
REPORTS
IN

INFORMATICS

ISSN 0333-3590

Computing analytic matrix functions for
a class of exponential integrators

Borislav V. Minchev

REPORT NO 278 June 2004

Department of Informatics

UNIVERSITY OF BERGEN

Bergen, Norway

This report has URL http://www.ii.uib.no/publikasjoner/texrap/ps/2004-278.ps

Reports in Informatics from Department of Informatics, University of Bergen, Norway, is
available at http://www.ii.uib.no/publikasjoner/texrap/.

Requests for paper copies of this report can be sent to:

Department of Informatics, University of Bergen, Høyteknologisenteret,
P.O. Box 7800, N-5020 Bergen, Norway

Computing analytic matrix functions for a class of

exponential integrators

Borislav V. Minchev ∗

Department of Informatics, University of Bergen,

Thormhlensgate 55, N-5020 Bergen, Norway

Abstract

Different methods for numerically stable computation of functions which
are closely related to the exponential function are discussed. Such functions
appear in the format of the most often used exponential integrators. A gen-
eralization of the method base on the tridiagonal reduction is proposed. The
new approach, allows to compute all the functions included in the format of a
general exponential integrator, in the case when the arguments are symmet-
ric (Hermitian) matrices. Complexity of the considered methods is derived.
Some practical issues regarding variable step size implementations as well as
the main advantages and disadvantages are of the different methods are also
discussed.

Key words: exponential integrators, exponential time differencing, Block Schur–
Parlett algorithm, Krylov subspaces, Cauchy integral approach

1 Introduction

In the last few years there has been a lot of renewed interest in the construction
of so-called exponential integrators for solving stiff parabolic partial differential
equations. These integrators, as there name suggests, use the exponential function
and often functions which are closely related to the exponential function, inside the
numerical method. We refer to [20] for an overview of different methods based on
this idea.

At the moment it is still unclear whether or not the exponential integrators are
fully competitive with the existing numerical methods for solving stiff problems.
Especially in the case when a variable step size is used. The main concern is
that numerical implementation of an exponential integrator might be simply to
expensive. A great variety of fast algorithms for computing the matrix exponential
operator or its action to a given vector are available in the literature. We refer to
[21] and the references within for a comprehensive review. The aim of this note is
to focus on different numerical techniques for computing the rest of the functions
used in the format of the exponential integrators, and to discuss the advantages and
disadvantages of the different techniques.

The most commonly used functions in the format of an exponential integrator
have the following explicit form

φ[1](z) =
ez − 1

z
, φ[i+1](z) =

φ[i](z)− 1
i!

z
, for i = 2, 3, (1.1)

∗email: Borko.Minchev@ii.uib.no, http://www.ii.uib.no/∼borko

1

We mention that other φ[i] functions can also be used in the formulation of some
exponential integrators (see [18]). However, in most of the known cases, they are
closely related with the above defined functions, which are often referred to as the
exponential time differencing (ETD) φ[i] functions [3, 20]. In this note we restrict
our considerations only to the case of ETD φ[i] functions.

Straightforward implementation of (1.1) suffers, for small z, from cancelation
errors. An illustration of this phenomena, for the first function φ[1], is given in
[13, Table 2.1]. The cancelation errors are even more severe for the second and
the subsequent φ[i] functions. In practice, the arguments of the functions in (1.1)
are matrices of the form A = γhL, where γ ∈ R, h is the length of step size and
L ∈ Rd×d is a discretized linear operator. Usually, the size d of L is very large, thus
we need fast, reliable and numerically stable algorithm for computing the functions
form (1.1).

The note is organized as follows: We first consider in Section 2 methods based
on Schur decomposition followed by higher order rational Chebyshev or Padé ap-
proximation to the function φ[i]. Next in Section 3 we present a technique, which
allows us to approximate the action of each φ[i] function on a given vector by means
of a projection process onto a small Krylov subspace. In Section 4 we discuss meth-
ods based on the Cauchy integral formula and comment its implementation in some
special cases. Finally we summarize the main advantages and disadvantages of the
discussed methods in Section 5.

