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of the Equation X — A"V X 1A=171"
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Abstract: The matrix equation X — A*vX~1A = I in this paper is studied.
There is an iterative method for obtaining of a positive definite solution of this equation.
Sufficient conditions for existence of positive definite solutions are proved. Results of

numerical expiriments are given.
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1. Introduction

We consider the matrix equation
X -AVX1A=1, (1)

where [ is n X n a unit matrix and A is n X n a invertible matrix. We shall study the equation
(1) for the existence of a Hermitian positive definite solution X, (X > 0).
In many physical applications we must solve a system of linear equations [1]

Mx=f (2)

where the positive definite matrix M arises from a finite difference approximation to an
elliptic partial differential equation. As an example, let

I A
M= ( A ) .
We consider the matrix M = M + diag[I — X, 2I] where
~ X A
i-(3 4

We can decompose the matrix M via the following way

X A - I 0 X A (3)
A -1 ) L AxTL T 0o —-x2 )
In order to exists the decompositon (3) the matrix X must be a solution of the matrix
equation Y — A*VY-1A=1, X =Y.
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We find a LU-decomposition to the matrix M. The solving of the system My = f is
transformed to the solving of two linear systems that have a left block coefficient matrix and
a right block coefficient matrix, respectively. For computing the solution of (2) the Woodbury
formula [3] can be applied.

In this paper we propose an iterative method which is converged to a positive definite
solution of (1). The rate of convergence of these methods depend of the parameter «. Numer-
ical examples are discussed and results of experiments are given. We study the equation (1)
of a positive definite solution because the solving of linear systems having a positive definite
matrix is numerically stable [7].

2. Solution of the matrix equation

We will describe an iterative method which is suitable for obtaining to a positive definite
solution of the equation (1). We start with some properties which will be used throughout
this paper.

(1) IfP>Q>0then Pt <Q L

(i1) If P > Q > 0 then vP > Q.

Consider the sequence of the following matrices

Xo=al, Xpp1 =T+ AX'A, k=0,1,2,.... (4)

We will prove the following theorems
Theorem 1. If there is a real a so that o > 1 and

(1)  Vala—1)I < A*A,
(i1) 55 (AA%)? - A*A > al,

(1ii) ||A4]|? < 2av/a.

Then the equation (1) has a positive definite solution.
Proof. We consider the sequence (4). For X; we have

1
X =1+-—"—=A%A.
(6%

Va

From the condition (i) we obtain

1
X():OZI<I+7A*A:X1
(0%

s

Hence Xy < X;.
For X5 we have

Xy =T+ A*\/X['A

1
=TI+ A" |(I+—=A*A)~1A

Applying the condition (ii) yeilds

1 1
Lavr < 1 _(aay
AL < gTypday

1
—A*A+ 1)1 —1)A*A!
1
—A*A+1)1A I = Xp.
\/a + ) > o 0
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Consequently Xg < Xo.
Using Xy < X1 we obtain

Xt o> Xt
AN XA > ANXTMA
X1 > Xo.
Hence Xy < X5 < Xj.
We receive by analogy
X1 > X3
and
X35> Xo.

Consequently Xg < Xg < X3 < X7.
We receive by analogy that for each two integer numbers s, k is satisfied

Xo < Xop < Xopto < Xogyz < Xogp1 < X

Consequently the subsequences { Xor }, {X2s41} are convergent ones to positive definite
matrices. These sequences have a common boundary. We have

| Xorn — Xl = A7/ X5 — /X5 DA
= [|A" Y X5 ( Xar—1 — VX)X, All
< AP X Xy Xanot — VXl
We consider the equation
\/X% 1( \/X% 1 — vV Xor) + (/ Xok—1 — vV Xop)V Xop, = Xop—1 — Xog.

Since Xogy1 > Xos for each k, s then Y = / Xor_1 —+/Xag is a positive definite soluiton
of the matrix equation

VXok1 Y +Y VXop = Xop 1 — Xog.

According to theorem 8.5.2 [4] we have
Y = / TV (X ) — Xop)e TV dt. (5)

Since Xy < X < X7 are positive definite matrices then

\/E>\/X;1, s=0,1,2,...
VX5 <

and

5~



Then

1 X t —V/Xoit
| Xowrs = Xaull < 5HAH|Q/ VR Xy — Xop)e VR
Lo
< aHAH 7”)(%71 — Xok|
< (2af|!AH )F1 X1 — Xo
< AHH|—=A*A+ (1 — ).
< (QQfll I?) ”\/& + (1= )|
Consequently
1 1
X — Xokl| < APk —=A*A + (1 — o).
IXoki1 = Xl < (o IAIDM | =44+ (1= o)1

and
[ Xort1 — Xog|l — 0, k& — oc.

Hence

1 22k7* _
e AP 2 A4+ (1= )],

Remark. In the case a = 1 the conditions (i) and (ii) of Theorem 1 are satisfied

and then the equation (1) has a positive definite solution.
Theorem 2. If there is a real § so that 3 > 1 and

(1) A*A<V/B(B -1,
(ii) (B_Lf)z,(AA*)2 —BI < A*A
(iii) [|A]* < 2p\/p,
where p is the minimal eigenvalue of the matrix I + ﬁA*A. Then the equation (1) has a

max([[ Xop1 — X, [|X — Xorl) < (

positive definite solution.
Proof. The theorem is proved analogous of the theorem 1 as we consider the iterative

method (4) with Xy = 31.

