Optimization Methods for Pipeline Transportation of Natural Gas – DISSERTATION –

Conrado Borraz Sánchez PhD Candidate

December 16, 2010

(日) (四) (분) (분) (분) 분

Agenda

《日》 《圖》 《臣》 《臣》

- 2

1 Ir

Introduction

My PhD research frame

2 Project I:

- The fuel cost minimization problem
- Three solution approaches
- Numerical experiments & results
- 3 Project II:
 - Flow capacity optimization
 - Key issues of the model
 - Gas specific gravity, g
 - Gas compressibility, z

4 Project III:

- The line-packing problem
- Key issues of the model
- 5 Concluding Remarks

Introduction ●○○ Project I: Project II:

Project III:

Concluding Remarks

A long history in a nutshell

UiB

FOSSIL FUELS: Coal, petroleum & natural gas

 $\begin{array}{rrrr} \textbf{Rural} & \rightarrow & \textbf{THE INDUSTRIAL} & \rightarrow & \textbf{Urban} \\ \textbf{economy} & \rightarrow & \textbf{REVOLUTION} & \rightarrow & \textbf{economy} \end{array}$

・ロト・日本・日本・日本・日本・日本

Project I: Project II:

Project III:

Concluding Remarks

A strategic commodity...

Natural gas (NG) – a colourless, odourless substance primarily composed of hydrocarbons.

Pipeline network systems \rightarrow A means for transporting NG

Introduction Project I: Project II: 000

Project III:

Concluding Remarks

UiB

My PhD research frame comprises...

Optimization problems arising in natural gas transmission systems

Project II

Flow optimization under variation in volumetric properties

Project III

Optimal line-pack management in gas transportation networks

Introduction Project I: Project II: Project III: Ocoo

Concluding Remarks

UiB

Project I: Operability on compressor stations

PROJECT I

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Project III: 00000

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Project I: Description of the FCMP

As we have seen...

- NG, driven by pressure, is transported through pipeline systems.
- Energy & pressure are lost.
- To overcome this loss, compressor stations (CSs) must be turned on. (Several identical centrifugal compressor units connected in parallel)
- A significant proportion of the transported gas (3-5%) is consumed by CSs

UiB

Project III:

Concluding Remarks

UiB

Project I: Description of the FCMP

As we have seen...

- NG, driven by pressure, is transported through pipeline systems.
- Energy & pressure are lost.
- To overcome this loss, compressor stations (CSs) must be turned on. (Several identical centrifugal compressor units connected in parallel)
- A significant proportion of the transported gas (3-5%) is consumed by CSs

Keeping this consumption at a minimum leads to

THE FUEL COST MINIMIZATION PROBLEM (FCMP)

This has an important environmental dimension and entails a large economic value to the industry.

Project I: Project II:

Project III:

Concluding Remarks

Related works to the FCMP

Literature on related works

Jefferson (1960) Wong and Larson (1968) Martch and McCall (1972) Luongo, Gilmour and Schroeder (1989) Percell and Ryan (1987) Lall and Percell (1990) Carter (1998) among others... the liquid pipeline optimization 1st publication on gun-barrels by DP tree-shaped networks by DP cyclic networks by hybrid DP GRG on cyclic networks tree-shaped networks by MINLP cyclic networks by NDP

UiB

・ロト・西ト・西ト・西・・日・ シック

Project III:

Concluding Remarks

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Project I: An NLP model for the FCMP

UiB

Assumptions (applicable to all projects)

- Gas system is in steady-state
- Network is balanced and directed
- Each parameter is known with certainty
- Constant temperature
- Irreversible flow

Notation The gas transmission network, variables and parameters

 $G = (V, A) \Rightarrow \mathbf{A}$ gas transmission network

DECISION VARIABLES:

- x_{ij} : Mass flow rate in arc (i,j)
- p_i : Pressure at node *i*

PARAMETERS:

- P_i^L , P_i^U : Pressure limits at node $i \in V$;
 - B_i : Net mass flow rate at node $i \in V$.