2 Decomposition methods

At the heart of all decomposition methods is the similarity transformation

A = SBS−1, (2.1)

where B is such that φ[i](B) is easy to compute. Then

φ[i](A) = Sφ[i](B)S−1. (2.2)

The choice of the matrices S and B in (2.1) usually involves two conflicting tasks:
Make B close to diagonal so that φ[i](B) is easy to compute and make S well
conditioned so that errors in evaluating φ[i](B) are not magnified. Thus it is natural
to consider methods based on the Schur decomposition so that S is unitary and
therefore well conditioned. Next we present a general algorithm first proposed in
[4] which employs the block form of the Parlett recurrence and does not impose any
restrictions on the argument matrix A.

2.1 Block Schur-Parlett algorithm

The first step of the algorithm is to compute the Schur decomposition A = QTQ∗,
where Q is unitary and T is upper triangular. This can be achieved by the standard
QR algorithm [8]. We now need to calculate the matrices F [i] = φ[i](T). Assuming

that the diagonal elements f
[i]
kk of F [i] are already known, we can compute the whole

F [i] using the scalar Parlett recurrence [22]. This is exactly how the MATLAB 6.5
(R13) built in function funm works. The problem with this approach is that it fails
to produce correct results, in floating point arithmetic, when the eigenvalues of T
are equal or close to each other.

To avoid this problem the authors in [4] propose to reorder T into a block upper

triangular matrix T̃ . The diagonal blocks T̃kk of T̃ are constructed in such a way
that the eigenvalues of each diagonal block are “close” to each other and the distinct
diagonal blocks are with “sufficiently distinct” eigenvalues. To define the meaning
of “close” and “sufficiently distinct” the authors introduce a special parameter in
the format of the method. Since T̃ is block upper diagonal, so is F̃ [i] = φ[i](T̃) .

2

From the commutativity relation F̃ [i]T̃ = T̃ F̃ [i] it follows the following block form
of the Parlett recurrence

T̃kkF̃
[i]
kl − F̃

[i]
kl T̃ll = F̃

[i]
kkT̃kl − T̃klF̃

[i]
ll +

l−1∑

j=k+1

(
F̃
[i]
kj T̃jl − T̃kjF̃

[i]
jl

)
, (2.3)

where T̃ = (T̃kl) and F̃ [i] =
(
F̃
[i]
kl

)
. If the diagonal blocks F̃

[i]
kk are already eval-

uated, the above relation allows us to compute the whole matrix F̃ [i] by solving

the Sylvester equation (2.3) with respect to F̃
[i]
kl . The imposed requirements for the

eigenvalues of T̃kk guarante that the equation (2.3) is nonsingular and is well condi-
tioned [4]. Thus what we still need to specify is how to compute the diagonal blocks

F̃
[i]
kk. In [4] the authors suggest to use a suitable Taylor series truncation or Padé

approximation. These are local approximations which are very accurate near the
origin, but may suffer in accuracy away form it. In addition the accuracy of such

approaches depends of the norm of F̃
[i]
kk and usually, when the norm is large, they

require a scaling and squaring strategy [21]. For the first function φ[1] an analogous
formula, similar to the well-known fundamental property of the exponential func-
tion, is proposed in [10]. It is based on the equalities φ[1](2z) = (ez + 1)φ[1](z)/2
and e2z = ezez. In general for i > 1 we do not have a simple generalization of the

above formulas and thus an alternative approach for computing F̃
[i]
kk can be to use

higher order Chebyshev (uniform) rational approximations [27]. We discuss this
type of approximations in detail in Subsection 2.2.

Next we summarize the overall block Schur-Parlett algorithm for computing
φ[i](A) for a general matrix A and i = 1, 2,

Algorithm 2.1 (Block Schur-Parlett algorithm)

• Compute the Schur decomposition A = QTQ∗.

• Reorder T into a block upper triangular matrix T̃ .

• Compute φ[i](T̃kk) for all diagonal blocks T̃kk.

• Find φ[i](T̃) by solving the Silvester equation (2.3).

