
Exponential Integrators for Semilinear
Problems

University of Bergen

29 October 2004, Bergen.

Borislav V. Minchev
Borko.Minchev@ii.uib.no

http://www.ii.uib.no/ �borko

Department of computer science

University of Bergen, Norway

Exponential Integrators for Semilinear Problems – p.1/46

http://www.ii.uib.no/~borko


Outline

�

Introduction and Motivation

�

Main classes of exponential integrators
- Exponential linear multistep methods
- Exponentila Runge–Kutta methods
- Exponential general linear methods

�

Exponential integrators and Lie group methods

�

Implementation issues

�

Numerical experiments

�

Conclusions

�

Open problems

Exponential Integrators for Semilinear Problems – p.2/46



What are exponential integrators ?

These are integrators which use the exponential
and often functions which are closely related to the
exponential function inside a numerical method.
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Introduction and Motivation

First exponential integrators:�

Certain’60 - multistep type�

Lawson’69 - multistage type

A new interest in exponential integrators for semilinear problems

where , and is a discretization parameter equal

to the number of spatial grid points.
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Exponential multistep methods

� �� � Integrating Factor methods (Lawson)

Recall

Solve exactly the linear part and then make a change of variables
(also known as Lawson transformation)

The same result can be alternatively derived by premultiplying (1) by the so called inte-

grating factor .
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The initial value problem written in the new variable is then given by
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where  � � ! " #'& $ �� .

The same result can be alternatively derived by premultiplying

(1) by the so called integrating factor .
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Integrating Factor

Consider the Jacobian of the transformed equation

( %(  � ! " # $ ( 

( � ! # $ �

Since ! " # $ � � ! # $ � " ) , it follows that the eigenvalues of
( % * (  are those of

( 
 * ( �.

For example:
IF Euler method is

where represents the stepsize of the method and .
IF implicit Euler method is
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Integrating Factor

Consider the Jacobian of the transformed equation

( %(  � ! " # $ ( 

( � ! # $ �

Since ! " # $ � � ! # $ � " ) , it follows that the eigenvalues of
( % * (  are those of

( 
 * ( �.
The idea now is to apply any numerical method on the transformed equation and then to
transform back the result into the original variable.

For example:
IF Euler method is

where represents the stepsize of the method and .
IF implicit Euler method is
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More IF multistep methods

Similarly

1

-step IF Adams methods are defined as

�,+ � ! - $ �.+ " ) 	 2
354 �

6 3! 3- $/ 
+ " 3�

where

6 3are the coefficients of the Adams method and


+ " 3 � 
 � ��+ " 3� 
+ " 3� for7 � 8 � � � 9 �� � � � 1

.

IF BDF methods are defined as

where and are the coefficients of the underlying BDF method.
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ETD multistep methods

Similar approach to the

��

methods, but we do not make a complete change of
variables. Premultiplying the original problem (1) by the integrating factor ! " # $

we get! " # $ � � � ! " # $ � � 	 ! " # $ 
 � ��� 
 � �� ! " # $ � � � � ! " # $ 
 � ��� 
 ��

Integrating the last equation between and , we obtain

(vcf) d

The approach now is to replace the nonlinear term in the variation of constants formulae
by a Newton interpolation polynomial and then solve the resulting integral exactly.

When we obtain the ETD Euler method

In general, using higher order approximations to the nonlinear part we obtain

ETD Adams–Bashforth (Nørsett’69,..., Cox–Matthews’02)

ETD Adams–Moulton (Verwer and Houwen’74,..., Beylkin et al.’98)
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Exponential Runge–Kuta methods

IF Runge–Kuta methods (Lawson’69)

For simplicity, we represent the initial value problem (1) in autonomous form

� � � � � 	 
 � � � 
 � � � � � 
K� � � �� �
Similarly to the the multistep case, the idea now is to apply an arbitrary L-stage
Runge–Kutta method to the transformed equation

 � � 
 � � ! " # $ 
 � ! # $  � 
 � � � % �  � �  � 
� � �  � �

and then to transform back the result into the original variable. If

M � � : 3N � , O � � 6 3�

and P � � P 3� are the coefficients of the underlying multistage method then in terms of the

original variable the computations performed are
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Exponential Runge–Kuta methods
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Exponential Runge–Kuta methods

IF Runge–Kuta methods (Lawson’69)

General form of an order 4 integrating factor method is

Z
[\[][\[^[^[^[\[\_

8 8 8 8 ! T` - $

: R ) ! TU - $ 8 8 8 ! TU - $

: V ) ! TW - $ : V R ! = TW " T R ? - $ 8 8 ! TW - $

: X ) ! TY - $ : X R ! = TW " T R ? - $ : X V ! = TY " T V ? - $ 8 ! TY - $

6 ) ! - $ 6 R ! = ) " TU ? - $ 6 V ! = ) " TW ? - $ 6 X ! = ) " TY ? - $ ! - $
a

b\b]b\b^b^b^b\b\c

�

Uniformly distributed P vector provides cheapest methods.�

This structure requires only classical order conditions.�

IF RK methods perform poorly for stiff problems.
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General format of Exp. RK methods

Aims:

�

Construct a general class of exponential integrators which includes as special
cases all known exponential Runge–Kutta methods�

Derive the nonstiff order theory for this class of method
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The functions

�

The IF

D

functions are

D E 3F � P N � �/ � � � ! = Td " Te ? - $ 7 � � � 9 �� � � �

In general, for and , the functions could be

and must:

Be computed exactly or to arbitrary high order cheaply

Map the spectrum of to a bounded region

Given the IF and ETD functions as basis elements then
- linear combinations
- products
- inverses
produce mehods.
Other choices are also posible (approximations with trigonometric polynomials in vcf).

The exact structure of , which leads to methods is still unclear!

