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Abstract

The two matrix equation¥ + A*X 24 = I andX — A*X ~2A = I are studied. We con-
struct iterative methods for obtaining positive definite solutions of these equations. Sufficient
conditions for the existence of two different solutions of the equation A*X72A =] are
derived. Sufficient conditions for the existence of positive definite solutions of the equation
X — A*X—2A = I are given. Numerical experiments are discussed. © 2001 Elsevier Science
Inc. All rights reserved.
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1. Introduction

We consider the two matrix equations
X+A*X2A=1 (1)
and
X —A*X2A=1, 2
wherel is thern x n unit matrix andA is ann x n invertible matrix. Several authors
[2-5] have studied the matrix equatioh- A*X 1A = I and they have obtained

theoretical properties of these equations. Nonlinear matrix equations of type (1) and
(2) arise in dynamic programming, stochastic filtering, control theory and statistics

[4].
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In many applications one must solve a system of linear equation¥ {1} f,
where the positive definite matrM arises from a finite difference approximation to
an elliptic partial differential operator. As an example, let

1 A
(L9,

Solving this linear system leads us to computing a solution of one of the equations
X+A*XTA=1 X+ A*X2A4=1, or X — A*X2A = I. This approach was
considered in [6]. The systeMx = f can be solved by Woodbury’s formula [7].

In this paper we show that there are two positive definite solutions of Eq. (1). We
study the existence question and how to find a Hermitian positive definite solution
X of (2). We propose two iterative methods which converge to a positive definite
solution of (2). When norm oA is small enough the considered iteration methods
converge. The rate of convergence of these methods depends on two parameters.
Numerical examples are discussed and some results of the experiments are given.

We start with some notations which we use throughout this paper. We shall use
||A| to denote the spectral norm of the mathixi.e.,||A|| = «/max A;, where they;
are the eigenvalues ofA*. Let matrices? andQ be Hermitian. The notatio® >
0O (P > Q) means thatP — Q is positive definite (semidefinite). The assumption
P> Q> 0impliesP~ 1< 0 landvP > /0.

2. Thematrix equation X + A*X2A =1

In this section we generalize theorems which were proved in [6]. We shall as-

sume that|A| < %7 In [6] two iterative methods converging to a positive definite

solution were investigated.
We consider the matrix sequence

Xo=yl, Xis1=+vVAUI—-X)1A* k=012, ... (3)

For this iterative method we have proved [6, Theorem 2].

Theorem 1. If there exist the numbers «, 8 with 0 < a < 8 < 1 for which the in-
equalities

a?(L—a)l < AA* < B?(1— B)I
are satisfied, then Eqg. (1) has a positive definite solution.

We can change this theorem slightly. Consider the scalar funetion =
x2(1 — x). We have

2
T[Hfi]xsé?(x) =9 (g) .
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This function is monotonically increasing wheres (0, %) and monotonically de-
creasing where € (3, 1). We obtain the following.

Theorem 2. If thereexist numbersa, g withO < a < 8 < % for which the inegqual-
ities

a?(1—a)l < AA* < B2(1—B)I
are satisfied, then Eq. (1) hasa positive definite solution X’ suchthat ol < X’ < BI.

We are proving the new theorem:

Theorem 3. Leta and 8 besolutionsof scalar equations@?(1 — &) = mini; (AA*)
and f2(1— B) = maxx;(AA®), respectively. Assume 0 < & < f < 3. Consider
{ X} defined by (3). Then:
(i) Ify € [0, &], then { X} ismonotonically increasing and convergesto a positive
definite solution X .
(i) 1fy € [B, %], then { Xy} is monotonically decreasing and converges to a posi-
tive definite solution Xz
(iii) 1fy e (@, B) and (B%/2a(1 — B)) < 1, then { X} convergesto a positive defi-
nite solution X, .