• Compute φ[i](A) = Qφ[i](T̃)Q∗.

The cost of Algorithm 2.1 depends from the eigenvalue distribution of A, and it is
between 28d3 and d4/3 flops (see [4]) for each i, where d is the dimensionality of A.

The advantages of this method are that it is numerically stable and works with-
out any restrictions on the structure of the matrix A. The main disadvantage is
its higher computational cost, which makes it applicable only if integrators with
fixed stepsize are used, so that all φ[i] functions can be computed only once, at the
beginning of integration process. Thus the above method provides a benchmark for
the computational cost of a method.

In the case when A is real symmetric (or complex Hermitian) a cheaper method,
also based on the Schur decomposition, can be constructed. In the next subsection
we generalize the approach proposed in [15] for computing the matrix exponential
operator and later extended in [16] for computing the first function φ[1], to a general
algorithm for computing all the functions from (1.1).

2.2 Tridiagonal reduction

A common first step in the computation of the eigenvalues and the eigenvectors of
a symmetric matrix A is to use a tridiagonal reduction of the form A = QTQT ,
where Q is orthogonal and T is symmetric tridiagonal. Such a representation of

3

A can be obtained by using Hauseholder reflections [8]. Thus according to (2.2)
the computation of φ[i](A) requires the value φ[i](T). In [15, 16] efficient numerical
algorithms for computing the exponential and the φ[1] function, based on the above
tridiagonal reduction, followed by Chebyshev (uniform) rational approximation are
developed. Here we utilize this approach and propose how it can be generalized, so
that each of the functions from (1.1) can be efficiently computed.

We first consider, how to find Chebyshev rational approximations to eT, for a
given tridiagonal matrix T. The key idea is to compute the largest eigenvalue λ1
of T (for example by bisection method) and then make use of the following obvious
equality eT = eλ1eT−λ1I , where I is d×d identity matrix. The eigenvalues of T−λ1I
are always located in the interval (−∞, 0]. This allows us to approximate eT−λ1I by
a rational function Rp(z) = Np(z)/Dp(z) (where Np and Dp are polynomials of z
of degree p), which minimizes the maximum error for approximating ez on (−∞, 0].
An approximation to eT is then obtained by

eT ≈ eλ1Rp(T− λ1I). (2.4)

What we gain in this way is that, regardless of the spectrum of T, we can always use
a rational Chebyshev approximation to eT−λ1I in the interval (−∞, 0], which has
the same coefficients. If we choose to represent Rp via its partial fraction expansion
(see [7])

Rp(z) = α
(p)
0 +

p∑

j=1

α
(p)
j

z − θ
(p)
j

, (2.5)

the coefficients α
(p)
j and the poles θ

(p)
j of Rp can be computed once and for all. To

achieve standard double precision (64-bit floating point numbers), it is sufficient to
choose p = 14. Since the coefficients and the poles appears in complex conjugate
pairs, for even p, it is enough to add just the first p/2 terms in the sum in (2.5), and
then double the real part of the result. This in fact leads to significant computational
savings, since it halves the number of matrix inversions in the corresponding formula

Rp(T− λ1I) = α
(p)
0 I +

p∑

j=1

α
(p)
j

[
T− (λ1 + θ

(p)
j)I

]
−1

. (2.6)

The values of α
(p)
j and θ

(p)
j for p = 14 and 16 are listed in [16, Table 2].

Here we have chosen a diagonal rational approximation Rp, that is, the nu-
merator Np has the same degree as the denominator Dp. We note however, that
alternative strategies (e.g. using L-stable approximations) might also be considered
without altering the principle of the method.

Before we consider how the approximation (2.4) can be used to approximate any
of the functions φ[i] form (1.1), we mention that, once we have the largest eigenvalue
λ1 of T, we can always calculate a Chebyshev rational approximation to φ[i](z)
on the interval (−∞, λ1] and then used it to approximate φ[i](T). However, this
approach is rather unpractical since it highly depends on the value λ1. Therefore
we need to recompute the coefficients of the approximation for every different λ1,
which is quite a costly task.