Exponential Integrators for Semilinear Problems – p.11/46



The functions

�

The IF

D

functions are

D E 3F � P N � �/ � � � ! = Td " Te ? - $ 7 � � � 9 �� � � �

�

The ETD

D

functions areD E� F � P N � �/ � � � ! T e - $ �

D E 3F � P N � �/ � � �
D E 3 " ) F � P N � �/ � �I )= 3 " ) ?fP N/ �

In general, for and , the functions could be

and must:

Be computed exactly or to arbitrary high order cheaply

Map the spectrum of to a bounded region

Given the IF and ETD functions as basis elements then
- linear combinations
- products
- inverses
produce mehods.
Other choices are also posible (approximations with trigonometric polynomials in vcf).

The exact structure of , which leads to methods is still unclear!

Exponential Integrators for Semilinear Problems – p.11/46



The functions

In general, for

g� h

and

i� �

, the

D Ej F

functions could be

D Ej F � i � �/ � � � N k �
D E j FN � i � �/ � � N�

and must:

Be computed exactly or to arbitrary high order cheaply

Map the spectrum of to a bounded region

Given the IF and ETD functions as basis elements then
- linear combinations
- products
- inverses
produce mehods.
Other choices are also posible (approximations with trigonometric polynomials in vcf).

The exact structure of , which leads to methods is still unclear!

Exponential Integrators for Semilinear Problems – p.11/46



The functions

In general, for

g� h

and

i� �

, the

D Ej F

functions could be

D Ej F � i � �/ � � � N k �
D E j FN � i � �/ � � N�

and must:�

Be computed exactly or to arbitrary high order cheaply�

Map the spectrum of

/ �

to a bounded region

Given the IF and ETD

D

functions as basis elements then
- linear combinations
- products
- inverses
produce mehods.

Other choices are also posible (approximations with trigonometric polynomials in vcf).

The exact structure of , which leads to methods is still unclear!

Exponential Integrators for Semilinear Problems – p.11/46



The functions

In general, for

g� h

and

i� �

, the

D Ej F

functions could be

D Ej F � i � �/ � � � N k �
D E j FN � i � �/ � � N�

and must:�

Be computed exactly or to arbitrary high order cheaply�

Map the spectrum of

/ �

to a bounded region

Given the IF and ETD

D

functions as basis elements then
- linear combinations
- products
- inverses
produce mehods.
Other choices are also posible (approximations with trigonometric polynomials in vcf).

The exact structure of

D Ej F
, which leads to methods is still unclear!

Exponential Integrators for Semilinear Problems – p.11/46



Formulation of the methods

The computations performed are

Q 3 � l
N 4 )

m
j 4 )

: Ej F 3N D Ej F � P 3� �/ � �/ 
 � Q N � 	 ! Td - $ �.+ " ) �

�0+ � l
N 4 )

m
j 4 )

6 Ej FN D Ej F � � � �/ � �/ 
 � Q N � 	 ! - $ ��+ " ) �

where n puts a limit on the number of

D E j F

functions which can be computed,/

represents the stepsize and

Q 3denotes the internal stage approximation.

Interpreted in a Runge–Kutta type tableau
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D E ) F D E R F D E m " ) F D E m F

P : E ) F : E R F o o o : E m " ) F : E m F

6 E ) F p 6 E R F p o o o 6 E m " ) F p 6 E m F p
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Nonstiff order conditions

Use rooted trees and B-series.
Represent the elementary differentials using trees:�

Associate a closed node with

�

and an open node with



�

2T

q

- Bi-coloured rooted trees with one child closed nodes

1 2 3 4 5 6 7 8 9 10

2 4 11 34 117 421 1589 6162 24507 99268

2 6 17 51 168 589 2178 8340 32847 132115

The number of rooted trees in T for all orders up to ten.
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Elementary differentials and B-series

The elementary differentials are recursively generated as

� �@ � � � � �
z|{

}
� � �@ ) � � � � if@ � ~ r�� @ ) �


 =� ? � � � � � �@ ) � � � � �� � � � � �@ � � � � � � if@ � ~ s � @ ) �� � � � @ � �

For an elementary weight function the B-series is

The elementary weight function for the exact solution is

where is the density of single coloured tree
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The lemmas

To obtain B-series expansions of the numerical solution we need three Lemmas.

Lemma 1. Let , with , then

where
if
if

Lemma 1. Let , then

where
if
if
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The lemmas

To obtain B-series expansions of the numerical solution we need three Lemmas.
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Lemma 3. Let �� 9 � q � �

, then

�/ � � j � � � � � � � � �� j ��� � � �

where �� j � � �@ � � � �� j " ) � � �@ ) � if@ � ~ r � @ ) �8

if@ � ~ s � @ ) �� � � � @ � �
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The lemmas

Lemma 4. Let

��� � G �

be a power series

��� ��G � � j k � � Ej F G j
and let �� 9 � q � �

, then �� �/ � � � � ��� � � � � � �� �� � ��� � � �

where the elementary weight function satisfies,

� � � �� � � � � � � � � E� F � � � � , and

� �� �� � � � �@ � � j k � � Ej F �� j � � �@ �
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Exp. RK methods for parabolic PDEs

� Stiff order theory for ETD RK methods for parabolic PDEs (Hochbruck–Ostermann’04)�

Abstract ODEs on a Banach spaces�

Sectorial operators�

Locally Lipschitz continuous functions

Implicit Exp RK methods of collocation type

The methods converge at least with their stage order. Higher and even fractional order of
convergence is possible if additional temporal and spatial regularity are required
Hochbruck–Ostermann’04.
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� Stiff order theory for ETD RK methods for parabolic PDEs (Hochbruck–Ostermann’04)�

Abstract ODEs on a Banach spaces�

Sectorial operators�

Locally Lipschitz continuous functions

The error bounds depend form the space where the solution evolves!

