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Abstract

The solution of Hermitian block circulant tridiagonal linear system is investigated. This special
kind of system appears in many applications. We propose new approach of El-sayed’s method and
develop two new algorithms for solving such kind of systems. Numerical experiments with our
algorithms and some classical algorithms are executed. Numerical examples are given to illustrate
the effectiveness of the proposed algorithms.
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1 Introduction

Many problems in practice lead to the solution of linear systems having special coefficient matrices.
Tridiagonal block circulant linear systems arise from a finite difference approximation to Poisson’s equa-
tion on a rectangular region with periodicity conditions [2, 5], in approximation of periodic functions
using splines [1, 10] and etc. It is known that this systems have the form

M̃ x̃ = f, (1)

where

M̃ =

























A B B∗

B∗ A B
B∗ A . 0

. . .
. . .

0 . . .
. . B

B B∗ A

























, (2)

is Hermitian block circulant matrix with block size n. A and B are m×m blockss. Let introduce the
following notation x̃ = {x̃i}i=1,...,n, f = {fi}i=1,...,n, where x̃i and fi, are block with size m × 1.

The purpose of this paper is to develop new algorithms for solving (1) which are based on method
proposed in [3]. According to the results obtained in [9] we propose two new algorithms and compare
tham with classical LU factorization and Cholesky factorization [6], concerning time for implementa-
tion, number of operations and storage memory. Numerical experiments corroborating the theoretical
results are reported.

1



2 A Modification of LU factorizations

In [3] El-Sayed extends the Rojo’s method [11] in case when the coefficient matrix has block structure.
He uses a nonlinear matrix equation for solving the linear system (1). According to the algorithms
presented in [9], we propose new approach of the El-Sayed’s method. New decomposition of the matrix
M̃ , which decrease the size of the inverse matrix obtain in the Woodbury’s formula is proposed. For
solving the problem (1) we use the following steps:

Step 1. Solve the parametric linear system (by [3])

N y = f, (3)

where

N =





















X B
B∗ A . 0

. . .
. . .

. . .
0 . . B

B∗ A





















,

is tridiagonal matrix with block size n. y = {yi}i=1,...,n, and f = {fi}i=1,...,n are
column vector with block size n, yi and fi are block with size m × 1.
Matrix N admit following LU factorizations

N = LU =
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,

where Im is identity matrix with size m × m.
The above decomposition exists when the parameter X , satisfy the nonlinear matrix
equation

X + B∗X−1B = A. (4)

In this way solving the linear system (3) is equivalent to solving two simpler systems

L z = f, z = {zi}i=1,...,n

U y = z, y = {yi}i=1,...,n.

Their solution are respectively

z1 = f1

zi = fi − B∗X−1zi−1, i = 2, 3, . . . , n,
yn = X−1zn

yi = X−1(zi − Byi+1), i = n − 1, n − 2, . . . , 1.

(5)

Step 2. Solve tridiagonal block Teoplitz linear system (by [3])

M x = f, (6)

where

M =

























A B
B∗ A B 0
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. . .

. . .
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, (7)
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is Hermitian tridiagonal block Teoplitz matrix with block size n. x = {xi}i=1,...,n and
f = {fi}i=1,...,n are column vectors with block size n , xi and fi are block with size
m × 1.
Matrices M and N are related by the connection

M = N + E1V
T
1 ,

where ET
1 =

(

Im 0 . . . 0
)T

, V T
1 =

(

A − X 0 . . . 0
)

.
Using the Woodbury’s formula we have

M−1 = N−1 − N−1E1

[

Im + V T
1 N−1E1

]

−1
V T

1 N−1, (8)

Therefore, for the solution x of (6) we have

x = M−1f

= y − N−1E1

[

Im + (A − X)ET
1 N−1E1

]

−1
(A − X)y1.

(9)

The coordinates of N−1E1 can be computed by the next algorithm, proposed in [9].

Algorithm R Recurrent computation of blocks (N−1E1)i

• Find the cells Yi = (−1)n−iX−1P n−i for i = 1, . . . , n.

• Computed the blocks (N−1E1)i by the formulas

(N−1E1)n = Yn

(N−1E1)i = Yi − Q(N−1E1)i+1 for i = n − 1, . . . , 1,

where P = B∗X−1 and Q = X−1B.

In the next step according to the algorithm R we propose two new approaches for solving (1).

Step 3. Solve the system (1)

3.1 The matrix M̃ satisfy
M̃ = M + Ũ Ṽ T ,

where

Ũ =











Im 0
0 0
...