An alternative approach for computing φ[i](T), in the case where the largest
eigenvalue of T belongs to the interval (−∞, 0], is to replace eT in the definition of
each of the functions φ[i] by its Chebyshev rational approximation (2.4). Thus for
example the first function φ[1] can be approximated by

φ[1](T) ≈ T
−1



(
eλ1α

(p)
0 − 1

)
I + eλ1

p∑

j=1

α
(p)
j

[
T− (λ1 + θ

(p)
j)I

]
−1


 .

4

The above formula should not be used when λ1 is positive. The problem in this
case is that for each of the functions φ[i], we can not just shift the argument by λ1I,
since the relation between φ[i](T) and φ[i](T − λ1I) is not that simple like it is for
the exponential function.

A different approach for approximating φ[1](T), in the case when λ1 > 0, is
proposed in [16]. It is based on the observation that for

B =

[
T I

0 0

]
,

the exponential of B is given by

eB =

[
eT φ[1](T)

0 I

]
. (2.7)

Therefore, applying the approximation (2.4) with Rp given by (2.6) and T = B, we
obtain

eB = eλ1eB−λ1I ≈ eλ1



α

(p)
0 I +

p∑

j=1

α
(p)
j

[
B − (λ1 + θ

(p)
j)I

]
−1



 . (2.8)

Equating the entries in positions (1,2) of (2.7) and (2.8) leads to the following
approximation for φ[1](T)

φ[1](T) ≈ eλ1

p∑

j=1

α
(p)
j

λ1 + θ
(p)
j

[
T− (λ1 + θ

(p)
j)I

]
−1

.

We have found that, for λ1 positive, the same idea can be easily generalized to
the case when approximations to φ[i](T) for i > 1 are needed. To approximate the
function φ[2](T) we take the matrix B to be of the form

B =




T 0 I

0 0 0

0 I 0


 .

It is easy to see, for example by direct computation, that its exponential is given by

eB =



eT φ[2](T) φ[1](T)

0 I 0

0 I I


 .

As before, based on formulas (2.4) and (2.6), we obtain the following approximation

φ[2](T) ≈ eλ1

p∑

j=1

α
(p)
j(

λ1 + θ
(p)
j

)2
[
T− (λ1 + θ

(p)
j)I

]
−1

.

Approximations for the rest of the functions φ[i], for λ1 > 0, can be computed by
straight-forward generalization of the above process.

In the next algorithm we summarize the method based on the tridiagonal re-
duction for computing any of the functions φ[i](A) for a symmetric matrix A and
i = 1, 2,

5

Algorithm 2.2 (Tridiagonal Reduction)

• Calculate a symmetric tridiagonal reduction A = QTQT .
• Find the largest eigenvalue λ1 of T.
• Compute φ[i](T) by a Chebyshev rational approximation with respect to the
value of λ1.

• Calculate φ[i](A) by φ[i](A) = Qφ[i](T)QT .

The cost of the algorithm, for each i is O(43d
3 + d + d2 + 2d3), where d is the

dimensionality of A. Therefore the total number of operations for computing each
of the functions φ[i] is O(103 d

3). In the case of constant step size, once we have

computed the first function φ[1], we can reduce the work for computing the other
φ[i] functions by reusing the tridiagonal decomposition.

If the matrix A is symmetric and tridiagonal, the above algorithm requires only
O(d2) operations, since its first and last step are not needed. In this case instead of
computing all the φ[i] functions once, before the integration begins, and then apply
them at every step to a different vectors v, we can repeatedly compute the action of
each φ[i] on its corresponding vector v. The total number of operations in this case
still does not exceed the work required to compute the matrix-vector product φ[i]

times v, especially when d À p . This is because the inverse matrices in the third
step of the algorithm are replaced by solutions of linear systems with tridiagonal
coefficient matrices. In general, algorithms designed to solve such systems require
O(d) operations, which leads to O(pd) flops needed to compute the action φ[i]v.
This is to be compared with O(d2) operations needed for a matrix-vector product.
In [17], several direct methods for solving linear systems of equations are presented.
Some of the algorithms proposed there, can be easily adopted to the tridiagonal
case considered here. We will comment more on this in Section 4.