Proof. Since the functiow(x) = x2(1 — x) is monotonically increasing whexee
[o, %] wehaveO<a <a < B <B< % and the inequalities

a?(I—a)] < AA* < B?(A—B)I

are satisfied. 3
(i) Assumey € [0, @]. HenceXg = yI < B1. We have

~2 _ =
X1= /AU —yD~1A* > ,/Mz > Xo,
1-vy
7
X1 =AU —yD)~1A* < ‘/wl < BI.
-y

ThusXo < X1 < BI. Assume thaf;_1 < X < BI. For X;,1 compute

Xir1 = VAU = X)72A% > \/A(I — Xp_1)71A* = Xy,
o7
Xk+1=\/m<\/m< ﬂlLﬁmlzﬁl'

Hence{X;} is monotonically increasing and bounded from above by the mAtfix
Consequently the sequenicé,} converges to a positive definite solutiar .
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(i) Assumey € [B, 3]. HenceXo = yI > &I. We have

217
X1=/AU —yD)~1A* < ‘/wl < yl,
-
a’(1—a) -
X1=/AU —yD)~1A* > 171 > al.
4

ThusXo > X1 > al. Assume thai;_1 > X > @l. For X411 compute

Xk+1 = A(I - Xk)_lA* g \/A(] — Xk_l)_lA* = Xk»

~2 l— ~
Xir1 = VAU — X0)71A* > VAU —aD)~1A* > ,/Mz =al
—

Hence{X,} is monotonically decreasing and bounded from below by the mairix
Consequently the sequenicé,} converges to a positive definite solutié(r;.

(iii) Assumey € (&, f). Henceal < Xo = yI < BI. We prove tha{X,} is a
Cauchy sequence. y
Assume that/ < X; < B1. For X1 compute

AA* B2(1— B .
Xev = VAT - X0 TA7 < [ 25 < JE 1(_5’3)1 _ 41,
— [AA* [&2(1— &) B
Xii1 =vVAU — X)) 1A% > — > ] =al.
1-«a 1-«a

Henceal < Xy < Bl fork=0,1,....
Let us consider the norm

1 Xkp — Xl = H\/ AU = Xiap1) A" = \J AU = Xpp)~2A*

We denote

P=A( — Xpyp-1)"1A* and Q= \/A(I — Xp_1)1lax

and use the equality
VP (VP -J0)+(VP-JO)Je=P-0.

Obviously,Y = /P — /0 is a solution of the linear matrix equatiaAPY +
Y/Q = P — Q. According to [8, Theorem 8.5.2] we have

Y = /OO e VP p - 0)e V2 . (4)
0
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Thus

1 Xktp — Xicll = H [O e VPP — Qe V2 dt
<[“1p-oifem

Sinceal < Xy for k =0,1,..., P = X¢4p, ~/O = X, theny/P > &I and
/O > al.Hence

dr.

e

OO ~
I Xktp — Xell < /O e dr |P— Q|

AU = X0 ™ = (= X7 A7

"2

1 _ -
= = AU = XD K1 = XU = X247

1 2 —1 -1
< gllAll (I — Xp-1) (I — Xitp-1)

[Xiepms = Xical

B21-p 1
~ X _1— Xi—
< e Xl
2
(s ) a0
Consequently
2\
X — X S| ———— X, — Xoll.
| Xkt p kll <2&(1—ﬁ)> 1Xp ol
Since
52
q = # <1
20(1-B)
and
1Xp — Xoll <IXp — Xp-all + I1Xp-1— Xp—2| +---+ [ X1 — Xoll
<@+ 4+ g+ DX — Xol

1
<7 1X1— Xoll
-9

we have
k

q
[ Xk4p — Xill < 1 X1 — Xoll.

-9
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The sequencéX,} forms a Cauchy sequence considered in the Banach space
""" (whereX; aren x n positive definite matrices). Hence this sequence has a
positive definite limit of (1). O
Theorem 4. Let g and 81 bereal for which the inequalities
(i) of(L—anl < AA* < BEA-BDI,

2
(ii) Y
2011 (1 — B1)

are satisfied.

For eachtwo y1, 12 With0< a1 <1 <2 < B1 < % the reccurence equation
(3) defines two matrix sequences {X; } and {X;”} with initial points X = y1/ and
Xo” = y»1. These sequences converge to the same limit X, which a positive definite
solution of (1).

Proof We havex: I < X} < p1l andail < X[ <p1l. We putP = A(I — X,_)t
, 0 =AU - X]_;)~tA* and for|| X} — X/|| we obtain

I1X, — X[/ = H\/A(I —X]_)lAr— \/A(I —Xx/_)lA
v
=H/OO e*ﬁ’(P — Qe Vo g
0

o0
g/o e g HA [(1 — X, - - X,le)*l] A*

1 _ -
LU [ A} (VR Ve [ BARE VY

prA—py 1 :
S g e

— X{ 4]

R, SN P
S 2ap(1-py T T
Hence
Xk = X3 < m”xfcfl—xiﬁlﬂ-
But
B
2011 po)

Consequently sequencgs,; } and{X;’} have the common limit. [J
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Next consider the matrix sequence
Xo=al, Xgq=1I1—-A*X;?A, s=0,1,2,... (5)

Theorem 5. Supposethereisa matrix A and numbersn, y for which the conditions
() §<v<n<i

(i) n2(L—mI < A*A<y2(L—p)I

are satisfied. Then { X} defined by (5) for « € [y, n] convergesto a positive definite

solution X” of (1) at least linearlyand y I < X” < nl.