...
0 Im











, Ṽ T =

(

0 0 . . . B∗

B 0 . . . 0

)

are the matrices with block size n × 2 and 2 × n. respectively
Using the Woodbury’s formula we have

M̃−1 = M−1 − M−1Ũ
[

I2m + Ṽ T M−1Ũ
]

−1

Ṽ T M−1,

where I2m is identity matrix with size 2m× 2m.
Solution x̃ of (1) holds

x̃ = M̃−1f = x − M−1Ũ
[

I2m + Ṽ T M−1Ũ
]

−1

Ṽ T x. (10)

Denote the columns block of Ũ with

ET
1 =

(

Im 0 . . . 0
)T

, ET
n =

(

0 0 . . . Im

)T
.

Compute M−1Ũ by successive calculations of M−1E1 and M−1En.

M−1E1 = N−1E1 − N−1E1

[

Im + V T
1 N−1E1

]

−1
V T

1 N−1E1

M−1En = N−1En − N−1E1

[

Im + V T
1 N−1E1

]

−1
V T

1 N−1En.
(11)
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Since we already compute (in Step 2.) the elements N−1E1,
[

Im + V T
1 N−1E1

]

−1
. We

recommend using the formulas (11) instead of solving of 2m linear system of kind (6)
with right hand side the corresponding different column vectors of E1and E2. It is easy
to observe that separate block of N−1En satisfy

(N−1En)i = Y ∗

n+1−i for i = 1, . . . , n, (12)

where Yi for i = 1, . . . , n are blocks from algorithm R.

3.2 Like in [4], in order to decrease the size of the inverse matrix obtain in the Wood-
bury’s formula we propose the following decomposition of matrix M̃

M̃ =

(

M W̃

W̃ ∗ A

)

,

where M is block tridiagonal Teoplitz Matrix with block size
n − 1 × n − 1 and W̃ ∗ =

(

B . . . B∗

)

.
Let denote

x̂ =
(

x̃1, . . . , x̃n−1

)

, x̃ =

(

x̂
x̃n

)

,

f̂ =
(

f̃1, . . . , f̃n−1

)

, f =

(

f̂
fn

)

.

Then system (1) can be written in the form

(

M W̃

W̃ ∗ A

) (

x̂
x̃n

)

=

(

f̂
fn

)

,

which is equivalent to
∣

∣

∣

∣

∣

Gx̂ = r

x̃n = A−1

(

fn − W̃ ∗x̂
)

,

where G = M − W̃A−1W̃ ∗, r = f̂ − W̃A−1fn.
By Woodbury’s formula we have

G−1 = M−1 − M−1W̃
[

A − W̃ ∗M−1W̃
]

−1

W̃ ∗M−1.

Then

x̂ = G−1r = u − M−1W̃
[

A − W̃ ∗M−1W̃
]

−1

W̃ ∗u. (13)

where u = M−1r.
For M−1W̃ according (8) we have

M−1W̃ = N−1W̃ − N−1E1

[

Im + V T
1 N−1E1

]−1
V T

1 N−1W̃ . (14)

Separate blocks of N−1W̃ satisfy

(N−1W̃ )i = (N−1E1)iB
∗ + Y ∗

n−iB for i = 1, . . . , n − 1, (15)

where Yi for i = 1, . . . , n are blocks from algorithm R.

3 Algorithms

For realization of Step 1. and Step 2. we use the algorithm M_R from [9] which is:

Algorithm M_R

1. Solve the matrix equation (4)

2. Find the vector y = N−1f by formulas (5).
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3. Compute the matrix N−1E1 by algorithm R.

4. Receive the solution x of (6) by formula (9) with successive calculation :

C = (A − X)(N−1E1)1 ; (I + C)−1 ; (A − X)y1;

z = (I + C)−1(A − X)y1 ; x = y − N−1E1z.

end.

If the matrices A and B are real, this algorithm requires respectably O(12k ∗ m3 + 8nm2 +
4nm3 + 6m3) = O([4n + 12k]m3) flops and memory space of (n + 11)m2 + m real numbers, where k
is number of iterations (4).

For solving system (1) according to Step 3. we propose the following two algorithms:

Algoritm M_R(1m)

1. Find vector r = f̂ − W̃A−1fn

2. Solve the linear system M
′

u = r by algorithm M _ R

3. Compute N−1W̃ by (15).

4. Find M−1W̃ by (14)

5. Find the vector x̂ by (13)

6. Compute x̃n = A−1[fn − W̃ ∗x̂]

end.

If the matrices A and B are real, this algorithm requires respectably O(2m3+[4(n−1)+12k]m3+
4nm3 + 2nm3 + 6m3 + 6m2) = O([10n + 12k]m3) flops and memory space of (3n + 16)m2 +(n +2)m
real numbers, where k is number of iterations (4).

Algorithm M_R(2m)

1. Solve the linear system Mx = f by algorithm M _ R

2. Compute M−1E1 and M−1En by (11)

3. Find the solution x̃ of (1) by (10)

end.