When A is tridiagonal, the above approach allows to preserve the total number of
operations, needed to implement an exponential integrator, approximately the same
even when a variable step size strategy is used. The advantage of the Algorithm 2.2
is that it is less expensive than Algorithm 2.1. Its disadvantages are that it is
applicable only in the case when the matrix A is symmetric (Hermitian) and that
it can not be used with variable step size strategy, unless in the case when A is
tridiagonal.

We next consider a method which is entirely based on the idea of approximating
the action of each of the functions φ[i] on a given state vector v. This approach is
useful for implementations employing a variable step size strategy.

3 Krylov subspace approximations

Since the mid-eighties, the idea of using the Krylov subspace approximations to
the action of the evolution operators has been studied by many authors. A short and
definitely incomplete list of publications on this topic includes [5, 6, 7, 9, 10, 23, 24].
The convergence properties of the action of the matrix exponential operator are
investigated in [5, 7, 24]. Later in [9] a sharper error estimates are derived. It is also
shown that, unless a good preconditioner is not available, the Krylov approximation
to eAv converges faster than its corresponding approximation to the solution of the
linear system (I − A)x = v. An approximation to the action of the first function
φ[1], based on the Krylov subspace approximation techniques, was considered in
[24] and later studied in [9]. It was found that it obeys the same error bounds as
the approximation to the matrix exponential operator. This provided the initial
motivation, in [10], for developing a Rosenbrock-like exponential integrators.

The main idea of the Krylov subspace techniques is to approximately project
the action of the evolution operator φ[i](A) on a state vector v ∈ Cd, to a small

6

Krylov subspace
Km ≡ span{v,Av, . . . , Am−1v}.

Usually, even for a relatively small m ¿ d, an accurate approximation can be
obtained [24]. Thus the approach is to approximate the action of φ[i](A) by the
action of φ[i] applied to the projection of A on the smaller subspace Km.

It is convenient to choose an orthogonal basis Vm = [v1, v2, . . . , vm] of Km. It
can be generated by the Arnoldi algorithm, with v1 = v/||v||2 as an initial vector.

Algorithm 3.1 (Arnoldi)

Compute v1 = v/||v||2.
for j = 1, 2, . . . ,m do

for i = 1, 2, . . . , j do
hi,j = (Avj , vi),

end

w = Avj −
∑j

i=1 hi,jvi,
hj+1,j = ||w||2, vj+1 = w/hj+1,j ,

end

Alternatively, the Lanczos algorithm for generating a biorthogonal basis on the
subspace Km, can also be used (see [24]).

Let Hm be the m×m upper Hessenberg matrix consisting of the coefficients hi,j .
Since the Algorithm 3.1 is just a modified Gram-Schmidt process, the following
relation holds

AVm = VmHm + hm+1,mvm+1e
T
m
, (3.1)

where ei denotes the ith unit vector in Rm. Using the fact that Vm is orthogonal
from the above relation it follows that V T

m
AVm = Hm. Therefore Hm represents

the orthogonal projection of A to the subspace Km, with respect to the basis Vm.
Similarly VmV

T
m
φ[i](A)v is the projection of φ[i](A)v on Km, that is the closest

approximation to φ[i](A)v from Km. If β ≡ ||v||2 then v = βv1 and since v1 = Vme1,
we have

φ[i](A)v = VmV
T
m
φ[i](A)v = βVmV

T
m
φ[i](A)v1

= βVmV
T
m
φ[i](A)Vme1.

(3.2)

From the computational point of view, the above formula is not useful, since it still
involves operations with the big matrix A. To avoid this, the idea is to replace the
term V T

m
φ[i](A)Vm in (3.2) by a suitable approximation. Note that V T

m
φ[i](A)Vm is

an m×m matrix. By induction, from (3.1), one can prove [24, Lemma 3.1] that

pm−1(A)v = βVmpm−1(Hm)e1, for all polynomials pm−1 of degree ≤ m− 1.