Proof. SinceXo = al we haveyl < Xo < nl. Suppose’l < X; < nl. Then
1 5 1
F1 <X;? < y—]

and

1 1
SATA S ATX[PA < SATA.
n v

According to condition (ii) we obtain

1 1
1—mI < 5A*A and SA*A< 11—yl
n %

Hence
yI < Xgp1=1—A*X;7?A <l (6)
We have
-2 -2
Xs+p = Xs =A" (Xsfl - Xs+p71> A
-2 2 2 -2
ZA*Xs+p—l (Xs+p—1 - Xs—l) Xs—lA

ZA*Xs_fpfl [XS+p—1 (Xs+p—l - Xs—l)

+ (Xs+p—1 - Xs—l) Xs—l] Xs__zlA
=A*X;+lp—1 (Xsp-1— Xs1) X;—ZlA
+AXE ) (Xewp-1— Xom1) XA,

Then

_ _2 _2 _
1Xstp = Xl < (IA"XTE, SIIXTA AN+ 14 X2, 11X, Al

X Xs4p—1 — Xs—1ll.

But for all kwe havex; * < 27 and thus| X, !l < 3, 11X, %]l < y_12 Using (i) we
have||A|| = +/p(A*A) < /¥2(1 — y). Therefore
VY2 —y)

-1 -1
TA* X < TATIHIX T € ———,



34 1.G. Ivanov et al. / Linear Algebra and its Applications 326 (2001) 27-44

2
_ _ VyeQd—-vy)
IA* X 20 < A X2 < B
Hence for all integep > 0 and arbitrarys we have

21-y)
||Xs+p - X5l < T”Xs+p—l — Xs-1ll.

We also havg = 2(1— y)/y < 1since$ < y.
We obtain
||Xs+p - Xl < qs”Xp — Xoll.
Since

1
Xp — Xoll < —— X1 — Xoll,
1Xp — Xoll 1_qll 1= Xoll

we have

N

q

[ Xs1p — Xsll < 1 X1 — Xoll.

The matriceg X} form a Cauchy sequence considered in the Banach sgace
(whereX aren x n positive definite matrices). Hence this sequence has a kthit
Using (6) we obtain

vl < X" <l
We have
1X551 = X1 < (AT 245 + 14X 2~ )
x||Xs = X"|.

Similarly,

21-vy)

X541 — X"l < IXs — X"l O

Remark 1. Condition (ii) of Theorem 5 implies thatA || < %

Theorem 6. Suppose the iterative method (5) converges to a positive definite solu-
tion X”. Thenforanye > 0

1X541 = X1 < 2(IX) AN 24T +2) 11X = X7
for all slarge enough.

Proof. SinceX; — X” foranye > 0, there is an integey so that fors > sg
IXTEAINIX) T2AN < 1X) LAY Al + ¢
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and
IXTLANX AN < XD TLANIX) 2 A + e
Then

1X541 = X" 1< (AT 240+ 14* X211 ) TEAT) 1 = X

<2(Ix AN Al +2) 1X, = X7 O

Theorem 7. If|A| < % then [|(X") Al I(X")2A|l < 3, where X" isthelimit
of sequence (5).

Proof. From the conditiolA|| < %7 we obtain that sequence (5) is convergentto

X", with 21 < X” < I. Then||(X")7}|| < 3 and||(X")~2|| < 3. We obtain
X EAN I T2ANI < I THI) 72 1Al
3 9 4 1
< X=Xz =2. 0
2 4 27 2
Remark 2. If |A| < \/%7 then algorithms (3) and (5) converge to two different
positive definite solution&’” andX” andX” > X’ (see Example 1).

3. Solutionsof thematrix equation X — A*X 24 = I

We will describe an iterative method which compute a positive definite solution
of Eq. (2).
Consider the following sequence of matrices:

Xo=al, X1=vVAX;—D"1A* 5s=0,1,2, ... )

We have the following.