UiB

Introduction Project I: Project II: Project III:

Concluding Remarks

UiB

Project I: An NLP model for the FCMP The FCMP is then formulated as suggested by Wu et. al (2000)

$$\min\sum_{(i,j)\in A_c} g_{ij}(x_{ij},p_i,p_j)$$
(1)

s.t.:

$$\sum_{i:(j,i)\in A} x_{ji} - \sum_{i:(i,j)\in A} x_{ij} = B_j, \quad \forall j \in V$$
(2)

$$(x_{ij}, p_i, p_j) \in D_{ij}, \qquad \forall (i,j) \in A_c$$
 (3)

$$\begin{aligned} x_{ij}^2 &= W_{ij} \left(p_i^2 - p_j^2 \right), & \forall (i,j) \in A_p \\ P_i^L &\le p_i \le P_i^U, & \forall i \in V \end{aligned} \tag{4}$$

$$\begin{aligned} & f \leq p_i \leq P_i^U, & \forall i \in V \\ & x_{ii} \geq 0, & \forall (i, i) \in A \end{aligned}$$

$$\zeta_{ij} \ge 0, \quad \forall (i,j) \in A \quad (6)$$

・ロ と く 雪 と く ヨ と ・ E 990

Concluding Remarks

3

UiB

Project I: An NLP model for the FCMP The FCMP is then formulated as suggested by Wu et. al (2000)

$$\min \sum_{(i,j)\in A_c} g_{ij}(x_{ij}, p_i, p_j)$$
(1)

s.t.:

$$\sum_{i:(j,i)\in A} x_{ji} - \sum_{i:(i,j)\in A} x_{ij} = B_j, \quad \forall j \in V$$
(2)

$$(x_{ij}, p_i, p_j) \in D_{ij}, \qquad \forall (i,j) \in A_c$$
 (3)

$$x_{ij}^2 = W_{ij} \left(p_i^2 - p_j^2 \right), \qquad \forall (i,j) \in A_p$$
(4)

$$P_i^L \le p_i \le P_i^U, \qquad \forall i \in V$$
 (5)

$$x_{ij} \ge 0, \qquad \forall (i,j) \in A$$
 (6)

Difficulties are the non-convexity presented by:

$$g_{ij}(x_{ij}, p_i, p_j) = \frac{x_{ij}\left[\left(\frac{p_i}{p_i}\right)^m - 1\right]}{\eta_{ij}}, \forall (i, j) \in A_c, \text{ and constraints (3)-(4)}$$

Project I: Solution approaches for the FCMP

UiB

SOLUTION APPROACHES

(How do we propose to solve FCMP in my PhD thesis?)

Two techniques must first be described...

 $\begin{array}{c} \text{Introduction} & \begin{array}{c} \text{Project II:} & \begin{array}{c} \text{Project III:} & \begin{array}{c} \text{Project III:} & \begin{array}{c} \text{Order of the second of the s$

G' = compressor network

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Project III:

Concluding Remarks

(2) The NDP algorithm (Carter, 1998)

Basic principles of the NDP of Carter

- 1st: **Discretize** $[P_i^L, P_i^U], \forall i \in V$ Assume τ discretization points $(p_i^1, \dots, p_i^{\tau})$ of pressure at node i, s.t. $P_i^L \leq p_i^1 < \dots < p_{\nu}^{\tau} \leq P_i^U$
- For instance, [600,800], τ = 20.
 We would consider only pressures at ten point increments: 600,610,620,...,800

UiB

Project III:

Concluding Remarks

(2) The NDP algorithm (Carter, 1998)

Basic principles of the NDP of Carter

- 1st: **Discretize** $[P_i^L, P_i^U], \forall i \in V$ Assume τ discretization points $(p_i^1, \dots, p_i^{\tau})$ of pressure at node i, s.t. $P_i^L \leq p_i^1 < \dots < p_{\nu}^{\tau} \leq P_i^U$
- For instance, [600,800], τ = 20.
 We would consider only pressures at ten point increments: 600, 610, 620, · · · ,800.

