is the view and controller part. This is the graphical user
interface and it is implemented in Qt.

5.1.1 System flow

The main operations in the analysis program are described in the flowchart below, Figure 5.1.

audio
file

sample spectrogram

onset
components drumtoc

read fft and
power spectrum

analyze using
Klapuri or BTS etc.

extract
drum onsets

compare
with original

drumtoc

results

Figure 5.1: Shows the system flow of the analysis program. The input is an audiofile, the end result is
text with the estimated drum onsets (the start of the drums).

An audiofile is read from the harddisk and turned into a sample. Then we apply a Fourier trans-
formation on the sample and get a spectrogram. This spectrogram is used as the input for analysis that

44



try to extract onset components. From these onset components the actual drum onsets are extracted.
And finally the estimated drum onsets are compared to the original ones (read from an XML file) and
the result is printed on the screen. The result is the number of drums, their onsets, and a measure of
correctness.

5.1.2 Class diagram

The main classes in the analysis program are presented in Figure 5.2 in a class diagram. We use UML
figures and symbols.

Sample
-wavedata
+loadSample()

WaveBuffer
-l_ptr: float *
-r_ptr: float *

XMLElementProcessor

+processElement()
+processText()

DrumData
-timePosition
+getDrumStart()
+getAccuracy()

Spectrogram
-data: double **
+getDataPtr()

DrumToc
-drums
+processElement()
+processText()
+compare()

DrumSequence
-sample
-spectrogram
-originalToc
-estimatedToc
-onsetComponents
+calcSpectrogram()
+onsetExtractionKlapuri()
+onsetExtractionBTS()
+onsetExtractionSimple()
+estimateDrumTocSimple()
+compareDrumTocs()

drums

spectrogram

sample

originalToc

wavedata

estimatedToc

DSPTools
-fftw_plan: rfftw_plan
+windowRectangular()
+windowHamming()
+windowHanning()
+windowWelch()
+hermite()
+fftwRealToComplex()
+fftToPowerspectrum()
+smoothingSavGol()
+convolution()

This class is used by several
of the other classes. It
contains static public
functions for fft, smoothing,
windowing, convolution,
decimation etc.

Figure 5.2: The figure shows the inheritance and collaboration of the main (digital signal processing)
classes of the analysis program.

These classes take care of the different calculations and analysis performed on the audiofile.
The classes mainly concerned with the user interface work in collaboration with the “DSP”

classes. In Figure 5.3 we see the relationship between the user interface and the “DSP” classes.
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DSP classes.

GUIMainWindow

QMainWindow

Gram

Graph

QWidget

CalculationPreferences

mygram mygraph

calcPreferences

pointer

pointer

Figure 5.3: The figure shows the inheritance and collaboration of the complete program. The “DSP”
classes have all been put in one package.

5.2 Key classes

Here is a brief description explaining the data structure and behavior of the key classes in the analysis
program.

5.2.1 DrumSequence

The DrumSequence has a sample, can produce a spectrogram, and perform certain analysis on the
spectrogram. It does the comparison of the estimated drum onsets and the original ones. GUIMain-
Window uses mainly functions in DrumSequence to control the program.

5.2.2 Spectrogram

The Spectrogram has a pointer to a 2D table of power spectrum data produced by doing Fourier
transformations on the Sample. It also deliver an interface for doing operations on a Spectrogram.

5.2.3 Sample

The Sample contains the actual sampledata. When the audiofile is read a Sample object is made and
the sampledata stored in it.

5.2.4 DrumToc

The DrumToc is the TOC (table of contents) for an audiofile. Basically it contains a vector of drum
onsets. It also offers functions for comparing drum onsets.
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5.2.5 DrumData

The DrumData contains the data describing a drumsound read in by the XML file and also data
extracted by the analysis. It contains the drums position in time, if the drum has been ’found’ by the
analysis program and with what accuracy.

5.2.6 DSPTools

The DSPTools class is a collection of DSP functions needed by several classes in the program. DSP-
Tools uses Numerical Recipes in C and FFTW for calculations.

5.2.7 Error

Error reporting and logging need some extensions in C++. We implemented our own error class
that offers basic but needed ERROR and LOG macros that, when called, will report the file and line
number where the error or logging occurred. Sadly in C++ it is not easily possible to support the
automatic printing of the function names the logging or errors occur in, but this would have been
possible for C1.

5.2.8 Exception

Unlike Java, C++ has no default exception handler taking care of uncaught or unexpected exceptions.
We felt that this functionality was needed and implemented a standard exception class that offered
this. The Exception class makes sure the programmer (or user) is notified of which exception was
uncaught, and where it was thrown from. It uses much of the same functionality as the Error class.

5.2.9 GUIMainWindow

GUIMainWindow is the controlling class for the whole application. It implements QMainWindow
and handles the drawing of the user interface and also the handling of the menu selections.

5.3 Using the program

Using the program is pretty straight forward. First you load a sample, then you choose your prefer-
ences for FFT and smoothing and calculate the spectrogram. If you want to you can study the power
of the different frequency bands in a graph view. Finally you can extract the onsets using the Analyze
menu.

1Some C++ compilers support it but not the one used in this implementation.
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Figure 5.4: Main window, also shows the current settings for FFT and smoothing.

The main application-window in Figure 5.4 shows the current settings and also offers through the
menus the different operations and visualisations available in the analysis program.

5.3.1 Loading sample

Figure 5.5:File->Load, loads a .wav file into the program.
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The program loads stereo samples, but uses only one of the channels for analysis. At the moment
only WAV files are supported. The .dtc files, the TOC for the drumsequences is loaded automatically.
See Figure 5.5.

5.3.2 Setting preferences

Figure 5.6:File->FFT Preferences, sets the preferences for FFT calculation and the optional smooth-
ing of the frequency bands.

Figure 5.6 shows the preferences dialog. The FFT binsize ranges from 256 to 2048. But it is
possible to insert arbitrary values for other binsizes. The overlapping ranges from 1 to 99 percent, so
some overlapping will always be present. The smoothing values from Holts are the trend and level
smoothing constants. The Savitzky-Golay values are the number of samples on the left and right side
of the smoothed samplepoint. The last value is the polynomial order of the Savitzky-Golay smoothing
function.

5.3.3 Calculating a spectrogram

Figure 5.7:Display->Spectrogram, calculates a spectrogram.
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The spectrogram is calculated and showed with colors representing dB values, see Figure 5.7.
The image presented is a one to one correlation to the spectrogram, no scaling or transformation of
the actual spectrogram data is done.

5.3.4 Viewing frequency bands

Figure 5.8:Display->Waveform, displays a single frequency band in the spectrogram.

To study the effect of smoothing the frequency bands it is possible to view each individual band
in the spectrogram, see Figure 5.8. The slider determines which band you are viewing.

5.3.5 Calculating onsets

Figure 5.9:Analyse->Find Drums, extracted onset components.
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By selecting to find drums, you start an analysis of the spectrogram, and the onsets are compared
to the ones loaded from the .dtc file, see Figure 5.9. The result is presented in the standard output as
shown in Figure 5.10.

5.3.6 The result output

sample.cpp(116): LOG - loadSample(/Home/stud3/espenr/HOVEDFAG/drumsrc/wav/hovedfag01_1.wav)
drumsequence.cpp(322): LOG - found: 6
drumdata.cpp(45): LOG - Accuracy: 0.418311
drumdata.cpp(45): LOG - Accuracy: 0.511721
drumdata.cpp(45): LOG - Accuracy: 0.0471217
drumdata.cpp(45): LOG - Accuracy: 0.11365
drumdata.cpp(45): LOG - Accuracy: 0.256798
drumtoc.cpp(80): LOG - nmbr of drums in original: 5
drumtoc.cpp(81): LOG - nmbr of drums in estimate: 6
drumtoc.cpp(82): LOG - hits : 5
drumtoc.cpp(83): LOG - missed : 0
drumtoc.cpp(84): LOG - extra : 1
drumsequence.cpp(339): LOG - Drumtoc for: Roland R8
Drum start: 0.10 Detected!
Drum start: 214.40 Detected!
Drum start: 642.90 Detected!
Drum start: 857.30 Detected!
Drum start: 1071.50 Detected!
Drumtoc for: /Home/stud3/espenr/HOVEDFAG/drumsrc/wav/hovedfag01_1.wav
Drum start: 2.90 Detected!
Drum start: 211.88 Detected!
Drum start: 638.55 Detected!
Drum start: 853.33 Detected!
Drum start: 986.85
Drum start: 1068.12 Detected!
guimainwindow.cpp(178): LOG - correctness: 83.3333

Figure 5.10: The result output.

5.4 The programming language

5.4.1 C++

The reason for choosing C++ when making the analysis program was based on the speed and calcu-
lation requirements expected from the program. There was no need for the different algorithms to
produce their onset estimates realtime, but it should be possible to relatively quickly test out different
settings for the algorithms and get the results.

