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Abstract

Lie group methods for nonautonomous semi-discretized in space, partial differential
equations are considered. The choice of frozen vector field and its corresponding
algebra action on the manifold for such problems is discussed. A new exponential
integrator for semilinear problems, based on commutator free Lie group methods
with algebra action arising from the solutions of differential equations with nonau-
tonomous frozen vector fields is derived. The proposed new scheme is then compared
with some existing methods in several numerical experiments.
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1 Introduction

Recently, a lot of Lie group integrators for solving semi-discretized partial
differential equations (PDEs) has been derived in the literature. The original
idea was first introduced in [16] and then further investigated for the heat
equation in [4,12,17], stiff PDEs in [10,11,14], convection diffusion problems in
[3] and for the Schrödinger equation in [1]. What is common between all this
methods is that to advance from one point to another they all use an algebra
action arising from the solution of an autonomous differential equation, which
does not depend explicitly on the time t.

In this paper we propose a way how to construct Lie group integrators for
nonautonomous problems based on an algebra action arising from the solution
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of a differential equation which can depend explicitly on t. The idea is a
natural extension of the autonomous case. The approach is to rewrite the
differential equation in its equivalent autonomous form and then to apply the
affine action [16] to the transformed equation. Thus, what we obtain are time
dependent frozen vector fields. This provides us some extra freedom in the
construction process, which can be used to choose the algebra action to be a
better approximation of the flow of the original vector field.

The paper is organized as follows: We start in Section 2 with introducing
some notation and the basic theory involved. Next we consider the framework
for nonautonomous problems and discuss how it is related with the choice
of the algebra action. In Section 3 we propose a new time dependent frozen
vector field and its corresponding algebra action. In addition, we discuss some
further generalizations. In Section 4 we derive a new exponential integrator
for semilinear problems based on the fourth order commutator free Lie group
method [4]. Finally in Section 5 we compare the proposed new exponential
integrator with some existing methods and discuss the advantages of the new
approach.

2 Background theory and notations

The framework which we use in this paper is given by Lie groups and their
action upon a homogeneous manifold [8,15,16]. We take advantage of the fact
that, in order to construct a Lie group integrator, we do not really need to
know what the structure of the Lie group is and how it acts on the manifold.
It is enough to specify the generic presentation of the differential equation and
the algebra action on the manifold (see [14]). For simplicity, we do not include
a discussion on the structure of the underlying Lie group and how it acts on
a manifold.

Let us first consider the following differential equation defined on a d + p

dimensional manifold M≡ Rd+p.

y′ = f(y(t)), y(t0) = y0. (2.1)

The very first question in the construction of a Lie group integrator is how
to define the basic motions on M. Since Rd+p is a linear space, it is easy to
construct integrator which stays on the manifold. The challenge in this case
is how to choose the basic motions in such a way that they provide a good
approximation to the flow of the original vector field. In this paper we define
the basic movements onM to be given by the solution of a simpler differential
equation

y′ = FΘ(y), y(t0) = y0, (2.2)

which locally approximates (2.1). Thus, the Lie algebra g is generated from
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the set of all coefficients Θ of the frozen vector fields FΘ and the Lie algebra
action ∗ : g×M→M on the manifold is simply given by the solution of (2.2).
In other words, if Θ ∈ g, its action upon the point y0 ∈ M, which we denote
by hΘ ∗ y0, is given by the solution of (2.2) at time t0+h. Every frozen vector
field can be represented in the form FΘ(y) = Θ~ y, where ~ : g×M→ TM
and according to (2.2), it satisfies

Θ ~ y =
d

dt

∣∣∣∣∣
t=0

tΘ ∗ y.

Note that the map Θ→ FΘ is an algebra homomorphism between g and the
set of all vector fields on M. If the algebra action ∗ is transitive i.e. starting
from a point y0 ∈ M we can reach any other point y1 ∈ M by letting some
element Θ ∈ g act on y0, the differential equation (2.1) can be rewritten in
the form

y′ = F (y) ~ y, y(t0) = y0, (2.3)

where F : M → g. The above formulation is called the generic presentation
of the differential equation on the manifold and plays an important role in the
theory of the Lie group integrators (see [16]).