It is not possible to construct stiff fourth order
explicit exponential Runge–Kutta method with only four stages

Implicit Exp RK methods of collocation type

The methods converge at least with their stage order. Higher and even fractional order of
convergence is possible if additional temporal and spatial regularity are required
Hochbruck–Ostermann’04.
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General linear methods

Consider � � � � � � � 
 � � � � � 
K� � � �� � � � � � 
 � � � � � � � ��

Assume that at the beginning of step number v, � quantities

� E+ " ) F) � � E+ " ) FR �� � � � � E+ " ) F� �
are available from approximations computed in the previous steps. If

Q ) � QSR �� � � � Q l

are the internal stage approximations to the solution at points near the current time step,
then then the quantities imported into and evaluated in step number v are related by the
equations

Q 3 � l
N 4 )

� 3N/ � � Q� � 	 �
N 4 )

� 3N � E+ " ) FN � 7 � � � 9 �� � � L �

� E+ F3 � l
N 4 )

O 3N/ � � Q� � 	 �
N 4 )

 3N � E+ " ) FN � 7 � � � 9 �� � � ��
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Vector notations

Q 3 � l
N 4 )

� 3N/ � � Q� � 	 �
N 4 )

� 3N � E+ " ) FN � 7 � � � 9 �� � � L �

� E+ F3 � l
N 4 )

O 3N/ � � Q� � 	 �
N 4 )

 3N � E+ " ) FN � 7 � � � 9 �� � � ��

allows us to rewrite the above method in the following more compact form

where is the Kronecker product and is the identity matrix.
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Vector notations

Q 3 � l
N 4 )

� 3N/ � � Q� � 	 �
N 4 )

� 3N � E+ " ) FN � 7 � � � 9 �� � � L �

� E+ F3 � l
N 4 )

O 3N/ � � Q� � 	 �
N 4 )

 3N � E+ " ) FN � 7 � � � 9 �� � � ��

Introducing the vector notations

Q �
Z

[\[][\[^[^[\_
Q )

QSR

... Q l
a

b\b]b\b^b^b\c
� � � Q � �

Z
[\[][\[^[^[\_

� � Q ) �
� � QSR �

...� � Q l �
a

b\b]b\b^b^b\c
� � E+ " ) F �

Z
[\[][\[^[^[\_

� E+ " ) F)
� E+ " ) FR

...� E+ " ) F�
a

b\b]b\b^b^b\c
� � E0+ F �

Z
[\[][\[^[^[\_

� E+ F)
� E+ FR

...� E+ F�
a

b\b]b\b^b^b\c
�

allows us to rewrite the above method in the following more compact form

where is the Kronecker product and is the identity matrix.
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Vector notations

Q 3 � l
N 4 )

� 3N/ � � Q� � 	 �
N 4 )

� 3N � E+ " ) FN � 7 � � � 9 �� � � L �

� E+ F3 � l
N 4 )

O 3N/ � � Q� � 	 �
N 4 )

 3N � E+ " ) FN � 7 � � � 9 �� � � ��

allows us to rewrite the above method in the following more compact form

Z
_ Q
� E+ F

a
c �

Z
_ �� � � � � � �

� � � � � � � �
a

c
Z

_ / � � Q �
� E+ " ) F

a
c �

where � is the Kronecker product and

� � is the

�'� �

identity matrix.
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Examples of GLMs

Consider

1

-step linear multistep methods of Adams type

�,+ � �.+ " ) 	 / 2
3 4 �

6 3 � � ��+ " 3��
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Examples of GLMs

Consider

1

-step linear multistep methods of Adams type

�,+ � �.+ " ) 	 / 2
3 4 �

6 3 � � ��+ " 3��
In general linear form

Z
[\[][\[\[][\[][\[^[^[\_

Q )
�0+/ � � Q ) �

/ � � �.+ " ) �

.../ � � ��+ " 2 " ) �
a

b\b]b\b\b]b\b]b\b^b^b\c
�

Z
[\[][\[\[][\[][\[^[^[\_

6� � 6 ) o o o 6 2 " ) 6 2

6� � 6 ) o o o 6 2 " ) 6 2

� 8 8 o o o 8 8

8 8 � o o o 8 8

...
...

...
...

...8 8 8 o o o � 8
a

b\b]b\b\b]b\b]b\b^b^b\c
Z

[\[][\[\[][\[][\[^[^[\_
/ � � Q ) �

�.+ " )/ � � �.+ " ) �/ � � �.+ " R �

.../ � � ��+ " 2 �
a

b\b]b\b\b]b\b]b\b^b^b\c
�
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Examples of GLMs

The classical fourth order Runge–Kutta method

8
)R )R)R 8 )R� 8 8 �

)� )V )V )�
�
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Examples of GLMs

The classical fourth order Runge–Kutta method

8
)R )R)R 8 )R� 8 8 �

)� )V )V )�
�

can be written as

Z
[\[\[][\[][\[^[�_

Q )
QSR

QSV
Q�X

�0+
a

b\b\b]b\b]b\b^b�c
�

Z
[\[\[][\[][\[^[�_

8 8 8 8 �

)R 8 8 8 �

8 )R 8 8 �

8 8 � 8 �

)� )V )V )� �
a

b\b\b]b\b]b\b^b�c
Z

[\[\[][\[][\[^[�_
/ � � Q ) �

/ � � QR �

/ � � QV �

/ � � QX �
�.+ " )

a
b\b\b]b\b]b\b^b�c

�
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Examples of GLMs

It is not always appropriate to represent a Runge–Kutta method like a general liner
method with � � � . Example is the Lobatto IIIA method

8
)R  R X )V I )R X)R )� RV )�)� RV )�

�
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Examples of GLMs

It is not always appropriate to represent a Runge–Kutta method like a general liner
method with � � � . Example is the Lobatto IIIA method

8
)R  R X )V I )R X)R )� RV )�)� RV )�

�

It has the following general linear form

Z
[^[^[^[\[�_

Q )
Q�R

��+/ � � Q�R �
a

b^b^b^b\b�c
�

Z
[^[^[^[\[�_

)V I )R X �  R XRV )� � )�RV )� � )�8 � 8 8
a

b^b^b^b\b�c
Z

[^[^[^[\[�_
/ � � Q ) �

/ � � Q�R �
��+ " )/ � � ��+ " ) �

a
b^b^b^b\b�c

�
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Exp. general linear methods