◆□ → ◆□ → ◆ = → ◆ = → ○ < ◇ ◇ ◇

Introduction Project I: Project III:

(2) The NDP algorithm (Carter, 1998),

Project II:

Basic principles of the NDP of Carter

- 1st : **Discretize** $[P_i^L, P_i^U], \forall i \in V$ Assume τ discretization points $(p_i^1, \cdots, p_i^{\tau})$ of pressure at node *i*, s.t. $P_i^L < p_i^1 < \cdots < p_v^\tau < P_i^U$
- For instance, [600,800], $\tau = 20$. We would consider only pressures at ten point increments: 600, 610, 620, ..., 800.

Then NDP consists of

- a sequence of reductions of G' until the 0 resulting graph is a single node.
- 3 types are considered: a) Serial, b) dangling and c) parallel.

The 1st solution approach suggested for solving FCMP

Project I: Solving the FCMP

Project III:

Concluding Remarks

UiB

⇒ A Tabu Search scheme and non-sequential DP

TS heuristic (Glover and Laguna, 1997) & NDP approach (Carter, 1998)

The 1st solution approach (suggested during my master)

Input: G = (V,A)

- STEP 0: Obtain a **reduced network** G' of G
- STEP 1: Find a feasible flow x in G'
- STEP 2: Apply **NDP to G' to optimize pressure** *p*
- STEP 3: Apply a TS heuristic to optimize (x,p) on G'
- STEP 4: Extend the best solution found to G

Output: Feasible flows and optimal pressures for G

Conc

Concluding Remarks

Project I: Solving the FCMP Conclusions on the 1st solution approach

Advantages:

- ✓ Applicable to *linear*, *tree-shaped* & *cyclic networks*
- \checkmark Easy to handle *non-convexity*

Project I: Project II:

Project III: 00000 Concluding Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

UiB

Project I: Solving the FCMP Conclusions on the 1st solution approach

Weakness:

Limited to sparse networks

Project I: Project II:

Project III: 00000 Concluding Remarks

UiB

Project I: Solving the FCMP Conclusions on the 1st solution approach

Weakness:

Limited to sparse networks

An example of this limitation...

When neither of the reductions (a)–(c) can be carried out, NDP fails!
 Introduction
 Project I:
 Project II:
 Project III:
 Concluding Remarks

 Opposed II:
 Solving the FCMP
 UiB

The 2nd solution approach (Contribution of the PhD thesis)

(To overcome this weakness...)

A 2nd solution approach

 \Rightarrow A tree-decomposition based algorithm

Frequency assignment problem via TD (Koster et al., 1999)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Project III:

Concluding Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

UiB

A tree-decomposition based algorithm Devoted to optimize pressure values

TREEDDP ALGORITHM

Input:	G' = (V, A _c) = Compressor network
	A feasible flow \boldsymbol{x} in G'
Phase 0:	Apply NDP to $G' \to \Gamma$
Phase 1:	Find a tree decomposition \mathbf{T} of $\boldsymbol{\Gamma}$
Phase 2:	Apply a DP to T

Output: Optimal pressure p^*

Project III:

Concluding Remarks

UiB

Phase 1: Tree Decomposition (TD) (Robertson and Seymour, 1986)

Basically, the main idea of a TD technique

Decompose the problem into a set of connected sub-problems, where two sub-problems are connected when they share a constraint.

To compute $\mathscr{T} \longrightarrow \mathsf{TD}$ technique based on Maximum Cardinality Search (MCS)

Project III:

Concluding Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Phase 2: Dynamic Programming (DP) (Bellman, 1953)

UiB

Now,

The principles of DP can be applied to T

Components of a global opt. sol. are themselves globally opt.

This completes the 2^{nd} solution approach, TreeDDP, proposed in this thesis

Project III:

Concluding Remarks

Project I: Numerical experiments

PERFORMANCE OF TreeDDP Algorithm

CPU Time (sec):		$\tau = 50$	τ = 100	τ = 1000
	AVG	0.0	3.2	1535 (0.4hr)
	MAX	2.6	34.4	3623 (1.0hr)*

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → のへで

Project III:

Concluding Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Project I: Numerical experiments

PERFORMANCE OF TreeDDP Algorithm

Observations for	or three different	mesh sizes:
------------------	--------------------	-------------