There was of course also a need of a relatively mature object oriented programming language so
that making the needed abstractions was possible, hence languages like C was left out.
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5.4.2 Java

Other programming language alternatives were considered. Java is a consistent but a bit simplified
language compared to C++, but it has a huge and very usable collection of packages. At the start of
the implementation there was no or little support for sound programming in Java, this has changed
and might have caused the language decision to conclude with Java instead.

With JMF and JavaSound Java has actually grown into a good platform to do sound programming.
There exist software synthesizers and even voice recognition systems in Java [Mic02]. But, it is an
interesting note that the ’engine’ of the JavaSound package is written entirely in C.

As for the speed requirement, that the calculations should terminate in a relatively short period of
time, Java still might be inferior. Tests show that it is possible to make Java programs that compare
or even in some cases challenge the speed of their C++ counterparts. Lutz Prechelt did a study where
the same program was implemented using C, C++ and Java by several different developers. There
was 24 programs written in Java, 11 in C++, and 5 in C. All the programs had the same functionality.
From this study he found that “As a result, an efficient Java program may well be as efficient as (or
even more efficient than) the average C or C++ program for the same purpose.” [Pre99] however, he
also found that “The three fastest Java programs are about twice as fast as the median C/C++ program
and 10 times slower than the three fastest C/C++ programs.” [Pre99]. Lutz concluded that “it is wise
to train programmers to write efficient programs” (or choosing good developers) instead of focusing
only on the “benchmarks” of the language.

5.5 Libraries

The decision to use C++ was also based on the vast amount of different libraries developed for it.

5.5.1 STL - template library

The C++ standard library provides a set of common classes and interfaces that greatly extend the core
C++ language. At the heart of the C++ standard library, the part that influenced its overall archi-
tecture, is thestandard template library (STL). The STL is a generic library that provides solutions
to managing collections of data with modern and efficient algorithms. Generally speaking the STL
builds a new level of abstraction upon C++ [Jos99]:73.

Figure 5.11 shows the relationship between the key components in STL. The components are:

• Containers used to manage collections of various kinds. Typical examples are: vectors, lists,
sets and maps.

• Iterators are used to step through, or iterate, elements in a collection of objects (usually con-
tainters). The advantage of iterators is that they offer a small but common interface for any
arbitrary container.

• Algorithms are used to process the elements of collections. Examples are: search and sort.
Since algorithms use iterators they only have to be implemented once to work for any container
type [Jos99]:74.
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Figure 5.11: The figure shows howIteratorsglue togetherContainersandAlgorithms

5.5.2 FFTW - FFT library

As sonograms and calculations in the frequency domain were going to be a key element in the analysis
program, an FFT library was needed. There was initially also some focus on parallel programming
for the analysis program, so choosing libraries supporting this would be beneficial.

FFTW (the Fastest Fourier Transformation in the West) was developed at MIT by Matteo Frigo
and Steven G. Johnson. “FFTW is a C subroutine library for computing the Discrete Fourier Trans-
form (DFT) in one or more dimensions, of both real and complex data, and of arbitrary input size.
Moreover, FFTW’s performance is portable: the program will perform well on most architectures
without modification.” [FJ01].

FFTW supports three ways of usage in a parallel environment:

1. Threading “Any program using FFTW can be trivially modified to use the multi-threaded rou-
tines. This code can use any common threads implementation, including POSIX threads.”

2. MPI “[FFTW] contains multi-dimensional transforms of real and complex data for parallel
machines supporting MPI. It also includes parallel one-dimensional transforms for complex
data.”

3. Cilk “FFTW also has an experimental parallel implementation written in Cilk, a C-like parallel
language developed at MIT and currently available for several SMP platforms.” [FJ01].

Two other reasons for choosing FFTW were the thorough documentation and the benchmarks for
the transformations on various platforms. We only do real one-dimensional transforms in the analysis
program, so this was the most interesting part of the benchmarks.
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Figure 5.12:1D Real Transforms, Powers of TwoUltraSPARC I 167MHz, SunOS 5.6 Image from
www.fftw.org.

As we can see from Figure 5.12 FFTW is equal to or above most of the other libraries. The situ-
ation is the same for other platforms, and also for complex or real multi-dimensional transforms.“We
have compared many C and Fortran implementations of the DFT on several machines, and our ex-
periments show that FFTW typically yields significantly better performance than all other publicly
available DFT software. More interestingly, while retaining complete portability, FFTW is competi-
tive with or faster than proprietary codes such as Suns Performance Library and IBMs ESSL library
that are highly tuned for a single machine.” [FJ98].

5.5.3 expat - XML parser toolkit

For parsing XMLexpatwas chosen because of its size and speed. expat is the underlying XML parser
for the open source Mozilla project, perl’s XML::Parser, and other open-source XML parsers. The C
library was written by James Clark, who also madegroff (an nroff look-alike),Jade(an implemention
of ISO’s DSSSL stylesheet language for SGML),XP (a Java XML parser package), andXT (a Java
XSL engine).

In an article by Clark Cooper [Coo99] expat was compared, see Figure 5.13, to other XML li-
braries written in both C, perl, Python and Java.
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Figure 5.13: Comparison of six XML parsers processing each test file. Image from [Coo99].

rec.xml is the file used for benchmarking, it is about 160K in size. The med.xml is 6 times the
size of rec.xml and big.xml is 32 times that size. Literally the the rec-file is repeated 6 and 32 times
in these files. chrmed.xml and chrbig.xml contain just the text contents of rec.xml repeated 6 and 32
times.

“There aren’t really many surprises. The C parsers (especially Expat) are very fast, the script-
language parsers are slow, and the Java parsers occupy a middleground for larger documents.” [Coo99].

For our analysis program the XML files are usually very small, so this focus on execution perfor-
mance as the only feature might be a bit misplaced. The expat library has a limited functionality and
is probably harder to use in a comparison to the other libraries programming-wise. “These tests only
measure execution performance. Note that sometimes programmer performance is more important
than parser performance. I have no numbers, but I can report that for ease of implementation, the Perl
and Python programs were easiest to write, the Java programs less so, and the C programs were the
most difficult.” [Coo99].

5.5.4 Numerical Recipes in C - math functions

Numerical Recipes in Cis a book and library explaining and implementing numerical computing
algorithms in C2. For the analysis program several different numerical functions were needed, and

2There also exist Fortran versions.
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to use a library that was well tested and well documented would greatly ease the implementation.
Numerical Recipes specifically has functions for smoothing data (Savitzky-Golay Smoothing Filters)
,convolution using FFT and the wavelet transform which all were used in our program. “Our aim
in writing the original edition of Numerical Recipes was to provide a book that combined general
discussion, analytical mathematics, algorithmics, and actual working programs.” [PTVF92]. And
for the second edition the goal remained the same but also not to make it grow too much in size.
Reading chapters in the book and using parts of the library the general feeling is that this blend of
discussions, example code, mathematics and reference to the API does not work. To provide hints and
understanding about certain numerical algorithms it does its job, but as a reference to a programmer
it fails.

5.5.5 Qt - GUI toolkit

Qt is a cross-platform C++ GUI application framework. It provides application developers with all the
functionality needed to build graphical user interfaces. Qt is fully object-oriented, easily extensible,
and allows true component programming.

The key modules available in Qt3 are:

1. Tools platform-independent Non-GUI API for I/O, encodings, containers, strings, time & date,
and regular expressions.

2. Kernel platform-independent GUI API, a complete window-system API.

3. Widgetsportable GUI controls.

4. Dialogsready-made common dialogs for selection of colors, files, etc.

5. Network advanced socket and server-socket handling plus asynchronous DNS lookup.

6. XML a well-formed XML parser with SAX interface plus an implementation of the DOM Level
1.

The analysis program needed to visualize the samples, their waveforms, and the drum onsets. It
needs to give the user understandable information and provide him with controls to easily change the
settings of the algorithms to test out new calculations.

Qt is well tested and offers a GUI designer, Qt Designer, to easily design the layouts needed in a
program. Qt is also very well documented and has an active user community. Qt has also been used
by companies like AT&T, NASA and IBM. [Tea01].

5.5.6 QWT - graph visualization package

Qt provides no scientific visualization widgets. There are no graph or histogram widgets, so these
have to be implemented on top of Qt.

QWT (Qt Widgets for Technical Applications) is an extension to Qt that provides widget and
components that can display multiple graphs in a 2D plot.

QWT was used in visualizing waveforms and spectral data returned from FFT and power spectrum
calculations. Overall QWT worked nicely but it is not mature enough to satisfy all the needs as a
package for scientific visualization.

3Qt ver. 2.3.1 and later 3.0 was used for the implementation.
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5.6 Tools

Several tools were used in the development of the analysis program. Of theseDoxygen, CVSand
tmakegave the most benefits.

5.6.1 Doxygen - documentation system

Doxygen[vH01] is a documentation system for C++, IDL (Corba, Microsoft and KDE-DCOP flavors)
and C. Doxygen is developed on Linux, but is set-up to be highly portable. Doxygen is distributed
under the terms of the GNU General Public License.