The choice of the frozen vector field FΘ and its corresponding algebra action,
very much depends of the actual structure of f(y). The simplest possible case
is when g = {b ∈ Rd+p}, F (y0) = f(y0) = b and Fb(y) = b ~ y = b then the
algebra action on M is given by translations and we recover the traditional
integration schemes. In the case when f(y) = L(y)y + N(y), one can define
the Lie algebra g = {(A, b) ∈ R(d+p)×(d+p) o Rd+p}, the function F (y0) =
(L(y0), N(y0)) = (A, b) and the frozen vector field F(A,b)(y) = (A, b) ~ y =
Ay + b. This is exactly the affine algebra action proposed in [16]. Note that
such a representation of f(y) is always possible, for example by letting L(y) be
the Jacobian of f at the point y and N(y) = f(y) − L(y)y. Other choices are
also possible see for example [12,17].

In this paper we are interesting in the construction of Lie group methods for
the following nonautonomous problem defined on Rd

u′ = f(u, t), u(t0) = u0. (2.4)

Formally it does not fit in the above presented framework, but by adding the
trivial differential equation t′ = 1 to the system (2.4), we can rewrite it in the
form (2.1) with p = 1 and

f =


 f(u, t)

1


 , y =


u
t


 .

This of course is a very well known idea in the theory of ODEs, however its
application to Lie group methods, if done carefully, can lead to some extra
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freedom which we would like to exploit. Note that now the time variable t

goes in the definition of the manifoldM and therefore it also appears like one
of the arguments of the generic function F , the frozen vector field F and its
corresponding algebra action.

From a computational point of view it might look some what unreasonable
to increase the dimensionality of the problem, but we keep in mind that the
solution of (2.4) is given by the first d components of the solution of (2.1).
Thus, the approach is to apply a Lie group method to equation (2.1) and then
to restate it in Rd.

The simplest nonautonomous case is when the Lie algebra g = {b ∈ Rd+1} or
equivalently g = {(b[0], λ) : b[0] ∈ Rd, λ ∈ R} then the generic function is given

by F
([

u0

t0

])
= (f(u0, t0), 1) = (b[0], 1), the frozen vector field is F(b[0],λ)

([
u

t

])
=

[
b[0]

λ

]
and the algebra action is h(b[0], λ) ∗

[
u0

t0

]
=
[
u0+hb[0]

t0+hλ

]
. When f(u, t) =

L(u, t)u + N(u, t) then the Lie algebra g = {(A, b) ∈ Rd+1×d+1 o Rd+1}.
It can also be represented like the set of all triples (A, b[0], λ) closed under
linear combinations and commutators between the elements (see section 3),
where A ∈ Rd×d, b[0] ∈ Rd, λ ∈ R. In this case the generic function is defined
like F

([
u0

t0

])
= (L(u0, t0), N(u0, t0), 1) = (A, b[0], 1), the frozen vector field

is F(A,b[0],λ)
([

u

t

])
=
[
Au+b[0]

λ

]
and its corresponding algebra action is given by

h(A, b[0], λ) ∗
[
u0

t0

]
=
[
ehAu0+hb[0]φ[1](hA)

t0+hλ

]
, where ehA denotes the matrix exponen-

tial and the function φ[1] is given in Lemma 2 (see section 3).

If we consider just the first d components of the algebra action: in the first
case we simply obtain translations like basic motions on Rd; in the second
case we again recover the affine action. Thus, we conclude that for thes two
cases the only difference between autonomous and nonautonomos systems is
in the definition of the generic function F , which for nonautonomous systems
depends also from the time variable. We remark that in the above two cases
the frozen vector field does not really depends of t. This explains the observed
similarities between autonomous and nonautonomous systems.

A more interesting situation arises when the function f(u, t) has the form
L(u, t)u+N [0](u, t) + tN [1](u, t). A natural question now is how to choose the
frozen vector field in this case. In the next section, we propose a time depen-
dent frozen vector field and its corresponding algebra action which reflects the
structure of f . In addition, we discuss how this idea can be further generalized
if second and higher powers of t are included.
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3 Nonautonomous frozen vector fields

We first consider the case when the vector field of (2.4) has the form

f(u, t) = L(u, t)u+N [0](u, t) + tN [1](u, t).