		τ = 50	<i>τ</i> = 100	<i>τ</i> = 1000
CPU Time (sec):	AVG	0.0	3.2	1535 (0.4hr)
	MAX	2.6	34.4	3623 (1.0hr)∗

AVG-relative GAP from τ=1000 to τ=50: 42.17%, τ=100: 5.52%

Conclusion:

au is crucial for the CPU-time

Project III:

Concluding Remarks

Numerical Experiments TreeDDP Algorithm vs. other optimizers

UiB

TREEDDP ALGORITHM VS. BARON AND MINOS

Observations on 16 test instances:

- Instances solved by:
 - Baron: 8/16, Minos: 11/16, TreeDDP: 16/16
- AVG-RI of TreeDDP over:
 - Baron: 9.45%, Minos: 11.55%

Project I: Project II:

Project III: 00000 Concluding Remarks

Project I: Solving the FCMP The 2nd solution approach

Conclusions on the 2nd solution approach

Advantages:

- ✓ Applicable to *a wide range of network topologies*
- ✓ *TreeDDP* can be put inside an algorithm that considers flow variables in an outer loop.

Introduction Proj

Project I: Project II:

Project III: 00000 Concluding Remarks

Project I: Solving the FCMP The 2nd solution approach

Conclusions on the 2nd solution approach

Advantages:

- ✓ Applicable to *a wide range of network topologies*
- ✓ *TreeDDP* can be put inside an algorithm that considers flow variables in an outer loop.

Weakness:

• High dependency on the discretization, τ

Project III:

Concluding Remarks

UiB

Project I: *Tackling the FCMP The 3rd solution approach (Contribution of the PhD thesis)*

(To overcome the weakness presented by TreeDDP...)

The 3rd solution approach

 \Rightarrow An adaptive discretization approach

Based on some facts:

- Assessing the number of discretization points, τ , is not a trivial task.
- Large value of τ increases the possibility of finding a good solution.
- The asymptotic increase in the running time of DP is proportional to au^d .

・ロ> < 団> < 三> < 三> < 三

Project III:

Concluding Remarks

UiB

Project I: Tackling the FCMP The 3rd solution approach (Contribution of the PhD thesis)

(To overcome the weakness presented by TreeDDP...)

The 3rd solution approach

 \Rightarrow An adaptive discretization approach

Based on some facts:

- Assessing the number of discretization points, τ , is not a trivial task.
- Large value of τ increases the possibility of finding a good solution.
- The asymptotic increase in the running time of DP is proportional to au^d .

Project III:

Concluding Remarks

UiB

Project I: Tackling the FCMP The 3rd solution approach (Contribution of the PhD thesis)

(To overcome the weakness presented by TreeDDP...)

The 3rd solution approach

 \Rightarrow An adaptive discretization approach

Based on some facts:

- Assessing the number of discretization points, τ , is not a trivial task.
- Large value of τ increases the possibility of finding a good solution.
- The asymptotic increase in the running time of DP is proportional to au^d .

Project III:

Concluding Remarks

Project I: Tackling the FCMP The 3rd solution approach

Main ideas behind the adaptive discretization

- Start with τ as small as possible
- Upgrade τ by a fixed factor until at least one feasible point is found by DP.
- For each solution in a selection of the feasible ones hence found:
 - Define a focus area for the next iteration
- Apply the same procedure to each focus area.

▲□ > ▲圖 > ▲ 画 > ▲ 画 > → 画 → のへで

Project III:

Concluding Remarks

UiB

Project I: Tackling the FCMP The 3rd solution approach

The key point of this approach is

Focus on the neighborhood of some of the feasible solutions found

...and explore recursively each solution until

The discretization distance within the focus area drops below a given threshold.