Consider the following unified format of Exp. GLMs

Q 3 � l
N 4 )

m
j 4 )

: Ej F 3N D E j F � P 3� �/ � � / 
 � Q N � 	 �
N 4 )

m
j 4 )

¡ Ej F 3N D Ej F � P 3� �/ � � � E+ " ) FN �

� E+ F3 � l
N 4 )

m
j 4 )

6 Ej F 3N D Ej F �� � �/ � � / 
 � Q N � 	 �
N 4 )

m
j 4 )

¢ E j F 3N D Ej F � � � �/ � � � E+ " ) FN �

Similarly, to the traditional GLMs, we can represent the method in the following matrix
form

where each of the coefficient matrices has entries which are

linear combinations of the functions.
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Exp. general linear methods

Consider the following unified format of Exp. GLMs

Q 3 � l
N 4 )

m
j 4 )

: Ej F 3N D E j F � P 3� �/ � � / 
 � Q N � 	 �
N 4 )

m
j 4 )

¡ Ej F 3N D Ej F � P 3� �/ � � � E+ " ) FN �

� E+ F3 � l
N 4 )

m
j 4 )

6 Ej F 3N D Ej F �� � �/ � � / 
 � Q N � 	 �
N 4 )

m
j 4 )

¢ E j F 3N D Ej F � � � �/ � � � E+ " ) FN �

Similarly, to the traditional GLMs, we can represent the method in the following matrix
form Z

_ Q
� E0+ F

a
c �

Z
_ � � D � � � D �

� � D � � � D �
a

c
Z

_ / 
 � Q �
� E+ " ) F

a
c �

where each of the coefficient matrices

� � D � � � � D � � � � D � � � � D �

has entries which are

linear combinations of the

D Ej F
functions.
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Generalized IF methods

Seek for a solution of the form

� � 
+ 	 
 � � D #¤£ ¥0¦ �  � 
 � � �
where

D #¤£ ¥¦ is the flow of the differential equation

� � � §� � ��� 
 � � � � 8 � � �,+ �

The vector field must:

Approximates the original vector field around the point .

Have a flow which is easy to compute exactly.

The corresponding differential equation for the variable is

Use numerical method on the transformed equation and then transform back.
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Generalized IF methods

Seek for a solution of the form

� � 
+ 	 
 � � D #¤£ ¥0¦ �  � 
 � � �
where

D #¤£ ¥¦ is the flow of the differential equation

� � � §� � ��� 
 � � � � 8 � � �,+ �

The vector field

§� � ��� 
 �

must:�

Approximates the original vector field

� � ��� 
 + 	 
 �

around the point � + .�

Have a flow

D #¤£ ¥,¦ which is easy to compute exactly.

The corresponding differential equation for the  variable is

 � � 
 � � ¨ª©¬« ©¬­ ® " ) ¨ � � ��� 
+ 	 
 �I §� � ��� 
 � � ® �  � 8 � � �,+ �

Use numerical method on the transformed equation and then transform back.

Exponential Integrators for Semilinear Problems – p.22/46



GIF for semilinear problems

For the semilinear problem (1), we can choice

§� � ��� 
 � � � � 	 L 2 � 
� 
 �
,

where L 2 � 
� 
 �

is the Lagrange interpolating polynomial of degree
1I �

for the function
 � � � 
+ 	 
 � � 
+ 	 
 �

, which passes through the

1

points


+ � 
+ " ) �� � � � 
+ " 2¯ ) .
The transformed equation is

 � � 
 � � ! " # $° 
 � � � 
;+ 	 
 � � 
+ 	 
 �I L 2 � 
� 
 � ±  � 8 � � �,+ �

Applying a multistep method to the transformed equation leads to a class of
methods which includes as a special cases all exponential multistep methods
considered so far.

Applying a multistage method to the transformed equation leads to a new class of
methods known as GIR/RK methods (Krogstad’03).
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 � � 
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+ � 
+ " ) �� � � � 
+ " 2¯ ) .
The transformed equation is

 � � 
 � � ! " # $° 
 � � � 
;+ 	 
 � � 
+ 	 
 �I L 2 � 
� 
 � ±  � 8 � � �,+ �

�
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methods known as GIR/RK methods (Krogstad’03).

Exponential Integrators for Semilinear Problems – p.23/46



GIF/RK methods

L� � 
� 
 � � ² I IF RK (Lawson)�
L ) � 
� 
 � � 
+ I GIF1/RK (Krogstad)�

L R � 
� 
 � � 
+ 	 
 ³ 
+ I 
+ " )/

´ I GIF2/RK (Krogstad)�
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GIF/RK methods

L� � 
� 
 � � ² I IF RK (Lawson)�
L ) � 
� 
 � � 
+ I GIF1/RK (Krogstad)�

L R � 
� 
 � � 
+ 	 
 ³ 
+ I 
+ " )/

´ I GIF2/RK (Krogstad)�

Z
[\[\[][\[^[^[^[\[][\[^[^[^[\[][�_

8 8 8 8 � 8

� R ) �/ � � 8 8 8 ! TU - $ � R R �/ � �

� V ) �/ � � : V R ! = TW " TU ? - $ 8 8 ! TW - $ � V R �/ � �

� X ) �/ � � : X R ! = TY " TU ? - $ : X V ! = TY " TW ? - $ 8 ! TY - $ � X R �/ � �

O ) �/ � � 6 R ! = ) " TU ? - $ 6 V ! = ) " TW ? - $ 6 X ! = ) " TY ? - $ ! - $  ) R �/ � �

� 8 8 8 8 8
a

b\b\b]b\b^b^b^b\b]b\b^b^b^b\b]b�c
�

Fourth order GIF2/RK method
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GIF/RK methods