Doxygen offers these features:

1. Generatean on-line documentation browser (in HTML) and/or an off-line reference manual
(in LATEX) from a set of documented source files. There is also support for generating output in
RTF (MS-Word), Postscript, hyperlinked PDF, compressed HTML, and Unix man pages. The
documentation is extracted directly from the sources, which makes it much easier to keep the
documentation consistent with the source code.

2. Extract the code structure from undocumented source files. This can be very useful in order to
quickly find your way in large source distributions. The relations between the various elements
are visualized by means of include dependency graphs, inheritance diagrams, and collaboration
diagrams, which are all generated automatically.

In addition to this, Doxygen also indexes all the classes, functions and members, and can perform
searches through a web frontend that finds these.

For the analysis program both the search and the automatic generation of dependency graphs,
inheritance diagrams and collaboration diagrams helped in the development. As the analysis program
was developed “on and off” during the studies, these automatically generated documents and graphs
helped to get faster back into the correct mindset.

One of the allowed documentation syntaxes in Doxygen is the same as the one used in Javadoc4

This also helped and encouraged the use of Doxygen as previous experiences with Javadoc had been
similarly rewarding, and we had already learned the syntax used in Javadoc.

5.6.2 CVS - Concurrent Version control System

CVS is an acronym for theConcurrent Versions Systemand was developed by Brian Berliner5.
CVS is a "Source Control" or "Revision Control" tool designed to keep track of source changes

made by a developer or groups of developers working on the same files, allowing them to stay in sync
with each other as each individual chooses.

CVS keep track of collections of files in a shared directory called "The Repository". Each collec-
tion of files can be given a module name, which is used to checkout that collection. After checkout,
files can be modified, then committed back into the repository and compared against earlier revisions.
Collections of files can be tagged with a symbolic name for later retrieval. You can add new files,
remove files you no longer want, ask for information about sets of files, produce patch "diffs" from a
base revision and merge the committed changes of other developers into your working files.

4Javadoc is the tool from Sun Microsystems for generating API documentation in HTML format from doc comments in
source code[Mic01].

5Other contributors are: Jeff Polk, David D. Zuhn and Jim Kingdon.
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Even for a single developer CVS is very useful as it enables development on different clients. The
source repository is available ,for example using SSH, and as long as the developer keeps committing
his changes a fresh repository can always be checked out. Another positive aspect of using revision
control in general is that the developer grow bolder in his refactoring of code. Since the previous
versions of the source code are easily available, the fear of losing working code disappears.

5.6.3 ElectricFence - memory debugging

C++ has no inherit bounds checking in the language. This causes a lot of actual errors in C++ programs
to go unnoticed until they finally manifest themselves into spurious crashes and strange errors in
arbitrary operations during execution of the program.

Electric Fence helps detect two common programming bugs: software that overruns the bound-
aries of a malloc() memory allocation, and software that touches a memory allocation that has been
released by free(). Unlike other malloc() debuggers, Electric Fence will detect read accesses as well
as writes, and it will pinpoint the exact instruction that causes an error. It has been in use at Pixar6

since 1987, and at many other sites for years.
Electric Fence uses the virtual memory hardware of the computer to place an inaccessible memory

page immediately after (or before, at the users option) each memory allocation. When software reads
or writes this inaccessible page, the hardware issues a segmentation fault, stopping the program at
the offending instruction. It is then trivial to find the erroneous statement in a debugger. In a similar
manner, memory that has been released by free() is made inaccessible, and any code that touches it
will get a segmentation fault.

By simply linking the analysis program with Electric Fence library were able to detect most mal-
loc buffer overruns and accesses of free memory. As new and delete (at least in our development
environment) just wrapped malloc and free, Electric Fence was sufficient even for C++ development.

The only drawback with using Electric Fence is the huge leap in memory usage while running the
program. A doubling in memory use was not uncommon, and since both the analysis part and the
graphical user interface already are relatively memory dependent this caused a performance hit.

Still the usage of Electric Fence enabled us to find relatively intricate errors, and by fixing these
to make the program much more stable.

5.6.4 Qt tools

In addition to their application framework Qt offers a set of tools that helps the development of graph-
ical user interfaces, and applications in general.

5.6.4.1 tmake

make and makefiles are a wonderful tool for automating the process of building and compiling pro-
grams. None the less to write a makefile for a non-trivial project is not easy.

tmake is a makefile generator that create and maintains makefiles for software projects, and also
simplifies the task of making makefiles for cross platform development. As an added bonus tmake
also simplifies the task of compiling Qt classes and generating user interfaces from the Qt Designer
XML files, which would need special treatment in traditional makefiles.

6Well known animation company.
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This tool helped a lot in the development of the analysis program. It makes is possible for the
developers to focus on the actual development instead of menial tasks such as setting up proper make-
files.

Thus the meta-makefiles one has to maintain with tmake is smaller and more to the point. It
defines the header and source files used in the program and also which libraries to link with, and what
include paths to use. In addition one can specify the various UI (XML Qt Designer) files used.

Figure 5.14 shows the actual tmake project file used for the analysis program7:

HEADERS = drumsequence.H drumsequenceexception.H dsptools.H gram.H
graph.H guidr umdialog.H guimainwindow.H guispectrogramdialog.H
sample.H sampleexception.H spe ctrogram.H wavebuffer.H drumdata.H
guicalculationpreferencesimpl.h calculationpr eferences.H
onsetcomponent.H xmlelementprocessor.H xmlelement.H xmlprocessorcrea
tor.H xmlparser.H drumtoc.H error.H exception.H

SOURCES = drumsequence.cpp dsptools.cpp gram.cpp graph.cpp
guidrumdialog.cpp gui mainwindow.cpp guispectrogramdialog.cpp
sample.cpp spectrogram.cpp wavebuffer.cp p drumdata.cpp
guicalculationpreferencesimpl.cpp calculationpreferences.cpp onse
tcomponent.cpp xmlparser.cpp xmlprocessorcreator.cpp drumtoc.cpp
error.cpp excep tion.cpp

TARGET = qtPusling

INTERFACES = guicalculationpreferences.ui

CONFIG = qt debug warn_on

INCLUDEPATH =
$HOME/include/recipes_c-ansi;$HOME/libs/fftw/include;$HOME/i
nclude;$QWTDIR/include;

unix:TMAKE_CFLAGS = -DNRANSI
unix:TMAKE_CXXFLAGS = -DNRANSI
unix:LIBS = -L$HOME/libs/fftw/lib -L$HOME/lib -lrfftw -lfftw -lqwt
-lrecipes _c -lexpat

Figure 5.14: the projects “meta” makefile.

As we can see there are no make rules or dependencies defined, all we have listed are the header
and source files, the name of the target, the interface used, some parameters specifying the build of
the target and finally the includepath, compiler flags and which libraries to link with.

tmake supports several compilers and operating-systems. This makes it possible to use the exact
same project file, or “meta-makefile”, on different platforms.

5.6.4.2 Designer

Implementing the layout and presentation logic of a graphical userinterface can be tedious and slow
if done by hand. Placement and alignment of widgets are not easily perceived when looking at source

7This snapshot was from late 2001.
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code. A much faster and intuitive way is to “draw” the graphical userinterface using an application that
offers the different widgets as “brushes” much in the same as any normal drawing application. With
this tool one can also to some extent define the interaction and behavior in the graphical userinterface.

Qt Designer is a tool that offers the ability to define the layout and the interaction of a graphical
userinterface. With similar tools we often felt one looses the overview and control of what is really
happening in the code. Qt Designer uses a very simple mechanism in any object-oriented language, in-
heritance, to keep the code clean and understandable. Qt Designer generates a class A which includes
the defined layouts and eventhandlers. Eventhandlers in class A that are not part of the Qt classes used
in the layout gets implemented in A as skeleton functions. The developer then implements a class B
that inherits A and which overrides the skeleton functions and implement actual behavior in them.
This way new versions of A can be generated and unless they change the interface of the class (like
adding or changing eventhandlers) B can stay the same.8

5.7 Experiences

In the development of the analysis program we have made some experiences that might be interesting
to include. Although we have reused several libraries and tools in the development of the program an
even greater use of this would have been beneficial.

5.7.1 Soundfile library

For the analysis program we wrote our own soundfile loader. Importing soundfiles should have been
done reusing other developers code. This way the analysis program would have supported more
formats. Bit manipulation is often needed when importing various formats as some use big-endian
others use little-endian. As an example Microsoft WAV format use little-endian for their short and
long and Apple/SGI AIFF use big-endian. To support these formats and make the code portable using
an already mature soundfile-library would be better.

5.7.2 DSP library

For writing graphical userinterfaces there exist a multitude of toolkits and frameworks. The same ap-
plies to 3D graphical programming. It is not so for audio or DSP programming and it is in our opinion
badly needed. A library providing classes for samples, filters, readers/writers, recording, playback,
FFT and wavelets would greatly cut the development time and leave more room for experimentation
concerning the algorithms and methods one wants to have tested.