Introduction Project I: Project II:

Project III:

Concluding Remarks

Project I: Solving the FCMP The 3rd solution approach

Conclusions on the 3rd solution approach

Advantages:

- \checkmark No assumption is made concerning the sparsity of the network
- ✓ Outperforms the efficiency of previous approaches (up to 16.3% of RI over a global optimizer)
- ✓ Effective in solving large networks (< 60 CPU-seconds in 22 test cases)

Introduction Project I: Project II: Project II:

Project III:

Concluding Remarks

Project I: Solving the FCMP The 3rd solution approach

UiB

Conclusions on the 3rd solution approach

Advantages:

- \checkmark No assumption is made concerning the sparsity of the network
- ✓ Outperforms the efficiency of previous approaches (up to 16.3% of RI over a global optimizer)
- ✓ Effective in solving large networks (< 60 CPU-seconds in 22 test cases)

Weakness:

▼ As a heuristic method \rightarrow *no guarantee of optimality*

Introduction 000	Project I: 00000000000	Project II:	Project III: 00000	Concluding Remarks
Project II				UiB

Let's now move to

Project II: Key issue

As observed from the model introduced in Project I

An equation to define the resistance of a pipeline is required.

Fact:

The resistance of the pipeline are based on current physical gas and pipeline properties

Literature reveals several methods for this purpose

Weymouth eq. (1912) (Osiadacz, 1987), Panhandle A eq. (1940) and Panhandle B eq. (1956) (Crane, 1982).

Introduction	Project I:	Project II:	Project III:	Concluding Remar
		000000000000000000000000000000000000000		

Project II: Key issue

In this project, we also make use of

Weymouth equation:

 $x_{ij}^2 = W_{ij} \left(p_i^2 - p_j^2 \right)$ $W_{ij} = \frac{d^5}{Kg_i z_{ij} Tf_{ij} L_{ij}}.$

where

Observations:

- W depends on z and g;
 z depends also on g,p,T;
- and *g* depends on upstream flows because of blending

based on the well from where the gas

originates & degree of processing

Droig at II.	תיד ד			
Introduction 000	Project I:	Project II:	Project III: 00000	Concluding Remarks

Project II: Key issue

UiB

In this project, we also make use of

Weymouth equation:

 $x_{ij}^2 = W_{ij} \left(p_i^2 - p_j^2 \right)$ $W_{ij} = \frac{d^5}{Kg_i z_{ij} T f_{ij} L_{ij}}.$

where

Observations:

- W depends on z and g; z depends also on g,p,T;
- and g depends on upstream flows because of blending

based on the well from where the gas

originates & degree of processing

Project I: Project II:

Project III:

Concluding Remarks

UIiB

Project II: Key statements Then, what do we propose in this project?

Goal of the project

Extend previously suggested models to bring them closer to physical reality.

Accomplish by

Formulating a model where **not only** x **and** p **but** g **and** z are defined as state variables in a NG transmission system.

Focus on

Flow maximization of natural gas transmission pipeline systems in steady-state.

Introduction	Project I:	Project II:	Project III:	Concluding Remarks
		00000		

Project II: Variability of g and z in pipeline systems

Notation

Decision variables:

- x_{ij} =flow through pipeline $(i,j) \in A$.
- p_i and p_j = upstream and downstream pressures in pipeline $(i,j) \in A$.
- g_i = gas specific gravity at node $i \in V$.
- $z_{ij} = \text{gas compressibility factor in pipeline}$ $(i,j) \in A.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

UiB

Project II: Modeling the resistance of the pipeline UiB 1st key component of the model

By defining $w_{ij} = g_i z_{ij} W_{ij}$,

Weymouth eq. can be written as

Thus, (1) is adopted in the model.

Project III:

Concluding Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Project II: Balance of g in the system 2nd key component of the model

UiB

We assume that

$$\forall j \in V \setminus V_s, \qquad g_j = \frac{\sum_{i \in V_j^-} g_i x_{ij}}{\sum_{i \in V_j^-} x_{ij}} \qquad (2)$$

i.e., g of a blend of different gases is the weighted average of specific gravities of entering flows.

Project III:

Concluding Remarks

Project II: Balance of g in the system 2nd key component of the model

UiB

We assume that

$$orall j \in V \setminus V_s, \qquad g_j = rac{\sum_{i \in V_j^-} g_i x_{ij}}{\sum_{i \in V_j^-} x_{ij}}$$
 (2)

i.e., g of a blend of different gases is the weighted average of specific gravities of entering flows.