3. Numerical experiments

We made numerical experiments for computing of a positive definite solution of the
equation (1). The solution is computed for different matrices A and different values of n.
Denote X the solution which is obtained by the iterative method (4), i.e

Xpy1 =T+ A% XPA, Xo=al, k=0,1,2,...

and mx be the smallest number k, for which

2a/a ) Ty/a

Denote Y the solution which is obtained by the iterative method (4), in case . Xy = 31
and my be the smallest number r, for which

A1\ 1 S
1 Xr — X|| < |—=A*A+ (1 — )| <107°.

wx—Yw<CMWfﬂm—nL—lAMM<w5
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where p is the minimal eigenvalue of the matrix I + —=A*A.

VB

&= [ Xy = Xy [loo-

Denote € the norm

We can consider decomposition of the matrix M,

(& 1) =(ax 1) (3 %)

This decomposition leads to solving the matrix equation X + AT X~'A = I. Further-
more we solve this matrix equation with same matrices A. We compute the positive definite
solution [2] by

T —
Xo=1I1, Xp=1-A"X"A, p=0,1,.... (6)

We denote kx the smallest number p so that
1 9\ P _5
1%, = X1 < 5 (414]7)" < 1072,

This inequality follows immediately from the recursion problem (2b) of [2] and Lemma 4 [2].
Example 1. Let A has the form

_ 2(2n+14) .
(g — ) YT R L=
A = (ai;) = { aij = 2(24;]3+n) i+
Example 2. Let A has the form
1 2 n

A = diag|

2+1’2.2+1""’2n+1]
Example 3. Let A has the form

aij = 25(1 — Uiy =
A = (a;) = ! _ (n-) 20° o
Qij = 35%n, 7

Example 4. Let A has the form

aij =3(1 — qgoz) =]
A_(a”)_{aij_(fg:#) 17&]
The results from experiments are given in the following tables.
Table 1.
Example 1 (a = 1) Example 2 (a = 1.1)
n | kx 6 | mx | my € kx J6] mx | my €
5| — | 1.8 | 14 | 14 | 1.730e—10 | 57 | 1.20 | 4 4 | 4.219¢ -6
10| 40 | 1.19 | 5 5 5.613e—7 | 111 | 1.21 | 5 5 | 5.362e -7
15| 10 | 1.09 | 3 3 5.262¢ —6 | 165 | 1.22 | 5 5 | 6.61be—7
201 7 [ 105 3 3 5579 —7 | 220 | 1.22 | 5 5 | 7.058e -7
251 5 | 1.03 ] 2 2 6.674e —6 | 274 | 1.22 | 5 5 | 7.33% —7




Table 2.

Example 3 Example 4

n o I5] mx | my € « 6 | mx | my €

5 | 16.05 | 16.27 | 15 | 15 | 2.608e —6 | 4.89 | 5 11 11 | 4.651e — 6

10 | 16.05 | 16.48 | 16 16 | 2.444e —6 | 4.95 | 5.02 | 11 11 | 2.972e — 6

15| 4.86 | 532 | 15 | 16 | 6.444e—7 | 4.97 | 5.02 | 10 | 10 | 5.305e — 6

20 1 1.17 5 4 | 3.798e —7 498 | 502 | 10 | 10 | 4.243e —6

25| 203 | 261 | 14 | 16 | 4.776e—8 | 4.99 | 5.02 | 10 | 10 | 3.180e —6

4. Conclusion

In this paper we consider a nonlinear matrix equation. LU-decompositon (3) leads to

the computing of a positive definite solution of the equation (1). We introduced a recursion
algorithm from which a positive definite solution can be calculated. When the matrix A
satisfy theorem 1 or theorem 2 then we receive the solution of the equation (1) faster than
the solution of the equation X + A*X 1A = I. There are matrices A (examples 3 and 4) for
wich the iterative method (4) is convergence but the iterative method (6) is not convergence.

In theorems 2 and 3 bounds are given in term of a parameter a. The rate of convergence

of the described iterative method (4) depends of the parameter .

References

[1] Buzbee B.L., Golub G.H. and Nielson C.W., On Direct Methods for Solving Poisson’s
Equations, SIAM J. Numer. Anal. 7:627-656 (1970).

[2] Engwerda J.C., On the Existence of a Positive Definite Solution of the Matrix Equation
X + ATXYA = I, Linear Algebra Appl. 194:91-108 (1993).

[3] Housholder A.S., The theory of matrices in numerical analysis. Blaisdell, NewYork
(1964).

[4] Lankaster P., Theory of Matrices. Academic Press. New York (1969).

[5] Parodi M., La localisation des valeurs caracteristiques des matrices et ses applications.
Paris, Gauthier-Villars, 1959.

[6] Petkov M. On the matrix equations Ag X+ A1 X™ 14+ A4, =0, (ApA™+A N1+
..+ Ap)z = 0. Annuaire of Sofia University "Kl. Okhridski”, 72:159-164 (1978) (in
Bulgarian).

[7] Wilkinson J.H., The algebric eigenvalue problem. Oxford University Press, London

(1965).

Ivan Gantchev Ivanov

Borislav Ventcislavov Minchev

Vezhdi Ismailov Hasanov

Faculty of Mathematics and Informatics
Shoumen University, Shoumen 9712, Bulgaria
e-mail: i.gantchev@fmi.uni-shoumen.acad.bg