If we treat the nonlinear part as a single function N = N [0]+ tN [1] then we do
not gain anything in comparison with the affine case presented in the previous
section. A more demanding task is to allow our frozen vector field to be time
dependent. It is desirable in this case to approximate the nonlinear part of
f(u, t) by a linear polynomial of t.

The only way to include t in the definition of the frozen vector field is to
append it to the dependent variables. Thus, by adding the trivial differential
equation v′ = 1, v(t0) = t0 to the system (2.4), we obtain

y′ = Ly + N, y(t0) = y0, (3.1)

where

L =


L(u, t) N

[1](u, t)

0 0


 , N =


N

[0](u, t)

1


 , y =


 u
v


 , y0 =


u0
t0


 .

The advantage of rewriting (2.4) in the above form is that now we can easily
see how to define the Lie algebra g, the generic function F , the frozen vector
field F and its corresponding algebra action (see section 2). The Lie algebra
in this case is g = {(A, b) ∈ Rd+1×d+1 o Rd+1}, with

A =


A b[1]

0 0


 , b =


 b

[0]

λ


 , (3.2)

where A ∈ Rd×d, b[1], b[0] ∈ Rd and λ ∈ R. Equivalently we can represent g

like the quadruplet (A, b[1], b[0], λ) closed under linear combinations and com-
mutators. The function F which provides the generic presentation is given
by

F

([
u0

t0

])
=
(
L(u0, t0), N

[1](u0, t0), N
[0](u0, t0), 1

)
= (A, b[1], b[0], 1). (3.3)

To obtain an explicit form of the frozen vector field we use the following result.

Lemma 1 The solution of the differential equation y′ = Ay + b, y(t0) = y0,
at the time t0 + h is given by

y(t0 + h) =


u(t0 + h)

t0 + hλ


 ,
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where u(t0 + h) is the solution of

u′ = Au+ b[0] + t0(1− λ)b[1] + tλb[1], u(t0) = u0.

Proof: The proof follows directly by substituting (3.2) in the differential equa-
tion y′ = Ay + b and then solving it with respect to the last variable. 2

Thus, we have obtained the following time dependent frozen vector field

F(A,b[1],b[0],λ)

([
u

t

])
= (A, b[1], b[0], λ) ~

[
u

t

]
=

[
Au+ c0 + tc1

λ

]
, (3.4)

where c0 = b[0] + t0(1 − λ)b[1] and c1 = λb[1]. Note that for λ = 1 we have

c0 = b[0], c1 = b[1] and therefore the generic presentation F
([

u

t

])
~
[
u

t

]
=
[
f(u,t)
1

]

is satisfied.

The last thing which we need to define is the algebra action corresponding to
the frozen vector field (3.4). In the next Lemma we give a general formula for
the flow of the frozen vector field, which approximates the nonlinear part of
f by a polynomial of t of degree p.

Lemma 2 The solution of the differential equation

u′ = Au+
p∑

j=0

tjcj, u(t0) = u0,

where p ∈ N, A ∈ Rd×d and cj ∈ Rd at the time t0 + h is given by

u(t0 + h) = ehAu0 +
p∑

k=0

hk+1δkφ
[k+1](hA),

where δk =
∑p

j=k
j!

(j−k)!
t
j−k
0 cj, φ[1](z) = ez−1

z
and φ[k+1](z) = φ[k](z)−φ[k](0)

z
.

Proof: From the variation of constants formulae it follows that

u(t0 + h)=ehAu0 + ehA
∫ h

0
e−τA

( p∑

j=0

(t0 + τ)jcj

)
dτ

=ehAu0 +
p∑

j=0

(
δje

hA 1

j!

∫ h

0
e−τAτ jdτ

)
.

