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Positive Definite Solutions
of the Equation X − A∗√X−1A = I 1

I. Ivanov, B. Minchev, V. Hasanov

Abstract: The matrix equation X − A∗√X−1A = I in this paper is studied.
There is an iterative method for obtaining of a positive definite solution of this equation.
Sufficient conditions for existence of positive definite solutions are proved. Results of
numerical expiriments are given.
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1. Introduction

We consider the matrix equation

X −A∗
√

X−1A = I, (1)

where I is n×n a unit matrix and A is n×n a invertible matrix. We shall study the equation
(1) for the existence of a Hermitian positive definite solution X, (X > 0).

In many physical applications we must solve a system of linear equations [1]

Mx = f (2)

where the positive definite matrix M arises from a finite difference approximation to an
elliptic partial differential equation. As an example, let

M =

(
I A
A∗ I

)
.

We consider the matrix M = M̃ + diag[I −X, 2I] where

M̃ =

(
X A
A∗ −I

)
.

We can decompose the matrix M̃ via the following way
(

X A
A∗ −I

)
=

(
I 0

A∗X−1 I

) (
X A
0 −X2

)
. (3)

In order to exists the decompositon (3) the matrix X must be a solution of the matrix
equation Y −A∗

√
Y −1A = I, X =

√
Y .

1This work is partially supported by Contract MM 521/95 with the Bulgarian Ministry of Education,
Sciences and Technologies
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We find a LU -decomposition to the matrix M . The solving of the system M̃y = f is
transformed to the solving of two linear systems that have a left block coefficient matrix and
a right block coefficient matrix, respectively. For computing the solution of (2) the Woodbury
formula [3] can be applied.

In this paper we propose an iterative method which is converged to a positive definite
solution of (1). The rate of convergence of these methods depend of the parameter α. Numer-
ical examples are discussed and results of experiments are given. We study the equation (1)
of a positive definite solution because the solving of linear systems having a positive definite
matrix is numerically stable [7].

2. Solution of the matrix equation

We will describe an iterative method which is suitable for obtaining to a positive definite
solution of the equation (1). We start with some properties which will be used throughout
this paper.

(i) If P ≥ Q > 0 then P−1 ≤ Q−1.
(ii) If P ≥ Q > 0 then

√
P ≥ √

Q.
Consider the sequence of the following matrices

X0 = αI, Xk+1 = I + A∗
√

X−1
k A, k = 0, 1, 2, . . . . (4)

We will prove the following theorems
Theorem 1. If there is a real α so that α > 1 and

(i)
√

α(α− 1)I < A∗A ,
(ii)

√
α

(α−1)2
(AA∗)2 −A∗A >

√
αI,

(iii) ‖A‖2 < 2α
√

α.

Then the equation (1) has a positive definite solution.
Proof. We consider the sequence (4). For X1 we have

X1 = I +
1√
α

A∗A.

From the condition (i) we obtain

X0 = αI < I +
1√
α

A∗A = X1

Hence X0 < X1.
For X2 we have

X2 = I + A∗
√

X−1
1 A

= I + A∗
√

(I +
1√
α

A∗A)−1A

Applying the condition (ii) yeilds

1√
α

A∗A + I <
1

(α− 1)2
(AA∗)2

√
(

1√
α

A∗A + I)−1 > (α− 1)A−∗A−1

X2 = I + A∗
√

(
1√
α

A∗A + I)−1A > αI = X0.
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Consequently X0 < X2.
Using X0 < X1 we obtain

X−1
0 > X−1

1

A∗
√

X−1
0 A > A∗

√
X−1

1 A

X1 > X2.

Hence X0 < X2 < X1.
We receive by analogy

X1 > X3

and
X3 > X2.

Consequently X0 < X2 < X3 < X1.
We receive by analogy that for each two integer numbers s, k is satisfied

X0 ≤ X2k < X2k+2 < X2s+3 < X2s+1 ≤ X1.

Consequently the subsequences {X2k}, {X2s+1} are convergent ones to positive definite
matrices. These sequences have a common boundary. We have

‖X2k+1 −X2k‖ = ‖A∗(
√

X−1
2k −

√
X−1

2k−1)A‖
= ‖A∗

√
X−1

2k (
√

X2k−1 −
√

X2k)
√

X−1
2k−1A‖

≤ ‖A‖2‖
√

X−1
2k ‖‖

√
X−1

2k−1‖‖
√

X2k−1 −
√

X2k‖.

We consider the equation
√

X2k−1(
√

X2k−1 −
√

X2k) + (
√

X2k−1 −
√

X2k)
√

X2k = X2k−1 −X2k.

Since X2k+1 > X2s for each k, s then Y =
√

X2k−1−
√

X2k is a positive definite soluiton
of the matrix equation

√
X2k−1 Y + Y

√
X2k = X2k−1 −X2k.

According to theorem 8.5.2 [4] we have

Y =
∫ ∞

0
e−
√

X2k−1t(X2k−1 −X2k)e−
√

X2kt dt. (5)

Since X0 < Xs < X1 are positive definite matrices then
√

X−1
0 >

√
X−1

s , s = 0, 1, 2, . . .

and
‖
√

X−1
s ‖ ≤ 1√

α
.
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Then

‖X2k+1 −X2k‖ ≤ 1
α
‖A‖2‖

∫ ∞

0
e−
√

X2k−1t(X2k−1 −X2k)e−
√

X2kt dt‖

≤ 1
α
‖A‖2 1

2
√

α
‖X2k−1 −X2k‖

≤ (
1

2α
√

α
‖A‖2)2k‖X1 −X0‖

≤ (
1

2α
√

α
‖A‖2)2k‖ 1√

α
A∗A + (1− α)I‖.