By multiplying (2) by the total entering flow:

$$g_j \sum_{i \in V_j^-} x_{ij} - \sum_{i \in V_j^-} g_i x_{ij} = 0, \forall j \in V \setminus V_s.$$
(3)

Thus, (3) is adopted in the model.

Project I: Project II:

Project III:

Concluding Remarks

Project II: Compute *z* in the pipeline 3rd key component of the model

UiB

Literature suggests diverse methods to compute *z*

Experimental measurements, EoS methods (Dranchuk, 1975), empirical correlations (Katz et al., 1959) and regression analysis methods (Dranchuk, 1974; Gopal, 1977).

Assuming constant temperature

(4) can be written

$$z_{ij}(1+\omega\overline{p_{ij}}\times 10^{\beta g_i})=1,$$
(5)

where $\omega = \frac{\alpha}{T^{\delta}}$ is an instance specific constant.

Project III:

Concluding Remarks

Project II: Compute *z* in the pipeline 3rd key component of the model

We have applied

$$\overline{z_{ij}} = \frac{1}{1 + \frac{\overline{p_{ij}}\alpha 10^{\beta_{g_i}}}{T^{\delta}}}$$
(4)

Assuming constant temperature

(4) can be written

$$z_{ij}(1+\omega\overline{p_{ij}}\times 10^{\beta g_i})=1,$$
(5)

where $\omega = \frac{\alpha}{T^{\delta}}$ is an instance specific constant.

Thus, (5) is adopted in the model.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → �� ♡ � (?)

UiB

Introduction	Project I:	Project II:	Project III:	Concluding Remark

Project II: As a result The following NLP model is proposed:

$$(\mathcal{M}_1) \quad Y_1 = \max \sum_{i \in V_s} b_i \qquad (a)$$

s.t.:

Constraint defining $g, z,$			
the resistance of the pipeline and			
$\sum x_{ij} - \sum x_{ji} - b_i = 0,$	$\forall i \in V$	(b)	
$j \in V_i^+$ $j \in V_i^-$			
$3\overline{p}_{ij}(p_i+p_j)=2(p_i^2+p_j^2+p_ip_j),$	$\forall (i,j) \in A$	(c)	
$p_i^L \leq p_i \leq p_i^U$	$\forall i \in V$	(d)	
$b_i = 0,$	$\forall i \in V \setminus V_s \setminus V_d$	(e)	
$b_i \ge 0,$	$\forall i \in V_s$	(f)	
$b_i \leq 0,$	$\forall i \in V_d$	(g)	
$x_{ij} \ge 0,$	$\forall (i,j) \in A.$	(h)	

Constraints for g, z, flow capacity estimates, and (c) are non-convex, GO can become time consuming. Fast and possibly inexact solution methods may be required.

UiB

Project I: Project II:

Project III:

Concluding Remarks

UiB

Project II: Contributions

A more accurate NLP model for

Maximizing flow while considering the variability of g and z.

An extensive numerical experimentation:

- <u>GAMS formulation</u> for the NLP model.
 - Global optimizer: **BARON** (Tawarmalani & Sahinidis, 2004)
 - NLP local optimizer: MINOS (Murtaugh & Saunders, 1983)
 - Heuristic algorithm based on an approximate model

Through experiments, we have demonstrated that

- Neglecting g and z variation in instances where the variation is high, tends to give significantly misleading results.
- The proposed heuristic yields optimal or near-optimal solutions in most of the instances.

Project I: Project II:

Project III:

Concluding Remarks

UiB

Project II: Contributions

A more accurate NLP model for

Maximizing flow while considering the variability of g and z.

An extensive numerical experimentation:

- <u>GAMS formulation</u> for the NLP model.
 - Global optimizer: BARON (Tawarmalani & Sahinidis, 2004)
 - NLP local optimizer: MINOS (Murtaugh & Saunders, 1983)
 - *Heuristic algorithm* based on an approximate model

Through experiments, we have demonstrated that

- Neglecting g- and z- variation in instances where the variation is high, tends to give significantly misleading results.
- The proposed heuristic yields optimal or near-optimal solutions in most of the instances.