5.7.2.1 SPUC - Signal Processing using C++ library classes

The library SPUC seems to be a step in the right direction. “The objective of SPUC is to provide the
Communications Systems Designer or DSP Algorithm designer with simple, efficient and reusable
DSP building block objects. Thus allowing a transition from System design to implementation in
either programmable DSP chips or hardwired DSP logic.” [KK02]. Still it lacks important trans-
formations such as FFT and wavelets and there is no functionality for reading/writing soundfiles or
playback.

8This is of course only partially true. Changing parts of the internal numbering of radiobuttons for example, might
produce strange results if the inherited class was not also updated to reflect the changes.
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The way we decided to develop this analysis program was to choose specialized libraries and
combine them to deliver the functionality we needed. This was successful to a certain degree but also
time-consuming.

5.7.3 Scientific visualization library

An important part of any experimentation is to present the experiment results in an understandable
format. For waveforms and power spectrums presenting them graphically makes the result highly
human-readable.

As with DSP libraries, there is also a lack of alternatives for scientific visualization libraries. To
our knowledge there exist no mature library that focus on scientific visualization for C++. There
exist a lot of GUI widget libraries (Qt, GTK, wxWindows) but no library that on top of these develop
widgets for showing graphs, histograms, 3D figures, spectrograms etc.

5.7.4 Garbage collector

A garbage collector is a part of a language’s runtime system, or part of the program as an add-on
library, that automatically determines what memory a program is no longer using, and recycles it for
other use. Garbage collection is not part of the C++ language, but there are several garbage collection
libraries available. The greatest benefits when using garbage collection are:

• Development effort: memory management is (programmer-)time consuming end error prone.

• Reusability: since memory management is handled automatically programmers do not have to
restrict and specialize their designs for the task at hand.

• Functionality: In general, it is considerably easier to implement and use sophisticated data
structures in the presence of a garbage collector.

• Safety: it is possible to trick the garbage collector into not missing parts or failing, but not
likely. Hans-J. Boehm (one of the makers of the Boehm-Demers-Weiser conservative garbage
collector) puts it this way “In our experience, the only examples we have found of a failure with
the current collector, even in multi-threaded code, were contrived.” [Boe93].

• Debugging: A garbage collector can eliminate premature deallocation errors. Also, memory
leaks induced by failing to deallocate unreferenced memory may be hard to trace and eliminate.
Garbage collectors automatically eliminate such leaks.

There are disadvantages with garbage collection as well. The main issues are an increase in memory
usage, increase in CPU load, higher latency in an application and paging locality (issues with vir-
tual memory system). Still these are just potential performance hits and problems, and need not be
experienced at all. [Boe93].

By using ElectricFence in parts of the development of the analysis program we were able to
experience some of the benefits when using a garbage collector, namely leak detection. This was a
positive experience but we were not satisfied with the increase in memory usage and, as result of that,
increased latency that this caused. By deciding to use a garbage collector we think the application
would have become more stable and, because of less time spent in debugging, the analysis program
could have included a larger amount of algorithms.

The Boehm-Demers-Weiser conservative garbage collector [Boe02] can be used as a garbage
collecting replacement for C malloc or C++ new. The collector is not completely portable, but the
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distribution includes ports to most standard PC and UNIX platforms. This garbage collector seems
as a logical choice if we were to use a garbage collector in C++. Among the traditional garbage
collection algorithms the Boehm-Demers-Weiser conservative garbage collector uses a mark-sweep
algorithm. It provides incremental and generational collection under operating systems which provide
the right kind of virtual memory support. [Boe02].
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Chapter 6

Results

6.1 Onset extraction

As we suggested in the introduction , finding onsets for drumsounds in a drumsequence is not a trivial
problem. Most research in this area has been for the purpose of beat tracking [Sch98] [GM95] [AD90].
In beat tracking the onsets are used as low level information that is interpreted and transformed into
higher level information (typically meter, time signature, tempo etc.) and therefore finding allonsets
in a drumsequence is not paramount.

However in our analysis system we needed the best onsets extraction algorithm available as it is the
basis for developing the kind of composition tool we wanted. Using the same algorithm to detectonset
componentsas in the BTS system [GM95], described in Chapter 4, and using our own algorithm to
combine them and extract onsets, we were able to develop a system that produced encouraging results.

Before we decided to use this onset extraction algorithm several other approaches were explored.
Chapter 4 describes both time-domain and time-frequency domain algorithms.

6.1.1 Time-domain

RMS/MAX analysis on the waveform of the sample use only the amplitude of the sample to try to
determine if an onset has occured. This kind of analysis soon proved to be insensitive to weak drum-
sounds being overshadowed by neighbouring strong onsets. Another drawback about time-domain
analysis is that since there is no frequency information available, handling multiple onsets seems
difficult.

6.1.2 Time-frequency domain

Based on our experiences from time-domain analysis we decided that operating in the time-frequency
domain would better solve the problem of onset extraction. The reason for this was that subtleties
in the drumsequence would not be easily discovered with methods that ignore frequency and only
consider the amplitude.

6.1.2.1 Frequency-band decibel-threshold analysis

As explained in Chapter 4, thefrequency-band decibel-threshold analysislooks at variations in the
decibel of each band a sonogram produces. If the current decibel value leaps over a certain threshold
compared to the previous decibel, this is registered as a possible hit. If enough hits are registered at the
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same time in different bands, a drum onset is found. Refer to Figure 4.2 for a pseudo implementation
of the analysis.

Figure 6.1: Sonogram of a drumsequence.

In Figure 6.1 the sonogram was calculated using a Hamming window, the FFT binsize was 512,
overlapping 50%. The ideal interpretation of this sonogram from the analysis would be to detect
only the distinct vertical "lines" in the sonogram. These lines show a change of signal power in most
of the frequency-bands which, with the broad frequency spectrum drumsounds usually have, would
mean a drum was hit. Figure 6.2 shows the output from the onset extraction using the frequency-band
decibel-threshold analysis.
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Figure 6.2: Results from the analysis. The yellow lines are detected drum onsets. The circles are
drum onsets that went undetected by the algorithm.

The yellow vertical lines are the output from the system. For this specific test we were using a
dBThreshold(everything below is ignored) of -54 dB, thedBClimbThreshold(the amount of change
in power in a band) was set to 20 dB and for an onset to be detected there had to be 5% hits (i.e. at
least 5% of the frequency-bands had to have an onset component at that specific time).

Studying Figure 6.2 we see that some of the yellow lines are wider than others. This is because
there are actually 2 or 3 lines adjacent to each other because of bad detection by the algorithm (in
other words, the algorithm thinks it has detected more than one drum). The algorithm also fails to
detect some drums altogether (look at the drawn circles above).

What this qualitative study shows is that the algorithm has problems detecting weaker drumsounds
(the circled areas) and correctly handle the drumsounds it does detect (the multiple detections of the
same drumsounds).

Figure 6.2 is the best ’clean’ result we were able to achieve with the frequency-band decibel-
threshold analysis. By lowering the climb threshold we should be able to detected the undetected
drums too, but this would result in an even greater number of double/triple detections of already
detected drums.

One of the reasons for thedBClimbThresholdto be so high, is because of the fluctuation in the
decibel values in the frequency-bands. The DFT does not as one would hope, calculate the phase and
amplitude for abroadband around the frequency the bin is centered about, but only a narrow band,
this is discussed in Chapter 2 (and this is the same effect that causes the scalloping loss). Hence, the
decibel calculated for the different bands will fluctuate because the frequencies in a drumsound are
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not stationary1. Thus, when using a low climb-threshold, the fluctuations were interpreted as possible
onset components.

Figure 6.3 gives an example of the fluctuations in the bands by showing the third frequency-band
(around 260 Hz) in the sonogram. The graph is far from smooth and we understand how algorithms
can be mistaken when only considering the signal power from one time-position compared to another.

Figure 6.3: Shows the fluctuations of the powerspectrum in a sonogram. The figure shows band 3,
around 260 Hz.

6.1.2.2 Smoothing the FFT output

The problem with the fluctuations in the frequency-bands lead us to investigate ways of smoothing the
data without distorting it too much. The important properties we want to preserve is the height and
width of the peaks and their position.

A basic moving average filter2 will not suffice because "a narrow spectral line has its height
reduced and its width increased" [PTVF9x]:650.

One possible smoothing method could belinear exponential smoothing(Holt’s method) shown in
Figure 6.4.

1A signal whose statistical properties do not change over time.
2Filter that calculates the mean of small parts of the signal, example:y(n) = (x(n−1)+x(n)+x(n+1))/3.
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Figure 6.4: The blue graph is the smoothed one using Holt’s method, the green is the original un-
smoothed one.

This method works well if the data contains a trend but no cyclic pattern.

ýk = ayk +(1−a)(ýk−1 + tk−1) (6.1)

tk = b(ýk− ýk−1)+(1−b)tk−1 (6.2)

wherea is the level smoothing constant, andb is the trend smoothing constant. For the example
above a smoothing level of 0.2 was used and a trend smoothing of 0.1. The resulting graph is a much
smoother version of the original and the peaks are relatively well preserved although their maxima
have been skewed.