Consequently

‖X2k+1 −X2k‖ ≤ (
1

2α
√

α
‖A‖2)2k‖ 1√

α
A∗A + (1− α)I‖.

and
‖X2k+1 −X2k‖ → 0, k →∞.

Hence

max(‖X2k+1 −X‖, ‖X −X2k‖) ≤ (
1

2α
√

α
‖A‖2)2k‖ 1√

α
A∗A + (1− α)I‖.

Remark. In the case α = 1 the conditions (i) and (ii) of Theorem 1 are satisfied
and then the equation (1) has a positive definite solution.

Theorem 2. If there is a real β so that β > 1 and

(i) A∗A <
√

β(β − 1)I,

(ii)
√

β

(β−1)2
(AA∗)2 −√βI < A∗A,

(iii) ‖A‖2 < 2ρ
√

ρ,

where ρ is the minimal eigenvalue of the matrix I + 1√
β
A∗A. Then the equation (1) has a

positive definite solution.
Proof. The theorem is proved analogous of the theorem 1 as we consider the iterative

method (4) with X0 = βI.

3. Numerical experiments

We made numerical experiments for computing of a positive definite solution of the
equation (1). The solution is computed for different matrices A and different values of n.
Denote X the solution which is obtained by the iterative method (4), i.e.

Xk+1 = I + A∗
√

X−1
k A, X0 = αI, k = 0, 1, 2, . . .

and mX be the smallest number k, for which

‖Xk −X‖ ≤
(
‖A‖2

2α
√

α

)k

‖ 1√
α

A∗A + (1− α)I‖ ≤ 10−5.

Denote Y the solution which is obtained by the iterative method (4), in case . X0 = βI
and mY be the smallest number r, for which

‖Xr − Y ‖ ≤
(
‖A‖2

2ρ
√

ρ

)r

‖(β − 1)I − 1√
β

A∗A‖ ≤ 10−5,
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where ρ is the minimal eigenvalue of the matrix I + 1√
β
A∗A.

Denote ε the norm
ε = ‖XmX −XmY ‖∞.

We can consider decomposition of the matrix M ,
(

X A
A∗ I

)
=

(
I 0

A∗X−1 I

) (
X A
0 X

)
.

This decomposition leads to solving the matrix equation X + AT X−1A = I. Further-
more we solve this matrix equation with same matrices A. We compute the positive definite
solution [2] by

X0 = I, Xp+1 = I −AT X−1
p A, p = 0, 1, . . . . (6)

We denote kX the smallest number p so that

‖Xp −X‖ ≤ 1
2

(
4‖A‖2

)p ≤ 10−5.

This inequality follows immediately from the recursion problem (2b) of [2] and Lemma 4 [2].
Example 1. Let A has the form

A = (aij) =





aij = 2(2n+i)
n3 i = j

aij = 2(i+j+n)
n3 i 6= j

Example 2. Let A has the form

A = diag[
1

2 + 1
,

2
2.2 + 1

, . . . ,
n

2n + 1
]

Example 3. Let A has the form

A = (aij) =





aij = 25(1− i(n−i)
202n

) i = j

aij = (n−i)
303n

i 6= j

Example 4. Let A has the form

A = (aij) =

{
aij = 3(1− i

10n2 ) i = j

aij = (i−j)
10n3 i 6= j

The results from experiments are given in the following tables.
Table 1.

Example 1 (α = 1) Example 2 (α = 1.1)
n kX β mX mY ε kX β mX mY ε

5 − 1.8 14 14 1.730e− 10 57 1.20 4 4 4.219e− 6
10 40 1.19 5 5 5.613e− 7 111 1.21 5 5 5.362e− 7
15 10 1.09 3 3 5.262e− 6 165 1.22 5 5 6.615e− 7
20 7 1.05 3 3 5.579e− 7 220 1.22 5 5 7.058e− 7
25 5 1.03 2 2 6.674e− 6 274 1.22 5 5 7.339e− 7
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Table 2.

Example 3 Example 4
n α β mX mY ε α β mX mY ε

5 16.05 16.27 15 15 2.608e− 6 4.89 5 11 11 4.651e− 6
10 16.05 16.48 16 16 2.444e− 6 4.95 5.02 11 11 2.972e− 6
15 4.86 5.32 15 16 6.444e− 7 4.97 5.02 10 10 5.305e− 6
20 1 1.17 5 4 3.798e− 7 4.98 5.02 10 10 4.243e− 6
25 2.03 2.61 14 16 4.776e− 8 4.99 5.02 10 10 3.180e− 6

4. Conclusion

In this paper we consider a nonlinear matrix equation. LU-decompositon (3) leads to
the computing of a positive definite solution of the equation (1). We introduced a recursion
algorithm from which a positive definite solution can be calculated. When the matrix A
satisfy theorem 1 or theorem 2 then we receive the solution of the equation (1) faster than
the solution of the equation X + A∗X−1A = I. There are matrices A (examples 3 and 4) for
wich the iterative method (4) is convergence but the iterative method (6) is not convergence.

In theorems 2 and 3 bounds are given in term of a parameter α. The rate of convergence
of the described iterative method (4) depends of the parameter α.
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