Therefore it is natural to approximate V T
m
φ[i](A)Vm by φ[i](Hm). From (3.2) we

obtain
φ[i](A)v ≈ βVmφ

[i](Hm)e1. (3.3)

The approximation (3.3) can also be derived from the standard Krylov approxi-
mation to the solution of linear systems of equations [23] and the Cauchy integral
formula (see [9]). The advantage of using (3.3) is that instead of working with the
original large matrix A we use its orthogonal approximation Hm, which has much
smaller dimension. The action φ[i](A)v is then computed in O(md) operations by
using only matrix-vector multiplications between elements with the original large
size d. Thus, when m ¿ d the cost of computing the expression βVmφ

[i](Hm)e1 is
usually much less than the cost needed to compute φ[i](A)v.

7

The computation of φ[i](Hm)e1 requires O(m3) operations in general and only
O(m2) if the matrix Hm is tridiagonal (e.g. A is symmetric). It can be done by
using a Chebyshev rational approximation, evaluated by partial fraction expansion
(see Subsection 2.2).

The main computational cost of an exponential integrator, using Krylov sub-
space approximation technique, comes from the repeated application of Algorithm 3.1.
At every step we need to construct several bases of Krylov subspaces with respect to
the same matrix A and different vectors v. In general Algorithm 3.1 requiresO(md2)
operations. We mention also that it assumes exact arithmetic is used. In practice,
round off errors and cancelations might cause a loss of the orthogonality between
the vectors vi. A significant improvement in the performance can be achieved by
using double orthogonalization [14]. In addition a convergence criterion is needed
to determine the value of m that gives a sufficiently accurate approximation. Thus
we conclude that the above approach is preferable in the case when the number of
Krylov bases needed can be significantly reduced. Efficient exponential integrators
based on this reduced idea are developed in [10]. The advantage of the Krylov sub-
space approximation technique is that, implementations based on a variable stepsize
strategy, do not increase the total computational cost of the integrator.

4 Cauchy integral approach

The last approach for computing the functions φ[i] or their action on a given
vector v, which we consider, is introduced in [13].It is based on the Cauchy integral
formula

φ[i](A) =
1

2πi

∫

ΓA

φ[i](λ)(λI −A)−1dλ, (4.1)

where ΓA is a contour in the complex plane that encloses the eigenvalue of A, and
it is also well separated from 0. It is practical to choose the contour ΓA to be a
circle centered on the real axis. In this way when A is real, based on the symmetry,
one can evaluate the integral only on the upper half of the circle and then double
the real part of the result. To approximate the integral in (4.1) the authors in [13]
propose to use the trapezoid rule, which converges exponentially [26]. Therefore we
obtain the following approximation

φ[i](A) ≈
1

k

k∑

j=1

λjφ
[i](λj)(λjI −A)−1, (4.2)

where k is the number of the equally spaced points λj along the contour ΓA. Usually,
values of k = 32 or k = 64, are sufficient to insure correct computations.

For problems with diagonal matrix A it is beneficial to choose the contour ΓA
to be, in addition, a circle centered at A. Thus (4.2) simply reduces to the mean of
φ[i] over the equally spaced points along ΓA (or again just half of them for a real A).
When the matrix A is non-diagonal the cost for computing an approximation to the
functions φ[i] increases. This is due to the number of the matrix inverses involved
in (4.2). In the case of constant stepsize, the total impact on the computational
time is still small, since all the φ[i] functions can be evaluated only once before the
integration begins. However, in the case of variable step size, direct application of
(4.2) leads to significant increase in the computational work. To gain more insight
into how the formula (4.1) can be effectively used, in the case of variable step size,
we recall that the matrix A = γhL, where γ ∈ R, h is the step size and L is the
discretized linear operator. Note that every time when we need to change the step
size h, it is enough to change only the parameter γ.