Another maybe even more suited smoothing algorithm is the Savitsky-Golay smoothing filters.
"Savitsky-Golay filters were initially (and are still often) used to render visible the relative width and
heights of the spectral lines in noisy spectrometric data" [PTVF9x]:605. Figure 6.5 shows a graph
smoothed using Savitsky-Golay smoothing.
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Figure 6.5: The blue graph is the smoothed one using Savitsky-Golay smoothing filters, the green is
the original unsmoothed one.

With the Savitsky-Golay smoothing, we see that the height of the peaks are about the same as with
the linear exponential smoothing, but that position of the peaks are more true to the original signal (are
not that skewed). Also the peaks are more pointed than the ones from linear exponential smoothing.
With a smaller frame size, even better similarity to the peaks would have been produced, but then the
’noisy parts’ would not have been as subdued. The Savitsky-Golay smoothing was tested in our final
onset extraction system, refer to Section 6.1.3.3.

6.1.2.3 Mean decibel-threshold analysis

Even though the frequency-band decibel-threshold onset extraction algorithm was scrapped we did
some attempts to develop a method trying to predict thefrequency-limits(the lower and upper frequency-
limits) of the detected drumsounds.

Mean decibel-threshold analysisscans along the spectral-line (a vertical line in the sonogram)
of an onset and estimates the frequency-limits of the detected sample(s) by a simple thresholding of
the signal power. This way we hoped multiple drumsounds could be detected if they had different
frequency distributions and this would be reflected as peaks in the spectral-line at the time of the
onset. Figure 6.6 shows the result of one such analysis.
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Figure 6.6: The yellow lines are the detected onsets, the red lines are the estimated frequency-limits.

The mean decibel-threshold analysis is far too basic. The results show that it does not predict the
frequency-limits of a drumsound accurately. As an example; if we look at the second estimated onset,
we can see that the actual drumsound spans a greater frequency-area then the red line predicts. Trying
to determine the frequency-limits of a drumsound based on onlythe onset spectral-line, will not yield
good enough results.

6.1.3 Final onset extraction with detailed results

The onset extraction algorithm we chose was a combination of the BTS [GM95] onset components
analysis and our own algorithm for interpreting the onset components into drumsound onsets.

What we do with the onset components is that we give them individual weights based on how
certain we are this onset component reflects an actual onset. This is done by finding the number of
neighbour onset components an onset component has. If an onset component has two neighbours (one
in the frequency band above and one below) we give it the highest weight, if the onset component has
no neighbours we give it the lowest weight. Based on these weights we extract the estimated onsets.

In the following tests we use a testset of 20 samples of drumsequences that has been subjectively
studied and has the original onsets stored in a corresponding XML file. We load the samples and let
the analysis program estimate the onsets of the drumsounds in the samples, and compare them to the
original onsets stored in the XML files. The samples are all 16bit, mono and with a 44.1kHz sam-
plerate. The drumsequences include both weak drumsounds together with strong ones, overlapping
drumsounds both in time and frequency and multiple onsets. The testsets are grouped into 5 differ-
ent groups where a sample number in the group signifies the complexity of the drumsequence. So
hovedfag01-1.wav is a rather simple drumsequence whilehovedfag01-4.wav is more complex.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 18 8 1 10 39.51

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 17 5 4 12 16.34

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 28 5 4 23 9.92

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 34 5 6 29 6.68

Table 6.1: Onset extraction where no windowing function was used. Average correctness: 18.1%.

In order to thoroughly test the onset algorithm we have experimented with changing different
settings for the STFT and the thresholds for correctness (how many milliseconds we define as the
upper limit for a correct onset detection). The results are discussed in the following sections. We use
the measure of correctness that we developed and discussed in Chapter 3.

6.1.3.1 Windowing

As we discussed in Chapter 2, DFT on real-world signals will result in heavy leakage and the possible
swamping of neighbouring frequency components unless we perform some kind of windowing. We
need to select the best window function for our application.

For all these tests the FFT binsize was 256, there was no overlapping, no smoothing, and the
correctness threshold was 5ms. Multiple onsets were ignored. The only variable that varies is the
windowing function used.

In Table 6.1 the average correctness is 18.1% when no windowing function was used (or what is
also called a rectangular window).

Table 6.2 clearly shows the improvement we get by using a windowing function for the onset
extraction. An average correctness of 44.7% using a Hamming window, shows the potential of im-
provement by choosing the correct window function.

Using the Hanning window clearly gives the best result for our application, see Table 6.3. An
average correctness of 70.1% compared to respectively 44.7% and 18.1% is far superior.

6.1.3.2 Overlapping

The amount of overlapping can to some extent control the time resolution we get in a sonogram. With
an overlapping of 50% we move only with half the ’speed’ along the time-axis when calculating the
STFT. One side effect is that the changes in the power of the sonogram gets a bit smeared out as they
are repeated (overlapping), changes becomes more gradual.

Onset extraction results in this section are calculated with an FFT binsize of 256, a Hanning
window, no smoothing, and with multiple onsets ignored. The correctness threshold is still 5ms. Here
we are looking at the effect or overlapping and what it does to our onset results.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 10 8 1 2 71.11

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 15 8 1 7 47.41

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 17 7 2 10 32.03

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 26 9 2 17 28.32

Table 6.2: Onset extraction using Hamming window. Average correctness: 44.7%.

samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 8 1 0 88.89

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 9 8 1 1 79.01

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 11 7 2 4 49.49

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 11 9 2 2 66.94

Table 6.3: Onset extraction using Hanning window. Average correctness: 71.1%.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 11 5 4 6 25.25

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 9 6 3 3 44.44

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 9 6 3 3 44.44

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 13 10 1 3 69.93

Table 6.4: Onset extraction using 50% overlapping in the STFT. Average correctness: 46.0%.

samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 8 1 0 88.89

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 9 8 1 1 79.01

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 11 7 2 4 49.49

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 11 9 2 2 66.94

Table 6.5: Onset extraction using no overlapping.

In Table 6.4 we have an overlapping of 50%. The average correctness is 46.0%. If we do the same
onset extraction using no overlapping as in Table 6.5 we get an average correctness of 71.1%3. As
we can see, the algorithm clearly favours sonograms calculated without overlapping. What we are
probably experiencing is that the smearing in the power distribution results in poorer onset detection
by the algorithm.

6.1.3.3 Smoothing

We hoped that using a smoothing function would help in the detection of onsets for the previously
discussed time-frequency algorithms. We also experimented with what kind of results this gave for
this onset extraction algorithm.

3The same as in Table 6.3 as they are in effect identical analysis.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag01-2.wav:

Roland R8

7 8 6 1 2 64.29

hovedfag01-3.wav:

Roland R8

8 8 7 1 1 76.56

hovedfag01-4.wav:

Roland R8

9 9 8 1 1 79.01

Table 6.6: Onset extraction with no smoothing functions. Average correctness: 73.3%.

samplename org. onsets est. onsets detected undetected extra correctness
hovedfag01-2.wav:

Roland R8

7 7 3 4 4 18.37

hovedfag01-3.wav:

Roland R8

8 9 2 6 7 5.56

hovedfag01-4.wav:

Roland R8

9 10 2 7 8 4.44

Table 6.7: Onset extraction using Savitzky-Golay smoothing. Average correctness: 9.5%.

In Table 6.6, the FFT binsize is 256, there is no overlapping, no smoothing and the correctness
threshold is 5 ms. Multiple onsets are ignored and the window function is Hanning.

In Table 6.7, the analysis values are the same as for Table 6.6 but with Savitzky-Golay smoothing
added. The number of leftward (past) data points is 2, the number of rightward (future) datapoints is
4. The order of the smoothing polynomial is 2. The average correctness drops from 73.3% to 9.5% so
in this case Savitzky-Golay smoothing did not help.

Largely maintaining the same analysis values as in Table 6.7 except changing the leftward data
points to 0 and adding 50% overlapping helps but the result is not animprovementon the extraction
result using no smoothing. This gives an average correctness of 23.4%, see Table 6.8. Generally
speaking we found no combination of settings where we were able to improve the correctness of the
onset extraction algorithm by smoothing the FFT output. We suspect that a similar effect as when
using overlapping happens when using Savitzky-Golay smoothing.

samplename org. onsets est. onsets detected undetected extra correctness
hovedfag01-2.wav:

Roland R8

7 25 6 1 19 20.57

hovedfag01-3.wav:

Roland R8

8 20 6 2 14 22.50

hovedfag01-4.wav:

Roland R8

9 20 7 2 13 27.22

Table 6.8: Onset extraction Savitzky-Golay smoothing and overlapping. Average correctness: 23.4%.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 9 8 1 1 79.01

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 15 8 1 7 47.41

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 15 7 2 8 36.30

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 19 9 2 10 38.76

Table 6.9: Onset extraction where binsize is 128. Average correctness: 50.4%.

samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 8 1 0 88.89

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 9 8 1 1 79.01

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 11 7 2 4 49.49

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 11 9 2 2 66.94

Table 6.10: Onset extraction where binsize is 256. Average correctness: 71.1%.