Multiple applications of integration by parts complete the proof. 2
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Combining the results of Lemma 1 and Lemma 2 leads to the following explicit
form for the algebra action corresponding to the vector field (3.4)

h(A, b[1], b[0], λ) ∗

[
u0

t0

]
=

[
ehAu0 + h(b[0] + t0b

[1])φ[1](hA) + h2λb[1]φ[2](hA)

t0 + hλ

]
(3.5)

Once we have defined the generic presentation, the Lie algebra g and its action
on M we can use any Lie group method to find the solution of (2.4). The
solution of (3.1) is simply given by its first d components.

In the case when a Runge-Kutta Munthe-Kaas method with exact Exp map is
used the format requires the inverse of the dExp map (see [16]). Computation-
ally it might be very expensive to find exactly the dExp−1 map and thus the
approach proposed in [16] is to replace it with polynomial approximation of
order higher than the order of the method. This imposes the necessity of using
commutators between the elements of g. In this case if Θi = (Ai, b

[1]
i , b

[0]
i , λi)

for i = 1, 2 are two elements from g then their commutator is given by

[Θ1,Θ2] =
(
[A1, A2], A1b

[1]
2 − A2b

[1]
1 , A1b

[0]
2 − A2b

[0]
1 + λ2b

[1]
1 − λ1b

[1]
2 , 0

)
,

where [A1, A2] = A1A2 − A2A1 is the matrix commutator.

The above approach can be easily generalized when the function f(u, t) =
L(u, t)u+

∑p
k=0 t

kN [k](u, t). In this case we append p trivial differential equa-
tions corresponding to t, t2, . . . , tp to the system (2.4) . Thus, the dimension
of the manifold is d+p, but we keep in mind that we are only interested in its
first d components. The Lie algebra is g = {(A, b[p], . . . , b[0], λ) : A ∈ Rd×d, λ ∈
R, b[k] ∈ Rd} and its action upon the manifold is given by Lemma 2. The
coefficients cj can be found in the same way as in Lemma 1. For p = 2 they
are

c0=b
[0] + (1− λ)t0b

[1] + (1− λ)2t20b
[2],

c1=λb
[1] + 2λ(1− λ)t0b

[2],

c3=λ
2b[2].

We conclude this section with the observation that based on the same idea,
methods with approximations of the nonlinear part of f by trigonometric
polynomials can also be derived. In this case, the exact flow of the frozen
vector field can be computed in the similar manner (see [14]).
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4 Exponential integrator for semilinear prob-

lems

In this section we derive an exponential integrator based on the frozen vector
field (3.4) and its corresponding algebra action (3.5) for the semilinear problem

u′ = Lu+N(u, t), u(t0) = u0, (4.1)

where L is a constant linear term and N is a nonlinear term. Such systems of-
ten arise after the spatial discretization of certain PDEs. Comparisons between
the stability regions for different Lie group methods applied to semi-discretized
stiff PDEs is given in [11]. There the author suggests that for this type of prob-
lem the best methods are likely to be the commutator free Lie group methods
[4]. This provides our motivation in the choice of the Lie group method.

Next we give an equivalent formulation of the method proposed in [4]. This
formulation allows us to construct methods without knowing what the exact
structure of the Lie group acting on the manifold is, or how the Exp map
between the Lie algebra and the Lie group is defined. The general format of
an s stage commutator free Lie group method advancing from point yn to
point yn+1 with a time step of size h is given by the following algorithm.

Algorithm 1 (Commutator-free Lie group method)

for i = 1, . . . , s do

Ui = (h
∑s

k=1 α
k
iJFk) ∗ · · · ∗ (h

∑s
k=1 α

k
i1Fk) ∗ yn

Fi = F (Ui)
end

un+1 = (h
∑s

k=1 β
k
JFk) ∗ · · · ∗ (h

∑s
k=1 β

k
1Fk) ∗ yn

Here the function F gives the generic presentation (2.3), the coefficients αkij, β
k
j

are parameters of the method and the value J counts the number of flow
calculations required at each stage. In [4], the following fourth order method
based on the classical fourth order method of Kutta is proposed.

0
1
2

1
2

1
2

0 1
2

1
2
1
2

1
2

-1
2

0

0

0

1





1
4
1
12

1
6
1
6

1
6
1
6

- 1
12
1
4





(4.2)

We use the symbol } to denote all the substages included in a stage with
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J > 1. Note that in (4.2) the frozen vector field corresponding to the second
stage is the same as for the first substage of the fourth stage. This reduces the
cost of the method.