The idea now is to represent φ[i](γhL) in such a way that the number of the
matrix inverses used in (4.1), respectively in (4.2), is independent of γ. If we choose

8

a suitable contour Γ, such that for all different values of γ, which appear in the
integration process, it encloses the eigenvalues of γhL and γΓ is well separated
from 0 then we can compute each of the functions φ[i] by the following formula

φ[i](A) = φ[i](γhL) =
1

2πi

∫

Γ

φ[i](γλ)(λI − hL)−1dλ. (4.3)

As before, approximating the integral in (4.3) by the trapezoid rule, we get

φ[i](A) ≈
1

k

k∑

j=1

λjφ
[i](γλj)(λjI − hL)−1, (4.4)

where now λj are the equally spaced points along the contour Γ. The above formula
allows to reduce the computational work needed to evaluate the functions φ[i] or
their action on a given vector v, in the case when a variable step size is used. The
main advantage comes form the fact that the inverse matrices in (4.4) no longer
depend of γ. However, in any case we have to compute k (or k/2) matrix inverses.

In the case when the matrix L arises from a finite difference approximation to
a second order partial differential operator, we can benefit from its sparse block
structure. Similar to the idea presented in Subsection 2.2, in this case, we can
also evaluate the action of the function φ[i] on a given vector v. If the number of
operations required does not exceed O(d2) the cost of a matrix-vector product then
we obtain a competitive method. Note that in general the matrix φ[i](γhL) does
not retain the sparse block structure of L. Thus what we need is an efficient method
for solving special sparse block linear systems of equations. When the matrix −L
is symmetric (Hermitian) and positive definite the most favourable methods are
preconditioned conjugate gradient and multigrid methods [12]. They are based on
the idea of approximating the solution by an iterative procedure and usually require
O(d) operations. The problem with these methods is that they require a good
preconditioner or a rather complex algorithm with considerable overhead to organize
the computations. In addition, we note that the matrices in (4.4) are symmetric
(Hermitian) only if λj ∈ R.

Alternatively, direct methods for solving linear systems of equations can be used.
In order to be competitive, such methods are specially design to take advantage
from the sparse block structure of the coefficient matrix. In general, the structure
of L, depends on the dimensionality of the problem, the type of the approximation
and the boundary conditions imposed. When L is block tridiagonal, two methods
are of practical importance: the Buneman variant of cyclic reduction [1] and the
decomposition method based on the fast Fourier transform (FFT) [2]. Both of
these methods compute the solution in O(d log2 n) operations, where n is the block
size of L. Combination of the above two methods known as Fourier analysis-cyclic
reduction (FACR) is proposed in [11]. The asymptotic operation count for this
method is reduced toO(d log2 log2 n) (see [25]). A restriction for all of these methods
is that n should be power of two or a composite of small primes.

In [17], method for solving tridiagonal block Teoplitz linear systems of equations,
which does not impose any restrictions on n is proposed. The method is based on a
modified LU factorization and it is fully applicable to all the matrices in (4.4). The
restriction for positive definiteness of the coefficient matrix is introduced in order
to make possible, comparison between this method and some classical techniques.
In [19] the same idea is generalized to the case when the coefficient matrix has
pentadiagonal block circulant structure. The complexity of this methods is O(d2).
Significant computational savings can be achieved by using the techniques of solving
linear systems with multiple right hand sides. Since the methods are based on the
LU decomposition idea, we can factorize the k (k/2) coefficient matrices arising

9

from (4.4) once and for all and then use only the back-substitution formulas to find
their action on a given vector v. Thus, for k ¿ d we obtain methods which can be
implemented with a variable step size, without to increase the total computational
work.

5 Concluding remarks

We summarize the main advantages and disadvantages of the different methods
for computing the functions φ[i] or their actions on a vector, presented in this note.

• Methods based on Algorithm 2.1 are expensive and not suitable for imple-
mentations using variable step size. Their main advantage is that they do not
place any restrictions on the coefficient matrix.

• Methods using Krylov subspace approximation techniques are suitable for
implementations involving variable step size, but are applicable only in the
case when the number of the needed Krylov bases can be significantly reduced.