L� � 
� 
 � � ² I IF RK (Lawson)�
L ) � 
� 
 � � 
+ I GIF1/RK (Krogstad)�

L R � 
� 
 � � 
+ 	 
 ³ 
+ I 
+ " )/

´ I GIF2/RK (Krogstad)�

where� R ) �/ � � � P R D E ) F 	 P RµR D E R F �

� V ) �/ � � � P V D E ) F 	 P RµV D E R F I : V R �� 	 P R � ! = TW " TU ? - $ �

� X ) �/ � � � P X D E ) F 	 P R¶X D E R F I : X R �� 	 P R � ! = TY " TU ? - $ I : X V �� 	 P V � ! = TY " TW ? - $ �

O ) �/ � � � D E ) F 	 D E R FI 6 R �� 	 P R � ! = ) " TU ? - $I 6 V �� 	 P V � ! = ) " TW ? - $I 6 X �� 	 P X � ! = ) " TY ? - $ �

� R R �/ � � �I P RµR D E R F �

� V R �/ � � �I P RµV D E R F 	 P R : V R ! = TW " TU ? - $ �

� X R �/ � � �I P R¶X D E R F 	 P R : X R ! = TY " TU ? - $ 	 P V : X V ! = TY " TW ? - $ �

 ) R �/ � � �I D E R F 	 P R 6 R ! = ) " TU ? - $ 	 P V 6 V ! = ) " TW ? - $ 	 P X 6 X ! = ) " TY ? - $�
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GIF/RK methods

Similarly, if

§� � ��� 
 � � � � 	 T 2 � 
� 
 �

, where

T 2 � 
� 
 � � O 	 2
· 4 )

� P · ¸ ¹�º � : 
 � 	 � · »¼ ¸ � : 
 � � � 1� h� P ·� � ·� �

it is possible to construct new GIF methods.

This approach leads to the followig

D Ej F

funactions

D E ·F½¾'¿ �/ � � � ! - $ :I � ¸ ¹�º � :/ �I : »¼ ¸ � :/ � �

: R � 	 � R �

D E ·FÀÁ ½�/ � � � ! - $ �I � »¼ ¸ � :/ � 	 : ¸ ¹�º � :/ � �

: R � 	 � R �
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Exp. int. and Lie group methods

Lie group methods

�

Designed to preserve certain qualitatively properties of the exact flow

The freedom in the choice of the action allows to define the basic motions on the
manifold to be given by approximations of the exact flow.
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Generic presentation of a diff. eq.

Every differential equation evolving on a homogeneous space

Â
can always be written

as � � � 
 � � � � � �ÄÃ ��� � � 
�� � � �� �
where

� � Â �Å andÃ � Å � Â � � Â

.

For a fix the product gives a vector field on

The vector field is called a frozen vector field.

In order to implement any Lie group integrator we need to know:

The generic presentation
The structure of the Lie algebra
The Lie algebra action on

How the commutators between elements in are defined (RKMK methods)
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Lie group integrators

Algotithm. (Crouch–Grossman’93)

for

7 � � �� � � � L doQ 3 � �/ : 3l � l � É o o o É �/ : 3) � ) � É ��+� 3 � � � Q 3�

end�.+ ¯ ) � �/ 6 l � l � É o o o É �/ 6 ) � ) � É �0+

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren’03)

for do

end
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Lie group integrators

Algotithm. (Crouch–Grossman’93)

for

7 � � �� � � � L doQ 3 � �/ : 3l � l � É o o o É �/ : 3) � ) � É ��+� 3 � � � Q 3�

end�.+ ¯ ) � �/ 6 l � l � É o o o É �/ 6 ) � ) � É �0+

Algotithm. (Runge–Kutta Munthe-Kaas’99)

for

7 � � �� � � � L dox 3 � / y l N 4 ) : 3 N Ê N� 3 � � � � x 3� É �0+ �

Ê 3 � d Ë " ) � � 3�

end��+ ¯ ) � �/ y l 3 4 ) 6 3 Ê 3� É �0+

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren’03)

for do

end
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Lie group integrators

Algotithm. (Crouch–Grossman’93)

for

7 � � �� � � � L doQ 3 � �/ : 3l � l � É o o o É �/ : 3) � ) � É ��+� 3 � � � Q 3�

end�.+ ¯ ) � �/ 6 l � l � É o o o É �/ 6 ) � ) � É �0+

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren’03)

for

7 � � �� � � � L doQ 3 � �/ y l 2 4 ) : 2 3Ì � 2 � É o o o É �/ y l 2 4 ) : 2 3) � 2 � É �0+� 3 � � � Q 3�

end�.+ ¯ ) � �/ y l 2 4 ) 6 2 Ì � 2 � É o o o É �/ y l 2 4 ) 6 2) � 2 � É �,+

Exponential Integrators for Semilinear Problems – p.28/46



Basic motions on

Consider the following nonautonomous problem defined on

� �

� � � � � ��� 
 � � � � 
�� � � ����

Define:
- the basic movements on to be given by the solution of a simpler diff. equation

where approximates .
- the Lie algebra to be the set of all coefficients of the frozen vector fields .

- the algebra action to be the solution of (2) at time .
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Basic motions on

Consider the following nonautonomous problem defined on

� �

� � � � � ��� 
 � � � � 
�� � � ����
Define:

- the basic movements on

Â

to be given by the solution of a simpler diff. equation

� 9 � � � � Ç�È � ��� 
 � � � � 
� � � �� �

where

ÇSÈ � ��� 
 �

approximates

� � ��� 
 �
.

- the Lie algebraÅ to be the set of all coefficients

x

of the frozen vector fields

Ç È .

- the algebra action

/ x É � � to be the solution of (2) at time


 � 	 / .
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The choice of action

B The simplest case
-Å � Í O E� F � � �Î

.
- The frozen vector field is

ÇÐÏ Ñ& Ò � ��� 
 � � O E� F

.
- The algebra action is

/ O E� F É �� � �� 	 / O E� F

(translations).
- The commutators are given by

~ x ) � x R � � � ² � 8 �
.

In this case we recover the traditional integration schemes.