If the matrices A and B are real, this algorithm requires respectably O([4n+12k]m3 +5nm3 +
16m3) = O([9n + 12k]m3) flops and memory space of (3n + 19)m2 + (n + 3)m real numbers, where
k is number of iterations (4).

For comparison we describe the next algorithm which realize the idea proposed in [3].

Algorithm M_RF(2m)

1. Solve the linear system Mx = f by algorithm M _ R

2. Compute M−1E1 and M−1En by successive calculation of 2m linear system of the form (7)
with right hend side different columns of E1 and En.

3. Find the solution x̃ of (1) by (10)

end.

If the matrices A and B are real, this algorithm requires respectably O([4n+12k]m3+20nm3+
16m3) = O([24n + 12k]m3)flops and memory space of (3n + 15)m2 + (2n + 3)m real numbers, where
k is number of iterations (4).

4 Numerical experiments

We cared out the numerical experiments for solving linear system (1) with exact solution x̃ = (1, 1, . . . , 1)T

and real symmetric matrix M , with different block size n. The cells A and B are chosen in such a
way that guarantied existence the solution of the matrix equation (4). The codes of the programs was
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written in MATLAB and computations was done on a PENTIUM computer. The results from the
experiments are given in separate tables for each example.

The following notations are used: LU is a program, which realize classical LU factorization; CHOL
is a program, which realize classical Cholesky factorizatio; Iter is the number of iteration for solving
the matrix equation (4) and Err. = ‖x̃ − ˜̃x‖∞, where ˜̃x is the computed solution.

Table 1 reports flops and memory space for each programs.

Table 1.Flops and memory space

Algorithm flops memory space

LU 41n
3

m3 + O(nm2) (5n − 3)m2 + 2nm

CHOL 31n
3

m3 + O(nm2) 5n
2

m2 + 3n
2

m

M_R(1m) (10n + 12Iter)m3 + O(nm2) (3n + 16)m2 + (n + 2)m

M_R(2m) (9n + 12Iter)m3 + O(nm2) (3n + 19)m2 + (n + 3)m

M_RF(2m) (24n + 12Iter)m3 + O(nm2) (3n + 15)m2 + (2n + 3)m

Example 1.

Let A = circ(20,−8, 1, . . . , 1,−8), B = I.

Here ‖B̃‖2 = ‖A−
1

2 BA−
1

2 ‖2 = 0.1667. To reach the requested accuracy algorihm M_R needs of 5
iterations.

Table 2.

n = 26 = 64
Algorithm m = 5 m = 7 m = 10

Err. time Err. time Err. time
LU 6.6613e-016 0.14 7.7716e-016 0.19 1.3323e-015 0.18
CHOL 1.1102e-015 0.11 6.6613e-016 0.16 8.8818e-016 0.16
M_R(1m) 4.4892e-015 0.08 4.4603e-015 0.11 1.1829e-014 0.11
M_R(2m) 4.3780e-015 0.06 4.4033e-015 0.06 1.1764e-014 0.08
M_RF(2m) 4.3780e-015 0.16 4.4033e-015 0.17 1.1775e-014 0.23

n = 28 = 256
LU 6.6613e-016 0.43 7.7716e-016 0.55 1.3323e-015 0.72
CHOL 1.1102e-015 0.38 6.6613e-016 0.44 8.8818e-016 0.60
M_R(1m) 1.0148e-014 0.33 9.7788e-015 0.36 2.4572e-014 0.41
M_R(2m) 1.0099e-014 0.28 9.7529e-015 0.30 2.4541e-014 0.35
M_RF(2m) 1.0099e-014 0.77 9.7529e-015 1.05 2.4546e-014 1.54

n = 210 = 1024
LU 6.6613e-016 1.97 7.7716e-016 2.53 1.3323e-015 4.78
CHOL 1.1102e-015 1.59 6.6613e-016 1.82 8.8818e-016 3.24
M_R(1m) 2.0840e-014 1.26 1.9964e-014 1.39 4.9590e-014 1.98
M_R(2m) 2.0816e-014 1.21 1.9951e-014 1.26 4.9575e-014 1.71
M_RF(2m) 2.0816e-014 5.22 1.9951e-014 7.86 4.9577e-014 13.61

n = 212 = 4096
LU 6.6613e-016 10.820 7.7716e-016 13.35 1.3323e-015 37.52
CHOL 1.1102e-015 7.74 6.6613e-016 8.63 8.8818e-016 22.08
M_R(1m) 4.1947e-014 6.32 4.0128e-014 6.87 9.9402e-014 11.09
M_R(2m) 4.1936e-014 6.10 4.0121e-014 6.45 9.9394e-014 9.33
M_RF(2m) 4.1936e-014 51.41 4.0121e-014 92.0 9.9396e-014 205.35

Example 1: Time for implementation (in seconds) and errors
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Example 2.