• Methods based on the Cauchy integral formula are suitable for both constant
and variable stepsize implementations. Particularly cheap methods, in the
case of variable stepsize, can be obtained if the the coefficient matrix has a
sparse block structure. Alternatively for tridiagonal matrices Algorithm 2.2
can be used.

Acknowledgments

This work has been partially supported by Norwegian Research Council through
the GI4PDE project, contract number 142955/431.

References

[1] O. Buneman, A compact non-iterative Poisson solver, Rep. 294, Stanford Uni-
versity Institute for Plasma Research, 1969.

[2] B. Buzbee, G. Golub, and C. Nielson, On direct methods for solving Poisson’s
equation, SIAM J. Numer. Anal. 7 (1970), 627–656.

[3] P. M. Cox and P.C. Matthews, Exponential time differencing for stiff systems,
J. Comput. Phys. 176 (2002), 430–455.

[4] P. Davies and N. Higham, A Schur-Parlett algorithm for computing matrix
functions, SIAM J. Matrix Anal. Appl. 25(2) (2003), 464–485.

[5] V. L. Druskin and L. A. Knizhnerman, Error bounds in the simple Lanczos pro-
cedure for computing functions of symmetric matrices and eigenvalues, Com-
put. Maths. Math. Phys. 7 (1991), 20–30.

[6] , Krylov subspace approximations of eigenpairs and matrix functions in
exact an computer arithmetic, Numer. Lin. Alg. Appl. 2 (1995), 205–217.

[7] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov
approximation methods, SIAM J. Sci. Statist. Comput. 13 (1992), 1236–1264.

[8] G. Golub and C. Van Loan, Matrix computations, Johns Hopkins University
Press, Baltimore, 1996, 3td ed.

[9] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix
exponential operator, SIAM J. Numer. Anal. 34 (1997), 1911–1925.

10

[10] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large
systems of differential equations, SIAM J. Sci. Comput 19(5) (1998), 1552–
1574.

[11] R. Hockney, The potential calculation and some applications, Methods of Com-
putational Physics 7 (1969), 136–211.

[12] C. Johnson, Numerical solution of partial differential equations by the finite
element methods, Cambridge University press, 1987.

[13] A.-K. Kassam and L.N. Trefethen, Fourth order time stepping for stiff pdes,
SIAM J. Sci. Comp. to appear.

[14] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK user’s guide, SIAM, 1998.

[15] Y. Y. Lu, Exponentials of symmetric matrices through tridiagonal reductions,
Linear Algebra Appl. 279 (1998), 317–324.

[16] , Computing a matrix function for exponential integrators, J. Comp.
and Appl. Math. 161(1) (2003), 203–216.

[17] B. Minchev, Some algorithms for solving special tridiagonal block teoplitz linear
systems, J. Comp. and Appl. Math 156 (2003), 179–200.

[18] , Exponential integrators for semilinear problems, Ph.D. thesis, Univer-
sity of Bergen, Department of Informatics, 2004.

[19] B. Minchev and I. Ivanov, A method for solving hermitian pentadiagonal block
circulant systems of linear equations, Lect. Notes Comput. Sci., Springer 2907
(2004), 481–488.

[20] B. Minchev and William Wright, A review of exponential integrators, in prepa-
ration, University of Bergen, 2004.

[21] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later, SIAM Review 45(1) (2003), 3–49.

[22] B.N. Parlett, A recurrence among the elements of functions of triangular ma-
trices, Linear Algebra Appl. 14 (1976), 117–121.

[23] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems,
Math. Comp. 37 (1981), 105–126.

[24] , Analysis of some Krylov subspace approximations to the matrix expo-
nential operator, SIAM J. Numer. Anal. 29(1) (1992), 209–228.

[25] P. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the
FACR algorithms for the discrete solution of the Poisson’s equation on a rect-
angle, SIAM Review 19 (1977), 490–501.

[26] L. N. Trefethen, Spectral methods in Matlab, SIAM, 2000.

[27] R. S. Varga, On higher order stable implicit methods for solving parabolic dif-
ferential equations, J. Math. and Phys XL (1961), 220–231.

11