Project I: Project II:

Project III:

Concluding Remarks

Project III: The line-packing problem

UiB

Finally, let's move to

▲□▶▲□▶▲□▶▲□▶ □ のへで

Introduction Project II: Project III: **Concluding Remarks** 0000 UiB

Project III: Problem statement

The optimization problem arises from one fact:

PIPELINES ARE

A means of gas transportation, BUT...

Project I: Project II:

Project III:

Concluding Remarks

UiB

Project III: Problem statement

PIPELINES ALSO REPRESENT

POTENTIAL STORAGE UNITS FOR SAFETY STOCKS!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Optimization of gas storage in pipelines on a *short-term basis* to satisfy market demand.

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Project I: Project II:

Project III:

Concluding Remarks

Project III: Key statements

Goal of the project

The efficient line-pack management as a strategy to meet market demand under scheduled events

Model:

Maximize total gas deliveries over a given planning horizon

We thus need to

optimize the refill of gas in pipelines in periods of sufficient capacity, and the withdrawals in periods of shortfall

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Project I: Project II:

Project III:

Concluding Remarks

(日) (圖) (E) (E) (E) [E]

Project III: Key statements

Goal of the project

The efficient line-pack management as a strategy to meet market demand under scheduled events

Model:

Maximize total gas deliveries over a given planning horizon

We thus need to

optimize the refill of gas in pipelines in periods of sufficient capacity, and the withdrawals in periods of shortfall

Concluding Remarks

(日) (圖) (E) (E) (E)

Project III: Main ideas behind the model

Assumptions:

- Contracts specify upper bounds on, e.g., CO₂ content.
- CO_2 content is not equal at all sources.
- Flow into a pipeline = linear blend of entering flow streams
- Flow varies over time
- No blending inside the pipeline

Consequence:

A queue of batches with unequal CO_2 contents in the pipeline.

UiB

Project III: Conclusions on the project

UiB

Contributions:

A MINLP model for the line-packing problem by

Building up batches to meet market demand over a given multi-period planning horizon

Observations from the numerical experiments:

Test cases of moderate and small size were effectively handled by GO.

Project III: Conclusions on the project

UiB

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Contributions:

A MINLP model for the line-packing problem by

Building up batches to meet market demand over a given multi-period planning horizon

Observations from the numerical experiments:

Test cases of moderate and small size were effectively handled by GO.

Finally,

Project I: Project II:

Project III:

Concluding Remarks

▲□▶▲□▶▲□▶▲□▶ □ のへで

0

Project I: Project II:

Project III:

Concluding Remarks

UiB

Concluding remarks

After 3 wonderful years...

▲ Project I:

- 3 Papers published
- 4 Presentations:

Sweden, France, Mexico & Norway

Project I: Project II:

Project III:

Concluding Remarks

UiB

Concluding remarks

After 3 wonderful years...

▲ Project I:

- 3 Papers published
- 4 Presentations:

Sweden, France, Mexico & Norway

▲ Project II:

- 1 Paper submitted
- 2 Presentations:

Norway

Project I: Project II:

Project III:

Concluding Remarks

Concluding remarks

UiB

After 3 wonderful years...

▲ Project I:

- 3 Papers published
- 4 Presentations:
 - Sweden, France, Mexico & Norway

▲ Project II:

- 1 Paper submitted
- 2 Presentations:

Norway

Project III:

- 1 Paper submitted
- 1 Presentation:

Denmark

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Project I: Project II:

Project III:

Concluding Remarks

Concluding remarks

UiB

After 3 wonderful years...

▲ Project I:

- 3 Papers published
- 4 Presentations:
 - Sweden, France, Mexico & Norway
- ▲ Project II:
 - 1 Paper submitted
 - 2 Presentations:

Norway

Project III:

- 1 Paper submitted
- 1 Presentation:

$\begin{array}{c} \mbox{Denmark} \\ \mbox{And of course, } \mbox{PhD thesis} \rightarrow \mbox{Done!} \end{array}$

Conrado Borraz-Sánchez (Optimization Research Group) Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen e-mail: Conrado.Borraz-Sanchez@ii.uib.no, Homepage: http://www.ii.uib.no/~conrado/