Let cells of the matrix M are the matrices of example 5.2 from [8] i.e. A = I and B is symmetric,
nonnegative and such that Be = (1/2 − α)e, where e is the vector heaving all the entries equal to 1.

‖B̃‖2 = ‖A−
1

2 BA−
1

2 ‖2 = 1/2 − α. For α = 0.4; ‖B̃‖2 = 0.1. To reach the requested accuracy
algorihm M_R needs of 4 iterations.

Table 3.

n = 26 = 64
Algorithm m = 3 m = 5 m = 10

Err. time Err. time Err. time
LU 6.6613e-016 0.11 4.4409e-016 0.11 6.6613e-016 0.22
CHOL 4.4409e-016 0.05 5.5511e-016 0.11 8.8818e-016 0.16
M_R(1m) 2.7104e-015 0.05 3.3381e-015 0.11 7.9005e-015 0.11
M_R(2m) 2.5847e-015 0.11 3.0707e-015 0.05 7.6902e-015 0.06
M_RF(2m) 2.5847e-015 0.16 3.0707e-015 0.16 7.6878e-015 0.22

n = 28 = 256
LU 6.6613e-016 0.39 4.4409e-016 0.50 6.6613e-016 0.77
CHOL 4.4409e-016 0.33 5.5511e-016 0.39 8.8818e-016 0.66
M_R(1m) 5.5689e-015 0.28 6.0971e-015 0.28 1.5565e-014 0.44
M_R(2m) 5.5088e-015 0.27 5.9550e-015 0.27 1.5460e-014 0.38
M_RF(2m) 5.5088e-015 0.60 5.9550e-015 0.77 1.5458e-014 1.53

n = 210 = 1024
LU 6.6613e-016 1.70 4.4409e-016 2.52 6.6613e-016 4.83
CHOL 4.4409e-016 1.37 5.5511e-016 1.65 8.8818e-016 3.24
M_R(1m) 1.1211e-014 1.18 1.1887e-014 1.27 3.1012e-014 1.92
M_R(2m) 1.1181e-014 1.12 1.1815e-014 1.21 3.0959e-014 1.76
M_RF(2m) 1.1181e-014 3.30 1.1815e-014 5.27 3.0958e-014 13.35

n = 212 = 4096
LU 6.6613e-016 9.29 4.4409e-016 10.54 6.6613e-016 36.53
CHOL 4.4409e-016 6.87 5.5511e-016 7.75 8.8818e-016 22.13
M_R(1m) 2.2457e-014 14.18 2.3618e-014 6.37 6.1964e-014 10.93
M_R(2m) 2.2442e-014 13.50 2.3582e-014 6.15 6.1937e-014 9.39
M_RF(2m) 2.2442e-014 25.27 2.3582e-014 0.75 6.1937e-014 207.24

Example 2: (α = 0.4) Time for implementation (in seconds) and errors

Example 3.

The cells A and B are chosen like in example 7.3 from [7] i.e.

A =





1.20 −0.30 0.10
−0.30 2.10 0.20

0.10 0.20 0.65



 , B =





0.37 0.13 0.12
−0.30 0.34 0.12

0.11 −0.17 0.29



 .

In this case ‖B̃‖2 = ‖A−
1

2 BA−
1

2 ‖2 = 0.511. To reach the requested accuracy algorihm M_R needs
of 10 iterations.
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Table 4.

m = 3
Algorithm n = 26 = 64 n = 210 = 1024

Err. time Err. time
LU 2.4647e-014 0.11 2.0384e-013 1.76
CHOL 2.7978e-014 0.11 2.2382e-013 1.42
M_R(1m) 2.9759e-013 0.06 1.5230e-012 1.20
M_R(2m) 9.1983e-013 0.06 1.0394e-012 1.15
M_RF(2m) 2.7810e-013 0.17 9.8328e-013 3.24

n = 28 = 256 n = 212 = 4096
LU 2.8644e-014 0.38 2.5291e-013 9.88
CHOL 4.1522e-014 0.33 2.6268e-013 7.36
M_R(1m) 5.4734e-013 0.28 1.5286e-011 6.41
M_R(2m) 9.9020e-013 0.27 1.4844e-011 5.93
M_RF(2m) 7.0008e-013 0.65 1.4831e-011 24.77

Example 3: Time for implementation (in seconds) and errors

5 Conclusions

The proposed new algorithms M_R(1m) and M_R(2m) are most effective. We recomend the algorithm
M_R(2m) for solving (1) because for realization Step 3 it essentially uses the results obtained in Step
2, which leads to decreasing the flops and time for implementation.

Acknowledgement. This work was partially supported by Shoumen University under con-
tract N 17.
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