When (such a representation is always possible)

- .
- The frozen vector field is .

- The algebra action is given by ,
where denotes the matrix exponential and is the first ETD function.

- The commutators are given by .

In this case we recover the affine algebra action proposed by Munthe-Kaas’99.
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B When

� � ��� 
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 � � 	 
 � ��� 
 �

(such a representation is always possible)

-Å � Í � �� O E� F � � �� � �� � � O E� F � � �Î
.

- The frozen vector field is

Ç =Ó £ Ï Ñ& Ò ? � ��� 
 � � � � 	 O E� F

.

- The algebra action is given by
/ � �� O E� F � É �� � ! -Ó �� 	 / O E� F D E ) F �/ � �

,
where ! -Ó denotes the matrix exponential and

D E ) F

is the first ETD

D E 3F

function.
- The commutators are given by

~ x ) � x R � � � � ) � R I � R � ) � � ) O E� FR I � R O E� F) �

.

In this case we recover the affine algebra action proposed by Munthe-Kaas’99.
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Nonautonomous frozen vector fields

B Similarly, when

� � ��� 
 � � � � ��� 
 � � 	 
 E� F � ��� 
 � 	 
 
 E ) F � ��� 
 �

.

-Å � Í � �� O E� F � O E ) F � � �� � �� � � O E ) F � O E� F � � �Î

- The frozen vector field isÇ =Ó £ Ï Ñ ` Ò £ Ï Ñ& Ò ? � ��� 
 � � � � 	 P� 	 
 P ) , where P� � O E� F 	 
�� � � I i � O E ) F

and P ) � i O E ) F

.

- The algebra action is given by/ � �� O E ) F � O E� F � É �� � ! -Ó �� 	 / � O E� F 	 
�� O E ) F � D E ) F �/ � � 	 / R i O E ) F D E R F �/ � �

.

- The commutators are given by~ x ) � x R � � ¨ ~ � ) � � R � � � ) O E ) FR I � R O E ) F) � � ) O E� FR I � R O E� F) 	 i R O E ) F) I i ) O E ) FR � 8 ®

.

Can generalize this approach to the case .

It is possibel to show that:

- IF RK methods are RKMK methods (Krogstad’03);
- GIF/RK methods are also RKMK methods.
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B Can generalize this approach to the case

� � ��� 
 � � � � ��� 
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 �

.

B It is possibel to show that:

- IF RK methods are RKMK methods (Krogstad’03);
- GIF/RK methods are also RKMK methods.
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Implementation issues

Consider the ETD

D E 3F

functions

D E ) F � G � � ! HI �
G � D E 3¯ ) F ��G � � D E 3F � G �I ) 3fG � for

7 � 9 � Ö �� � � �

Numerical techniques

Decomposition methods

Krylov subspace approximations

Cauchy integral approach
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functions
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G � D E 3¯ ) F ��G � � D E 3F � G �I ) 3fG � for

7 � 9 � Ö �� � � �

Numerical techniques

�
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Krylov subspace approximations�

Cauchy integral approach
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Decomposition methods

At the heart of all decomposition methods is the similarity transformation

� � × � × " ) �
where

� � �/ �

. Therefore D E 3F � � � � × D E 3F � � � × " )�

Algotithm. (Block Schur–Parlett algorithm)

Compute the Schur decomposition ( algorithm).

- the scalar Parlett recurrence fails when the eigenvalues of are equal or close to each other

Reorder into a block upper triangular matrix .

Compute for all diagonal blocks (Chebyshev rational approximations).

Find by solving the Silvester equation (Parlett recurrence)

Compute .

The cost depends from the eigenvalue distribution of - between and flops.
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Decomposition methods

At the heart of all decomposition methods is the similarity transformation

� � × � × " ) �
where

� � �/ �

. Therefore D E 3F � � � � × D E 3F � � � × " )�
Two conflicting tasks:

- Make

�

close to diagonal so that

D E 3F � � �
is easy to compute.

- Make

×

well conditioned so that errors are not magnified.

Algotithm. (Block Schur–Parlett algorithm)

Compute the Schur decomposition ( algorithm).

- the scalar Parlett recurrence fails when the eigenvalues of are equal or close to each other

Reorder into a block upper triangular matrix .

Compute for all diagonal blocks (Chebyshev rational approximations).

Find by solving the Silvester equation (Parlett recurrence)

Compute .

The cost depends from the eigenvalue distribution of - between and flops.
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Decomposition methods

At the heart of all decomposition methods is the similarity transformation

� � × � × " ) �
where

� � �/ �

. Therefore D E 3F � � � � × D E 3F � � � × " )�
Algotithm. (Block Schur–Parlett algorithm)B Compute the Schur decomposition

� � Ø � Ø q
(

ØÙ
algorithm).

- the scalar Parlett recurrence fails when the eigenvalues of

�

are equal or close to each otherB Reorder

�

into a block upper triangular matrix

Ú�
.B Compute

Ú� E 3F2 2 � D E 3F � Ú� 2 2 � for all diagonal blocks

Ú� 2 2 (Chebyshev rational approximations).B Find

Ú� E 3F � D E 3F � Ú� �

by solving the Silvester equation (Parlett recurrence)Ú� 2 2 Ú� E 3F2 j I Ú� E 3F2 j Ú� j j � Ú� E 3F2 2 Ú� 2 j I Ú� 2 j Ú� E 3Fj j 	 y j " )N 4 2¯ ) ¨ Ú� E 3F2 N Ú� Nj I Ú� 2 N Ú� E 3FNj ®

B Compute

D E 3F � � � � Ø D E 3F � Ú� � Ø q

.