In order to use the frozen vector field (3.4) from the previous section we rewrite
the nonlinear part of (4.1) in the form

N(u, t) = Nn + t
N(u, t)−Nn

t
= N [0] + tN [1], (4.3)

where Nn = N(un, tn) is the value of the nonlinear part at the beginning of
the step number n. Keeping in mind (3.3) and (3.5), based on (4.2), we have
found a new fourth order exponential integrator, which written in the original
u variable is given by

U1 = un ,

U2 = e
hL
2 un + h1

2
φ[1]Nn ,

U3 = e
hL
2 un + h

[
1
2
φ[1]Nn +

(
tn
2
φ[1] + h

4
φ[2]

)
N
[1]
2

]
,

U4 = e
hL
2 U2 + h

[
1
2
φ[1]Nn +

(
tnφ

[1] + h
2
φ[1] + h

2
φ[2]

)
N
[1]
3

]
,

Û = e
hL
2 un + h

[
1
2
φ[1]Nn +

(
tnφ

[1] + h
2
φ[2]

) (
N

[1]
2

6
+

N
[1]
3

6
−

N
[1]
4

12

)]
,

un+1 = e
hL
2 Û + h

[
1
2
φ[1]Nn +

(
tnφ

[1] + h
2
φ[1] + h

2
φ[2]

) (
N

[1]
2

6
+

N
[1]
3

6
+

N
[1]
4

4

)]
,

(4.4)

where N
[1]
j = N(Uj , tn+cjh)−Nn

tn+cjh
for j = 1, . . . , 4 and the arguments of all the φ[j]

functions are hL
2
.

It is possible to rewrite (4.4) in equivalent form which does not involves split-
ting of the internal stages (see [1,14]). Such a representation is rather useless,
since its implementation is more expensive than the one proposed, but it shows
that (4.4) is a method based just on the pure Runge–Kutta idea.

If we represent the nonlinear part of (4.1), as a polynomial of second degree

N(u, t) = Nn + t
Nn −Nn−1

t
+ t2

N(u, t)− 2Nn +Nn−1

t2
,

where Nn and Nn−1 are the values of N at the end of step number n and n−1
respectively, we obtain a method which fits into the framework of general
linear methods [2]. Thus, we see that by just changing the algebra action, any
Lie group method based on a pure Runge–Kutta method can result in a more
general method. This is a very interesting phenomena which highlights the
important role of the algebra action.
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5 Numerical experiments

In this section we present results from numerical experiments on the Kuramoto-
Sivashinsky and Allen-Cahn equations. For both examples we compare the
following four methods:

• IF4 The fourth order integrating factor method [5,10,18] based on the clas-
sical fourth order method of Kutta.

• CF4 The fourth order commutator free Lie group method (4.2) with affine
algebra action [4].

• CF4A1 The method (4.4) with algebra action given by (3.5).
• ETDRK4B The method of Krogstad [10].

Since all of the above methods are based on the nonstiff order conditions,
to avoid possible order reduction, we consider examples where the nonlinear
term N has sufficient spatial regularity. In general, for applications concerning
PDEs, the classical order of convergence is not always obtained. Order reduc-
tion, due to the lack of sufficient temporal and spatial smoothness, should be
expected. For parabolic problems, full order of convergence can be observerd,
if periodic boundary conditions are imposed [6,7].

To avoid problems with numerical instability, the computation of the φ[i] func-
tions, which suffer from cancelation errors when the eigenvalues of the dis-
cretized linear operator are close to zero, we use the approach of Kassam and
Trefethen [9]. The idea is to evaluate the φ[i] functions by Cauchy’s integral
formula

φ[i] (γhL) =
1

2πi

∫

Γ
φ[i](γλ) (λI − hL)−1 dλ, (5.1)

where γ ∈ R. The contour Γ is a closed curve in the complex plane that en-
closes the eigenvalue of γhL and such that γΓ is well separated from zero. The
trapezoidal rule is then used to approximate the integral in (5.1). If the dis-
cretized linear operator L is diagonal (Kuramoto-Sivashinsky equation) then
the integral reduces simply to the mean of φ[i] over the contour Γ. However,
for non-diagonal problems (Allen-Cahn equation), the computations become
more expensive and require the computation of several matrix inverses. That
is why for such problems it is important for a method to use as few φ function
evaluations as possible. In addition, if L has a special sparse structure one can
apply effective methods to find it inverse [13,14].