Theorem 8. If Aisnonsingular and for somereal « > 0, we have
(i) AA* < (o — D)1,
AA* 1

— —A*A >,
-1 a2

o
2
1 5 ja—1 Ja—1
— 1
(i) G141 = (ﬁ—ﬂ) <1,

where p is the smallest eigenvalue of the matrix AA*, then Eg. (2) has a positive
definite solution.

(i)
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Proof. We consider sequence (7). According to condition (i) we have

[ AA*
X1 =vVAXg—1)"1A* = 1< al = Xo.
o —

HenceX1 < Xo. Applying condition (ii) we obtain
AA*
oa—1

Moreover, we have

X1—D7'> Xo— D7

X1 =

1
>I+—2A*A>I, I < X1 < Xo.
o

Xo = VAX1— D1A* > VA(Xo— )~1A* = X1.
Consequently; < X». Using condition (ii) we have&(; — I > (1/a?)A*A and

X2 =vVAX1—ID)"1A* < al = Xo.

Hencel < X1 < X2 < Xo.
Analogously one can prove that

I < X1 < Xog41 < Xos+3 < Xpkg2 < Xk < Xo=al

for every positive intege, k.
Consequently the subsequen¢&s,}, {X2;+1} are convergent to positive defi-
nite matrices. These sequences have a common limit. Indeed, we have

| X2k — Xatsall = H\/A<sz1 —lA* — VA% — DAY

We denote
P=AXg-1— DA%, 0=AXy-D1a*

and use the following equality:
VP(VP-V0)+(VP-V0)Vo=P-0.

SinceXxy_1 < Xows1 < Xor foreachk = 1,2, ..., the matrixY = /P — /0 is
a positive definite solution of the matrix equation

vPY +Y\/Q=P-0.
According to [8, Theorem 8.5.2] we have

Y = /Oo e VPP — 0)e VY dr. (8)
0

Sincev/P, /O are positive definite matrices integral (8) exists and & (P —
0)e V9 — 0 ast — oo. Then
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o \/7
X2t — Xoxyall= H / e V(P — Q)e VO dr
0

</°O 1P~ o |
0

We haveX; < X, for the matrices of sequence (7). Henkge— I < X; — I and
Xy — D71 < (X1 — D~ We have

dr.

|

_ Ja—1
IX1— D7 = ———.
= Na—1
Consequently
_ Joa—1
I(Xs = D7 <
Vi —a—1
Furthermore

AA* u
Xs41=VAX; — D71A* > X; = 2z [—=I
a—1 oa—1

Thus, we obtain

o0
X2k — Xokgall <P — Q||/ e~ 2Vu/@=Dt g,
0

Y e e
= 2
a—1 —1 4% —1 4%
P lA(Xop—1—1)""A" — A(Xx — I)""A7||
Ot—l 1
" lA(X2t — D)™~ (X2x — X2k—1)

x(Xg—1— )71A%|

2
<%‘/“ Liap2 (IVo‘\/l_) 1 X2t — Xo_all.

Condition (iii) now implies

2
q=%||A||2,/ _1<fva_a1_ ) -1

Consequently the subsequen¢Es;}, {Xos41} are convergent and have a common
positive definite limit which is a solution of the matrix equation (2)J

NI =

NI =
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Similarly we can write the following.

Theorem 9. Ifthereisareal o > 2 for which
(i) AA* > d?(a — D),

@iy f AAT ! A*A < ]
7 = <1,
a—1 o2

1Al
20(o0 — 1)2
then Eq. (2) has a positive definite solution.

(iii) <1,

Proof. We consider sequence (7). According to condition (i) we have

[ AA*
X1 =vVAXg—1)"1A* = 1> al = Xop.
o —

HenceX; > Xg. Moreover, we have

X1-Dt<Xo-DY,

Xo = A(X1 — D1A* < VA(Xo — I)"1A* = X;.
Consequently, < X1. Using condition (ii) we have{; — I < (1/«?)A*A and
X2 = VAX1— D)~1A* > ol = Xo.
HenceXg < X7 < X1.
Analogously one can prove that
ol = Xo < Xoy < Xos42 < Xok43 < Xop+1 < X1

for every positive integex, k.
Consequently the subsequen¢&s,}, {Xo2;+1} are convergent to positive defi-
nite matrices. These sequences have a common limit. Indeed, we have

| Xats1 — Xaill = Hm — JAGXz1— ntar
We denote

P=AXx—D"1A* Q=AXxy_1-D7tA*
and use the equality

VPWP -0+ VP -JO)Jo=P-0.