The cost depends from the eigenvalue distribution of

�

- between

9Û � V

and

� X * Ö

flops.
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Decomposition methods

At the heart of all decomposition methods is the similarity transformation

� � × � × " ) �
where

� � �/ �

. Therefore D E 3F � � � � × D E 3F � � � × " )�
When

�

is summetric

Algotithm. (Tridiagonal Reduction)B Calculate a symmetric tridiagonal reduction
� � ØÜ Ø Ý

(Hauseholder reflections).B Find the largest eigenvalue

i ) of

Ü
.B Compute

D E 3F � Ü �

by a Chebyshev rational approximation with respect to

i ) .! Þ C ! ß ` Ù Ô � �I i ) � �
, the structure of

�

depends of

D E 3F

and

i )

B Calculate

D E 3F � � �

by

D E 3F � � � � Ø D E 3F � Ü � Ø Ý

.

The total number of operations for computing each of the functions

D E 3F

is

à � ) �V � V �

.
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Krylov subspace approximations

Approximately project the action of

D E 3F � � �

on a state vector  � á �
, to a small Krylov

subspace Êãâ ä span

Í  � �  �� � � � � â " )  Î �
Construct a orthogonal basis

�â � ~  ) �  R �� � � �  â �

of
Êåâ (Arnoldi, Lanczos)

If

æâ is the ç � ç upper Hessenberg matrix generated by the process then

� Ýâ � �â � æâ �

Therefore,

æâ is the orthogonal projection of

�
to the subspace

Ê â and

D E 3F � � �  C �â � Ýâ D E 3F � � �  � 6 �â � Ýâ D E 3F � � � �â ! ) C 6 �â D E 3F � æâ � ! ) �

where ! ) is the first unit vector in

� â
and

6 ä è è  è è R .

Superlinear convergence (Hochbruck, Lubich’98)
Preconditioning the Lanczos process (Hochbruck,Van der Eshof’04)
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Cauchy integral approach

Based on the Cauchy integral formula

D E 3F � � � � �
9�é 7 ê,ë

D E 3F � i � � i �I � � " ) � i�

where

ìÓ is a contour in the complex plane that encloses the eigenvalue of

�

, and it is
also well separated from

8

. It is practical to choose the contour

ì Ó to be a circle
centered on the real axis.
Using the trapezoid rule, we obtain the following approximation

D E 3F � � �.C �
1

2
N 4 )

i N D E 3F � i N � � i N �I � � " ) �

where

1

is the number of the equally spaced points

i Nalong the contour

ìÓ .

To
achieve computational savings we can use the formula

where the contour encloses the eigenvalues of and is well separated from
for all in the integration process.
As before

where now are the equally spaced points along the contour .

When arises from a finite difference approximation, we can benefit from its sparse
block structure and find the action of the inverse martices to a given vector by:

iterative methods - preconditioned conjugate gradient and multigrid methods.

direct methods - , , , factorization.
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8

for all � in the integration process.
As before

D E 3F � � �C �
1

2
N 4 )

i N D E 3F � � i N � � i N �I / � � " ) �

where now

i Nare the equally spaced points along the contour

ì

.

Note: The inverse matrices no longer depend of �.

To achieve computational savings
we can use the formula

where the contour encloses the eigenvalues of and is well separated from
for all in the integration process.
As before

where now are the equally spaced points along the contour .

When arises from a finite difference approximation, we can benefit from its sparse
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Cauchy integral approach

To achieve computational savings we can use the formula
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and � ì is well separated from

8

for all � in the integration process.
As before

D E 3F � � �C �
1

2
N 4 )

i N D E 3F � � i N � � i N �I / � � " ) �

where now

i Nare the equally spaced points along the contour

ì

.

When

�

arises from a finite difference approximation, we can benefit from its sparse
block structure and find the action of the inverse martices to a given vector by:B iterative methods - preconditioned conjugate gradient and multigrid methods.

B direct methods -
íÙ

,

� � �

,

� � íÙ

,

� Q

factorization.
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A modification of facorization

Consider the following linear system î � � ��

where

î �
ï

ð\ð^ð^ð^ð\ð]ð\ð^ð^ð^ð\ð]ð\ð\ð]ð\ñ
� �

� q � � 8

� q � �
� � �

� � �
� � �8 � � �

� q �
ò

ó\ó^ó^ó^ó\ó]ó\ó^ó^ó^ó\ó]ó\ó\ó]ó\ô
�

is an Hermitian tridiagonal block Teoplitz matrix with block size v. �

and

�

are n � n

matrices, � and

�
are column vectors with size v n.
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The idea

First we sove a parametric linear systems of the form
.õ � ��

where


 �
ï

ð]ð\ð^ð^ð^ð\ð]ð\ð\ð]ð\ð]ð\ñ
ö �

� q � � 8

� � �
� � �

� � �8 � � �
� q �

ò
ó]ó\ó^ó^ó^ó\ó]ó\ó\ó]ó\ó]ó\ô

�

is a block tridiagonal matrix with block size v and

ö

is a parameter.

First we sove a
parametric linear systems of the form

The matrix admits the following LU factorization

where is the identity matrix.
Therefore, the solution can be obtained by solving two simpler systems
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The idea

First we sove a parametric linear systems of the form
.õ � ��

The matrix




admits the following LU factorization


 � � Q �
ï

ð^ð^ð^ð^ð^ð\ð\ñ
�

� q ö " ) � 8

� �8 � �� q ö " ) �
ò

ó^ó^ó^ó^ó^ó\ó\ô
ï

ð^ð^ð^ð^ð^ð\ð\ñ
ö �

� � 8

� �8 � �
ö

ò
ó^ó^ó^ó^ó^ó\ó\ô

�

where

�

is the n � n identity matrix.