The Kuramoto-Sivashinsky equation

The first example is the Kuramoto-Sivashinsky equation

ut = −uux − uxx − uxxxx, x ∈ [0, 32π]
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Fig. 1. Step size versus relative error for fourth order methods for the Ku-
ramoto-Sivashinsky equation

with periodic boundary conditions and with the initial condition borrowed
from [9]

u(x, 0) = cos
(
x

16

)(
1 + sin

(
x

16

))
.

A 128-point Fourier spectral discretization in space is used. Since the boundary
conditions are periodic the transformed equation in the Fourier space can be
represented in the form (4.1), the linear and nonlinear parts are defined as

(Lû)(k) = (k2 − k4)û(k), N(û) = −
ik

2
(F((F−1(û))2)),

where F denotes the discrete Fourier transform. The integration in time is done
entirely in the Fourier space until t = 65. The results for the four different
numerical schemes are plotted in Figure 1.

The Allen-Cahn equation

The second example is the Allen-Cahn equation written in the form

ut = εuxx + u− u3, x ∈ [−1, 1],

where ε = 0.01 and with boundary and initial conditions also borrowed
from [9]

u(−1, t) = −1, u(1, t) = 1, u(x, 0) = 0.53x+ 0.47 sin(−1.5πx).
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Fig. 2. Step size versus relative error for fourth order methods for the Allen-Cahn
equation

After discretization in space based on the Chebyshev grid points we can rewrite
the equation in the form (4.1), with

L = εD2, N(u) = u− u3,

where D is the Chebyshev differentiation matrix [18], this means the matrix
L is full. The standard build in MATLAB function inv was used to find the
matrix inverse in (5.1). The integration in time is until t = 31. In Figure 2 we
have plotted the results for the four different numerical schemes.

For both examples we see that all the methods exhibit the expected fourth
order, but the best with respect to the accuracy is the ETDRK4B method.
For the Kuramoto-Sivashinsky equation the improvement of using the alge-
bra action (3.5) in CF4A1 is small in comparison with the affine action in
CF4. However, for the non-diagonal example, the CF4A1 performs signifi-
cantly better than CF4 and it is competitive with the ETDRK4B method.
This together with the fact that it uses only 1 exponential and 2 φ function
evaluations per step (for comparison ETDRK4B uses 2 exponentials and 5 φ
function evaluations per step) suggests that CF4A1 is the best method in this
case.
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6 Concluding remarks

In this paper we have introduced the use of time dependent frozen vector fields
in the construction of Lie group integrators for nonautonomous problems.
This approach, provides extra freedom in the choice of the algebra action and
allows us to choose the basic motions on the manifold to be given by the
solutions of differential equations, which better approximate the flow of the
original vector field. Based on this idea we have derived a new fourth order
exponential integrator for semilinear problems with constant linear part. We
do not claim that the proposed representation (4.3) of the nonlinear part
is optimal. Other choices are worth investigating. However, the results from
the numerical experiments suggest that the new method based on (4.3) is
efficient in the case when the discretized linear operator is non-diagonal and
a variable step size strategy is used. The content of this paper poses many
questions which need to be answered. For example what are the stability
regions of such methods and to what extend the spatial regularity of the
problem effects the overall order of the method. An other important question
is, for a given problem, how do we find a good algebra action? The goal is to
choose a differential equation which is easier to solve, but still captures the
key features of the original one. This is a very challenging task and it is likely
to be problem dependent. The option presented here is to approximate the
vector field by a higher order polynomial with constant coefficients. However,
we should keep in mind that there is a certain balance between the benefit
provided by increasing the order of the approximation and the computational
cost of its corresponding algebra action.
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