6.1.3.4 Binsize

Varying the FFT binsize affects both the number of frequency bands in the resulting sonogram and
also the timing resolution of the sonogram. This means that finding the correct binsize for the analysis
is very important.

The windowing function is Hanning, and the correctness threshold is 5ms. Multiple onsets are
ignored. The results in this section uses a varying FFT binsize but otherwise have no overlapping or
smoothing.

Table 6.9 shows the onset extraction results when the binsize is set to 128. The average correctness
is 50.4%.

Table 6.10 shows the results when performing onset extraction using a binsize of 256. The results
are much improved: 71.1%.

Finally Table 6.11 shows onset extraction where the binsize is set to 512. The average correctness
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 4 5 4 22.22

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 8 4 5 4 22.22

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 7 4 5 3 25.40

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 9 7 4 2 49.49

Table 6.11: Onset extraction where binsize is 512. Average correctness: 29.8%.

is 29.8% and this result is the worst of these three. As we can see the FFT binsize that gives the best
result is 256, this gives the best tradeoff between frequency and time resolution.

6.1.3.5 Correctness threshold and multiple onsets

Until now multiple onsets have been filtered out from the test cases. This was because we wanted
to focus specifically on certain issues and not let the result get too distorted by other factors. Now
we test how the onset extraction algorithm performs when multiple onsets are included compared to
when they are ignored. We also experiment with the correctness threshold and how this affects the
correctness measure we get from the analysis.

The FFT binsize for this analysis is 256, and no smoothing or overlapping has been used. The
window function is Hanning. In these tests we includeall the 20 samples to get a more complete view
on how the onset extraction performs on different drumsequences.

Table 6.12 shows the result from onset extraction where we include multiple onsets and have a
5 ms correctness threshold. The average correctness is 60.2%. Comparing this to Table 6.13 which
has the same settings except in this case we ignore multiple onsets, we see a difference of about
10%. Ignoring multiple onsets we get an average measure of correctness of 70.2%. As the onset
extraction algorithm delivers no special functionality for multiple onsets the difference between these
two numbers is greatly influenced by the number of multiple onsets present in the drumsequences.
The greater number of simultaneously multiple onsets the lower the measure of correctness.

When we lower the threshold for correctness to 10 ms instead of 5 ms and perform the same
tests, we get when including multiple onsets an average measure of correctness of 66.5%. When
ignoring multiple onsets we get a correctness of 77.5%. Recall from Chapter 1 a discussion on limits
of temporal discrimination. We chose 5 ms as the threshold because humans generally have this lower
limit to capture essential intentional timing information. 10 ms is thus a bit above but still usable
in an application of our type. Anaveragemeasure of correctness of 77.5% for a varied selection of
drumsequences we feel is a very good result.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag01-1.wav:

Roland R8

5 5 4 1 1 64.00

hovedfag01-2.wav:

Roland R8

7 8 6 1 2 64.29

hovedfag01-3.wav:

Roland R8

11 8 7 4 1 55.68

hovedfag01-4.wav:

Roland R8

13 9 8 5 1 54.70

hovedfag02-1.wav:

Roland R8

7 8 7 0 1 87.50

hovedfag02-2.wav:

Roland R8

9 8 5 4 3 34.72

hovedfag02-3.wav:

Roland R8

12 10 8 4 2 53.33

hovedfag02-4.wav:

Roland R8

14 11 9 5 2 52.60

hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 8 1 0 88.89

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

11 9 8 3 1 64.65

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

14 11 7 7 4 31.82

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

17 11 9 8 2 43.32

hovedfag04-01.wav:

Roland TR606

8 7 7 1 0 87.50

hovedfag04-02.wav:

Roland TR606

13 10 9 4 1 62.31

hovedfag04-03.wav:

Roland TR606

14 11 9 5 2 52.60

hovedfag04-04.wav:

Roland TR606

18 12 10 8 2 46.30

hovedfag05-01.wav:

Roland R8

16 15 15 1 0 93.75

hovedfag05-02.wav:

Roland R8

16 21 16 0 5 76.19

hovedfag05-03.wav:

Roland R8

16 10 10 6 0 62.50

hovedfag05-04.wav:

Roland R8

4 8 3 1 5 28.12

Table 6.12: Onset extraction including multiple onsets and a 5ms correctness threshold. Average
correctness: 60.2%.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag01-1.wav:

Roland R8

5 5 4 1 1 64.00

hovedfag01-2.wav:

Roland R8

7 8 6 1 2 64.29

hovedfag01-3.wav:

Roland R8

8 8 7 1 1 76.56

hovedfag01-4.wav:

Roland R8

9 9 8 1 1 79.01

hovedfag02-1.wav:

Roland R8

7 8 7 0 1 87.50

hovedfag02-2.wav:

Roland R8

7 8 5 2 3 44.64

hovedfag02-3.wav:

Roland R8

10 10 8 2 2 64.00

hovedfag02-4.wav:

Roland R8

12 11 9 3 2 61.36

hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 8 1 0 88.89

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 9 8 1 1 79.01

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 11 7 2 4 49.49

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 11 9 2 2 66.94

hovedfag04-01.wav:

Roland TR606

8 7 7 1 0 87.50

hovedfag04-02.wav:

Roland TR606

10 10 9 1 1 81.00

hovedfag04-03.wav:

Roland TR606

10 11 9 1 2 73.64

hovedfag04-04.wav:

Roland TR606

11 12 10 1 2 75.76

hovedfag05-01.wav:

Roland R8

16 15 15 1 0 93.75

hovedfag05-02.wav:

Roland R8

16 21 16 0 5 76.19

hovedfag05-03.wav:

Roland R8

16 10 10 6 0 62.50

hovedfag05-04.wav:

Roland R8

4 8 3 1 5 28.12

Table 6.13: Onset extraction ignoring multiple onsets and with a 5ms correctness threshold. Average
correctness: 70.2%.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag01-1.wav:

Roland R8

5 5 5 0 0 100.00

hovedfag01-2.wav:

Roland R8

7 8 6 1 2 64.29

hovedfag01-3.wav:

Roland R8

11 8 7 4 1 55.68

hovedfag01-4.wav:

Roland R8

13 9 8 5 1 54.70

hovedfag02-1.wav:

Roland R8

7 8 7 0 1 87.50

hovedfag02-2.wav:

Roland R8

9 8 7 2 1 68.06

hovedfag02-3.wav:

Roland R8

12 10 10 2 0 83.33

hovedfag02-4.wav:

Roland R8

14 11 11 3 0 78.57

hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 8 1 0 88.89

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

11 9 8 3 1 64.65

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

14 11 7 7 4 31.82

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

17 11 9 8 2 43.32

hovedfag04-01.wav:

Roland TR606

8 7 7 1 0 87.50

hovedfag04-02.wav:

Roland TR606

13 10 9 4 1 62.31

hovedfag04-03.wav:

Roland TR606

14 11 9 5 2 52.60

hovedfag04-04.wav:

Roland TR606

18 12 10 8 2 46.30

hovedfag05-01.wav:

Roland R8

16 15 15 1 0 93.75

hovedfag05-02.wav:

Roland R8

16 21 16 0 5 76.19

hovedfag05-03.wav:

Roland R8

16 10 10 6 0 62.50

hovedfag05-04.wav:

Roland R8

4 8 3 1 5 28.12

Table 6.14: Onset extraction including multiple onsets and with a correctness threshold of 10ms.
Average correctness: 66.5%.
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samplename org. onsets est. onsets detected undetected extra correctness
hovedfag01-1.wav:

Roland R8

5 5 5 0 0 100.00

hovedfag01-2.wav:

Roland R8

7 8 6 1 2 64.29

hovedfag01-3.wav:

Roland R8

8 8 7 1 1 76.56

hovedfag01-4.wav:

Roland R8

9 9 8 1 1 79.01

hovedfag02-1.wav:

Roland R8

7 8 7 0 1 87.50

hovedfag02-2.wav:

Roland R8

7 8 7 0 1 87.50

hovedfag02-3.wav:

Roland R8

10 10 10 0 0 100.00

hovedfag02-4.wav:

Roland R8

12 11 11 1 0 91.67

hovedfag03-01.wav:

Alesis HR16B /

Thievery Corporation

9 8 8 1 0 88.89

hovedfag03-02.wav:

Alesis HR16B /

Thievery Corporation

9 9 8 1 1 79.01

hovedfag03-03.wav:

Alesis HR16B /

Thievery Corporation

9 11 7 2 4 49.49

hovedfag03-04.wav:

Alesis HR16B /

Thievery Corporation

11 11 9 2 2 66.94

hovedfag04-01.wav:

Roland TR606

8 7 7 1 0 87.50

hovedfag04-02.wav:

Roland TR606

10 10 9 1 1 81.00

hovedfag04-03.wav:

Roland TR606

10 11 9 1 2 73.64

hovedfag04-04.wav:

Roland TR606

11 12 10 1 2 75.76

hovedfag05-01.wav:

Roland R8

16 15 15 1 0 93.75

hovedfag05-02.wav:

Roland R8

16 21 16 0 5 76.19

hovedfag05-03.wav:

Roland R8

16 10 10 6 0 62.50

hovedfag05-04.wav:

Roland R8

4 8 3 1 5 28.12

Table 6.15: Onset extraction ignoring multiple onsets and with a correctness threshold of 10ms. Av-
erage correctness: 77.5%.
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6.2 Drumsound separation

6.2.1 Blind-Source Separation

Tests have been done using ICA (independent component analysis). By modifying the publicly avail-
able "Basic Source Separation Code" by Tony Bell4 , and changing it to better read samples, we loaded
two drumsounds, mixed them together to form two different mixes of the two sounds, and then using
methods in Bells code, unmixed the two drumsounds from each other.