Therefore, the solution can be obtained by solving two simpler systems
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The idea

First we sove a parametric linear systems of the form
.õ � ��

The matrix




admits the following LU factorization


 � � Q �
ï

ð^ð^ð^ð^ð^ð\ð\ñ
�

� q ö " ) � 8

� �8 � �� q ö " ) �
ò

ó^ó^ó^ó^ó^ó\ó\ô
ï

ð^ð^ð^ð^ð^ð\ð\ñ
ö �

� � 8

� �8 � �
ö

ò
ó^ó^ó^ó^ó^ó\ó\ô

�

where

�

is the n � n identity matrix.
The parameter

ö

must satisfie the nonlinear matrix equation

ö 	 � q ö " ) � � ��

Therefore, the solution can be obtained by solving two simpler systems
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The idea

First we sove a parametric linear systems of the form
.õ � ��

The matrix




admits the following LU factorization


 � � Q �
ï

ð^ð^ð^ð^ð^ð\ð\ñ
�

� q ö " ) � 8

� �8 � �� q ö " ) �
ò

ó^ó^ó^ó^ó^ó\ó\ô
ï

ð^ð^ð^ð^ð^ð\ð\ñ
ö �

� � 8

� �8 � �
ö

ò
ó^ó^ó^ó^ó^ó\ó\ô

�

where

�

is the n � n identity matrix.
Therefore, the solution õ can be obtained by solving two simpler systems

� G � �� G � Í G 3Î 354 ) £÷ ÷ ÷ £ +Q õ � G � õ � Í õ 3Î 354 ) £÷ ÷ ÷ £ + �
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The idea

The matrices

î

and




are related by relationî � 
 	 � ) � Ý) �
where

� ) �
ï

ð\ð]ð\ð^ð^ð\ñ
�

8

... 8
ò

ó\ó]ó\ó^ó^ó\ô
� � Ý) � ¨ �I ö 8 � � � 8 ®

.

Using Woodbury’s formula we have

Therefore, the solution is obtained from the vector as follows
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Circulant matrices

Similar approach can also be used to solve linear systems of the formø � � ��

where

ø �
ï

ð\ð^ð^ð^ð\ð]ð\ð^ð^ð^ð\ð]ð\ð\ð]ð\ñ
î 
 × × q 
 q


 q î 
 × × q

× q 
 q � � � 8

× q � � � �

� � � � �8 � � � 
 ×

× × q 
 q î 



 × × q 
 q î
ò

ó\ó^ó^ó^ó\ó]ó\ó^ó^ó^ó\ó]ó\ó\ó]ó\ô

is Hermitian pentadiagonal block circulant matrix

admits the following LU
factorization

where is the identity matrix with size and the paramethers , and
satisfy the following relation

where

The solution is obtained from and the solution of a pentadiagonal block Teoplitz
system by applying two times the Woodbury’s formula.
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Circulant matrices

The parametric system in this case is � õ � ��

where
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ù q ú 
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ò

ó^ó\ó]ó\ó\ó]ó\ó]ó\ó^ô
�

is pentadiagonal matrix with block size v.

admits the following LU factorization

where is the identity matrix with size and the paramethers , and
satisfy the following relation

where

The solution is obtained from and the solution of a pentadiagonal block Teoplitz
system by applying two times the Woodbury’s formula.
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Circulant matrices

�

admits the following LU factorization
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The solution is obtained from and the solution of a pentadiagonal block Teoplitz
system by applying two times the Woodbury’s formula.
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Circulant matrices
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The solution � is obtained from õ and the solution of a pentadiagonal block Teoplitz
system by applying two times the Woodbury’s formula.
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Numerical experiments

The methodsB ETD RK3(CM) The third order method of Cox–Matthews;B ETD2RK3 A modification of the third order method of CM (continuous RK);B ETD2CF3 A stiff order three method based on the CF3 (continuous RK);B ETD RK4(CM) The fourth order method of Cox–Matthews;B ETD RK4(Kr) The fourth order method of Krogstad;B ETD RK4(Min) A fourth order method which satisfies half of the order 5 coditions;B ETD RK4(HO) The stiff order four method of Hochbruck–Ostermann;B IF RK4 The fourth order Integrating Factor Runge–Kutta methd (classical RK);B GIF1/RK4 The fourth order Generalized Integrating Factor Runge–Kutta method;B GIF2/RK4 The fourth order Generalized Integrating Factor Runge–Kutta method;B GIF3/RK4 The fourth order Generalized Integrating Factor Runge–Kutta method;B CF4 The fourth order Commutator Free Lie group method with affine action;B CF4A1 A fourth order CF method with action corresponding to nonautonomous FVF.
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Allen-Cahn equation

� # � û �0� � 	 �I � V � �� ~I � � � �
with û � 8� 8�

and with boundary and initial conditions
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After discretisation in space.

� # � ÿ � 	 � � � � 
 � �

where

ÿ � û � R � � � � � 
 � � � �I � V and

�

is the Chebyshev differentiation matrix.
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Allen-Cahn equation
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Korteweg de Vries equation

� # �I �0� � � I � �0� � �� ~I é � é � �
with periodic boundary conditions and with initial condition

� � � � 8 � � Ö í * »¼ ¸ � R � � í � * 9 � �

where

í � � 9 ü

. The exact solution is

9 é * í
periodic and is given by� � � � 
 � � � � �I í 
�� 8 �

.

We use a 256-point Fourier spectral discretization in space. In this case the matrix

�

is

again diagonal. The integration in time is done for one period.
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Contributions

�

Proposed a general class of exponential Runge-Kutta methods specifically
designed for time integration of semilinear problems.�

Rederived the nonstiff order theory
- a non-recursive rule for generating each nonstiff order condition from its

corresponding rooted tree�

Extended the class of GLMs to the exponential settings�

Studied the natural connection between exponential integrators and Lie group
methods.

-

� �� * Ù Ê ä Ù Ê î Ê
- proposed a new approach in the derivation of GIF/RK methods
- suggested how to construct exponential integrators with algebra action arising

from the solutions of differential equations with nonautonomous frozen vector fields�

Studied different nuumerical techniques for computing the ETD

D E 3F

functios.�

Generalized the tridiagonal reduction approach.�

Proposed new methods for solving special block linear systems.

Exponential Integrators for Semilinear Problems – p.44/46



Open problems

� Other

� ~ 7 �

functions.

� Effective algorithms for their computation.

� Are these methods competitive with variable stepsize - in
which cases ?

� Stability analysis.

� Extensive numerical experiments.

� Exponential integrators for oscillatory problems.
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