Figure 6.7: Shows the two original drums.

Figure 6.8: Shows the different mixes of the two drums.

4Tony Bell Ph.D., CNL, Salk Institute (now at Interval Research, Palo Alto).
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Figure 6.9: Shows the unmixed drums.

Figures 6.7, 6.8 and 6.9 show the start drumsounds, the mixes and the end separated drumsounds.
It is hard to determine if the ICA methods actually perform well or not, so we also present sonograms
of the same figures. Figure 6.10, 6.11 and 6.12 show the sonograms and here it becomes clearer that
the ICA actually does a good job of separating the mixed drumsounds.

Figure 6.10: Shows a sonogram of the two original drums. FFT binsize 64, Hanning window, loga-
rithmic power plot, 80dB resolution.

.

Figure 6.11: Shows a sonogram of the different mixes of the two drums. FFT binsize 64, Hanning
window, logarithmic power plot, 80dB resolution.

.
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Figure 6.12: Shows a sonogram of the two unmixed drums. FFT binsize 64, Hanning window, loga-
rithmic power plot, 80dB resolution.

.

The resulting unmixed drumsounds, Figure 6.12, are very similar to the original ones, Figure 6.10,
and this might suggest that using ICA to separate drumsounds from each other is a viable option to
look further into. However, there have to be as many (or more) mixes of the drumsequence as there are
drums to be separated and this is a very limiting restriction. We can not assume there are more than two
mixes of the drumsequence (a stereo sample), and can therefore, with normal ICA (not overcomplete),
separate more than two drums. This could still be used in small parts of the drumsequence where there
are no more than two drums played simultaneously.
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Chapter 7

Conclusion

We have studied the possibility to make a composing tool (sequencer) that breaks down the different
parts of a drumsequence into the original or close to the original samples it was composed of. We
have experimented in the following research areas:

1. extracting drumsound onsets and defining the frequency boundaries for a drumsound

2. separating the drumsounds.

Concerning onset extraction we have developed based on similar research an algorithm that for
singular onsets is robust and with a high degree of accuracy. This onset extraction algorithm could
be the basis for higher level algorithms or analysis that focused more on extracting meta-information
from the samples (such as meter, time signature etc.). We have also showed that it is possible, despite
the resolution issues when using STFT, to obtain such accurate results.

The analysis program or parts of the program we have developed could already at this stage be
incorporated in various applications. Examples are automatic transcription, video/music synchroniza-
tion and audio applications such as ReCycle etc.

For the onset extraction testing we developed an XML format that could also be used by others
for similar research. The XML format is functional and extendable. The testset of samples we used
during the testing of the onset algorithms is also available for validation of our findings or for use in
similar tests.

We have also developed a measure of correctness to be used for measuring the correctness of onset
extraction. We feel this measure is an improvement over the ones in use today.

Concerning the area of drumsound separation, the results has not been as conclusive and com-
plete as with the onset extraction. We have studied and experimented with analysis such as ICA and
traditional filters but in this area no definitive conclusion could be reached.

Concerning the area of finding similar matches of a drumsound in a database, the experimentation
and research has been greatly limited. This is largely because the two research areas of onset extraction
and drumsound separation needed answers before finding matches in a database became important.

We feel the scope of work for this thesis has been huge. We have needed to develop an analysis
framework and application, learn digital signal processinganddiscover and understand the research
being done in the beat-tracking and sound-separation community. This thesis has been done from a
computer-science perspective focusing on software development, not as a mathematical one focusing
on digital signal processing. Ideally, libraries for onset extraction and signal separation should have
been available in order for us to keep that focus.

83



7.1 Future work

We feel that a natural continuation of this work would be in these three areas:

1. broader and more varied set of tests

2. comparing with other onset algorithms and changing time-frequency transformation

3. experiment and explore drumsound separation more thoroughly.

The test cases used in this thesis are all made using a computer. One natural extension of these
would be to include live recordings of drumsequences. It would also be interesting to produce statistics
on what type of drumsound (like hihat, snare etc.) that is most often detected correctly and similar
statistics.

It would be highly interesting to do an analysis where the different available onset extraction
algorithms were compared to each other. It would also be interesting to change the time-frequency
transformation, the STFT, to a multiresolution transformation like the DWT.

Finally, recent articles and papers have described quite interesting algorithms for drumsound sep-
aration and rhythm decomposition. One of these papers is “Riddim” a thesis by Iroro Orife that
use independent subspace analysis [Ori01]. It would be natural to study and experiment with these
algorithms in order to try and find a solution for the separation problem.
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Appendix A

Data format for testcases

One of the problems with research in automatic transcription and beat-tracking systems operating on
real-world test and data sets, has been the lack of a uniform form or format for the testdata. XML is
a relatively simple standard describing a markup-language that makes it easy to make structured data
formats that are easy to understand and parse.

There exist a lot of tools for XML processing, so the possibility for other researchers to read and
process the same datasets used in this thesis, should be relativly good.

A.1 XML DTD

The DTD, see Figure A.1, describes the rules for XML files defining onset information about a drum-
sequence. The actual sample is an audio file with the same name as the XML file, but with a .wav
extension.

<!-- Describes the drums present in a sample -->
<!ELEMENT drumtoc (source?, drum+)>

<!-- where the drumsound is from CD/Live recording/Drummachine -->
<!ELEMENT source (#PCDATA)>

<!-- the actual drumsound -->
<!ELEMENT drum EMPTY>
<!ATTLIST drum start CDATA #REQUIRED

stop CDATA #IMPLIED
high CDATA #IMPLIED
low CDATA #IMPLIED
type (bdrum | snare | clhihat | ophihat | cymbal | tom | other) #IMPLIED
force (weak | normal | strong) #IMPLIED
name CDATA #IMPLIED>

Figure A.1: DTD for the testcases (drumtoc.dtd).

A.1.1 drumtoc element

This is the top element in the XML tree. There can only be onedrumtocelement in an XML file.
drumtocis a Table Of Contentsfor a sample. And it and its subelements describe the drum onsets
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found in the sample. The two subelements allowed in adrumtocelement are thesourceanddrum
elements.

A.1.2 source element

This element describes the actual source, as in recording or equipment, the sample originates from.
This element can be either specified zero or once in adrumtocelement. Thesourceelement has no
attributes and its content is #PCDATA, meaning text.

A.1.3 drum element

This element describes a drum onset. This element must occur one or more times inside thedrumtoc
element. This element has no content but one required and several implied attributes.

• start This attributes is required and specifies the exact position in milliseconds compared to the
start of the sample.

• stop This attribute is optional and describes the stop of the drumsound. This is the moment
when the power of the drumsound has decayed and is no longer perceivable.

• high This attribute is optional and describes the upper limit of the frequency spectrum the
drumsound occupies.

• low This attribute is optional and describes the lower limit of the frequency spectrum the drum-
sound occupies.

• type This attribute is optional and defines what class of drum the drumsound belongs to. This
attribute uses predefined types as its only legal values.

• force This attribute is optional and describes in subjective values the loudness of the drumsound
in relation to the other drumsounds in the sample.

• nameThis attribute is optional and gives the drumsound a name.

A.1.3.1 drum type attribute

The typeattribute of thedrumelement describes the class the perceived drumsound belongs to. This
is also a subjective measure but should map pretty uniformly even when the XML files are written by
different persons. Here is a description of the different types and what drumsounds usually belongs to
them:

• bdrum This is bass drums. That means ’low’ frequency drums that usually maintains the base
rhythm in a drumloop.

• snareThis is snare drums. That means usually ’high’ frequency drums with a snappy charac-
teristic.

• clhihat This is closed hihats. This is hihat sounds that have a short decay

• ophihat This is open hihats. This is hihat sounds with a long decay.
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• cymbal This is cymbals. Any kind of cymbal being crashcymbal, ridecymbal etc. Cymbals
have long decays and a wide frequency spectrum.

• tom This is tom-toms. Low mid or high tom-toms fall into this category.

• other This is everything else. Examples are bells, ’talking drums’ etc.

It would be better for thetypeattribute to follow a more rigorous and formalized system of clas-
sification but this would also require the listener that fills in the XML file testsets to have a more
formal education. As it now is specified anybody with basic musical knowledge can do a decent job
of classifying the drumsounds present in a drumsequence.

A.2 Example of testcase

Figure A.2 shows an example of an XML file describing the different onsets present in the sample
hovedfag03_03.wav. As we can see the DTD is specified in the DOCTYPE of the XML file.

<?xml version="1.0"?>
<!DOCTYPE drumtoc SYSTEM "drumtoc.dtd">
<drumtoc>
<source>Alesis HR16B / Thievery Corporation</source>
<drum start="0.2" type="clhihat"/>
<drum start="0.2" type="bdrum"/>
<drum start="214.4" type="clhihat"/>
<drum start="428.7" type="clhihat"/>
<drum start="429.0" type="snare"/>
<drum start="535.9" type="clhihat"/>
<drum start="643.0" type="clhihat"/>
<drum start="643.0" type="bdrum"/>
<drum start="857.7" type="ophihat"/>
<drum start="1071.7" type="clhihat"/>
<drum start="1071.9" type="snare"/>
<drum start="1285.9" type="clhihat"/>
<drum start="1500.6" type="ophihat"/>
<drum start="1500.4" type="snare"/>
</drumtoc>

Figure A.2: Example of a drumtoc XML file (hovedfag03_03.dtc).

According to this file there are 14 drum onsets inhovedfag03_03.wav. They belong to 4 different
drumtypes:bdrum,ophihat,clhihatandsnare. Also from this file we can see that there are several
drums being hit at once, like with the first two onsets, see Figure A.3.

<drum start="0.2" type="clhihat"/>
<drum start="0.2" type="bdrum"/>

Figure A.3: Example of drums starting at the same time.
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It says that after 0.2 ms there are two drums being hit. One is of the typeclhihat (closed hihat) and
the other is abdrum(bass drum). What other characteristics these drumsounds have we do not know.
But as we have seen the XML DTD makes it possible to specify other attributes, but it is not required.

The sourcetag in the XML file tells us that this specific sample has drumsounds both from a
drum machine, theAlesis HR16B, and from a recording of the bandThievery Corporation. This
information is not critical for operations like automated comparisons of onset extraction algorithms
but can be interesting as documentation of the actual testsets.
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Appendix B

Glossary

Adaptive Differential Pulse Coded Modulation (ADPCM)
A speech compression algorithm that adaptively filters the difference between two successive
PCM samples. This technique typically gives a data rate of about 32 Kbps.

adaptive filter
A filter that can adapt its coefficients to model a system.

aliasing
The effect on a signal when it has been sampled at less than twice its highest frequency.

amplitude
A value (positive/negative) describing the position of the samplepoint relative to zero.

amplitude modulation
A communications scheme that modifies the amplitude of a carrier signal according to the am-
plitude of the modulating signal.

applet
A smallJavaprogramm running inside a web browser.

attack
Describes the time it takes before a sound reaches its peak intensity (e.g. Gunfire has a very fast
attack, but low rumbling thunder will have a slower attack).

attenuation
Decrease, typically concerning magnitude.

autocorrelation
The correlation of a signal with a delayed version of itself.

bandpass filter
A filter that only allows a single range of frequencies to pass through.

bandstop filter
A filter that removes a single range of frequencies.

bandwidth
The range of frequencies that make up a more complex signal.
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biquad
Typical ’building block’ of IIR filters - from the bi-quadratic equation.

BPM
Beats per minute. Popular music is usually in the are of 80-140 BPMs.

butterfly
The smallest constituent part of an FFT, it represents a cross multiplication, incorporating mul-
tiplication, sum and difference operations. The name is derived from the shape of the signal
flow diagram.

BSS
Blind Source Separation. The problem of filtering out certain sounds or signals in a noisy
environment, like a specific persons voice at a cocktail party.

coherent power gain
Because the window function attenuates the signal at both ends, it reduces the overall signal
power. This reduction in signal power is called the Coherent Power Gain.

convolution
An identical operation to Finite Impulse Response filtering.

correlation
The comparison of two signals in time, to extract a measure of their similarity.

decay
Describes the time it takes from the point of peak intensity until it disappears.

decibel
Decibal ordB is defined as a unit for a logarithmic scale of magnitude.

Discrete Fourier Transform (DFT)
A transform that gives the frequency domain representation of a time domain sequence.

discrete sample
A single sample of a continuously variable signal that is taken at a fixed point in time. Also
calledsample.

drumloop
A sample of a percussive loop

drumsequence
A sample of a percussive part or loop

drumsound
A sample of a drum

Fast Fourier Transform (FFT)
An optimised version of the DFT.

fall off
The rate of fall off to the side lobe. Also known as roll off.
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Finite Impulse Response (FIR) filter
A filter that typically includes no feedback and is unconditionally stable. The impulse response
of a FIR filter is of finite duration.

frequency
The rate of completed cycles in a signal. Usually measured in Hz (cycles/second).

frequency domain
The representation of the amplitude of a signal with respect to frequency.

gain
Amplification or increase, typically concerning magnitude.

GPL, GNU General Public Licence
A software license that provides a high degree of freedom in a collaborative software develop-
ment effort.

highpass filter
A filter that allows high frequencies to pass through.

ICA
Independent Component Analysis.

Infinite Impulse Response (IIR) filter
A filter that incorporates data feedback. Also called a recursive filter.

Impulse Response
The result vector when feeding a system with a signal.

JavaScript
A (usually) client-side scripting language executed in web browsers.

Java
Object oriented programming language. Targeted at embedded devices, application servers, and
’classical’ applications.

lowpass filter
A filter that allows low frequencies to pass through.

LTI
Linear time-invariant. An LTI-system has the property that the output signal due to a linear com-
bination of two or more input signals can be obtained by forming the same linear combination
of the individual outputs

magnitude
A positive value describing theamplitudeof a signal. The magnitude is the amplitude of the
wave irrespective of the phase.

MAX
A highly complex sequencing program for composing rule-based music.
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MIDI
Musical Instrument Digital Interface. MIDI is a standard that lets your MIDI device (like your
MIDI keyboard) communicate with other MIDI devices.

modulation
The modification of the characteristics of a signal so that it might carry the information con-
tained in another signal.

multirate
As opposed to STFT wavelets are considered a multirate analysis because the resolution of the
analysis is not static or fixed.

onset
The start of an event. In this context the start of a drumsound in a sample.

onset detection
The process of finding onsets in a sample.

onset components
Indicators found based on frequency or time-domain calculations used to determine onsets.

passband
The frequency range of a filter through which a signal may pass with little or no attenuation.

phase
A particular stage or point of advancement in a cycle; the fractional part of the period through
which the time has advanced, measured from some arbitrary origin often expressed as an angle
(phase angle).

pitch
The key of a sound, dependent primarily on the frequency of the sound waves produced by its
source.

pole
Artefact leading to frequency dependent gain in a signal. Generated by a feedback element in a
filter.

power intensity spectrum
A spectrum showing (usually) the decibel of signal in relation to its frequencies.

processing loss
Processing Loss measures the degradation in signal to noise ratio due to the window function.
It is the ratio of Coherent Power Gain to Equivalent Noise Bandwidth.

Pulse Code Modulation (PCM)
The effect of sampling an analog signal.

recursive filter
SeeInfinite Impulse Response filter.

sample
A digital representation of a physical sound. Also called adiscrete sample.
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samplepoint
A samplevalue in a sample

sampling
The conversion of a continuous time analog signal into a discrete time signal.

samplerate
The inverse of the time between successive samples of an analog signal.

server
Any machine or system delivering ’services’ to clients.

sidelobe
Lobes in magnitude beside the mainlobe.

smoothing
The process of evening out irregularities in processed data.

sonogram
An ’image’ showing the variation over time of the frequency and power (decibel) of a signal.

spectrogram
In this thesis used as the same as asonogram.

spectrum analyser
An instrument that displays the frequency domain representation of a signal.

stationary
A signal whose statistical properties do not change over time.

stopband
The frequency range of a filter through which a signal may NOT pass and where it experiences
large attenuation.

TCP
Transmission Control Protocol (TCP) provides a reliable byte-stream transfer service between
two endpoints on the Internet.

time domain
The representation of the amplitude of a signal with respect to time.

UDP
User Datagram Protocol (UDP) provides an unreliable packetized data transfer service between
endpoints on the Internet.

waveform
A graphical presentation of a sample, often also used as the same assample.

wavelet
Wavelets are a way to analyze a signal using base functions which are localized both in time (as
Diracs, but unlike sine waves), and in frequency (as sine waves, but unlike Diracs). They can
be used for efficient numerical algorithms and many DSP or compression applications.
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window
A function/vector usually describing an attenuation of a signal. Often used inFFT.

windowing
The process of applying awindowto a vector.

XML
Extensible Markup Language. A universal format for structured documents and data.

z-domain
The discrete frequency domain, in which the jw axis on the continuous time s-plane is mapped
to a unit circle in the z-domain.

zero
Artifact leading to frequency dependent attenuation in a signal. Generated by a feedforward
element in a filter.
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