SinceXo < Xory1 < Xor—1 foreachk = 1,2, ... the matrixt¥ = /P —/Qisa
positive definite solution of the matrix equation
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VPY+Y./Q=P-0.
According to [8, Theorem 8.5.2] we have

Y = /OO e‘*/ﬁt(P — 0)e V2 qr. (9)
0

Since+/P, /O are positive definite matrices, integral (9) exists and & (P —
0)e V9 — 0ast — oo. Then

| Xokq1 — Xoxll= H/ eVPi(p— 0)e VO dr
0

o
<[0 1P — Qlllle"[le 2| o

We haveal = Xg < X, for the matrices of (7). Henc&o — I < X; — I and
(X; — D™t < (Xo—I)~1. We have|(Xo — I) 71| = (1/(« — 1)). Consequently

1
(X, — D7Y < — VP =Xyi1>al, JO=Xy>al.
o —
Thus we obtain

> 1
||X2k+1—szI|<IIP—QI|[ e dr = 1P - Qll
0 (04

1

= oo lA 2 — D7A* — A(Xpm1 — D7LAY|

1 -1 —1 4%
=£||A(X2kfl — D77 (Xok—1 — X)) (X — )" A7|
\ﬂnxﬂfl— Xkl

20(a — 1)2

Condition (iii) now implies
IA]2
=——> <1
1= Sq@—12 =

Consequently the subsequen¢Es;}, {Xos41} are convergent and have a common
positive definite limit which is a solution of the matrix equation (2)J

Consider the following matrix sequence:
Xo=nl, Xg1=1+A"X72A, s=0,1,2,... (10)
Theorem 10. Supposethereisamatrix A and numberse, 8 for which the conditions

0] 1<,3<0{<%+1,
(i) «?(B— DI < A*A < B2 — D)1
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aresatisfied. Then { X} defined by (10)for n € [8, o] convergesto a positive definite
solution X of (2) with at least linear rate of convergenceand g7 < X < al.

Proof. SinceXg = nl we havefl < Xo < al. Supposesl < Xy < «ol. Then
1 9 1
FA*A < A*Xs A < ?A*A.

According to condition (ii) we obtain

1 1
(B—DI< A'A and —A*A< (@Dl
o B

Hence
BI < Xgp1=1+A*X?A <al. (11)
We have
-2 -2
-2 (y2 2 -2
ZA*Xs—l (Xs—l - Xs+p—1> Xs+p—1A
=A"X 2 [Xso1 (Xom1 = Xogp1)
+ (Xs—l - Xs+p—1) Xs+p—1] X;—Ep—lA
-1 -2
=A*Xsfl (Xs,]_ - XS+[771) XSer*lA
-2 -1
+ATX G (X1 = Xogp-1) Xyip-14-
Then

1Xsp = Xl < (IA*XTHIIXG2, 4 AN+ 14 X2 11X5E, Al

x| Xs-1 — Xs4p-1ll-

But for all k we have| X 1|l < 1/8 and| X 2|l < 1/82. Using (i) we have|A|| <

Vv B2(a — 1). Therefore

- ) N 2(@-1)
1A X7 < Lﬂ 1A X2 < Lﬂz
Hence for all integep > 0 and arbitrarys we have

2(a — 1)
||Xs+p - X5l < T”Xs-‘rp—l — Xs-all.

Using (o < % + 1 we have
2 —1)
=<

1
B
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We obtain
1 Xs4+p — Xsll < qS”Xp — Xoll-

Since
1Xp — Xoll ! 1 X1 — Xoll
—_ < — — s
p ol<7— p 1 0

we have

N

q
—q
The matrix sequencgX;} is a Cauchy sequence considered in the Banach space
""" (whereX; aren x n positive definite matrices). Hence this sequence has a
limit X. From (11) we obtain

BI < X <al.

1Xs4p = Xsll < 71 X1 = Xoll.

We have
1 X541 = X0 < (IA"XTHIXT2A% )+ 1ATX2I1XEAR) 1, — X))

Similarly,
2 —1)
[ Xs+1— X < TIIXS - X U

Theorem 11. Suppose the iterative method (10) converges to a positive definite
solution X. Then for anye > 0

X541 — XII < 201X LANIX2Al + &) l1Xs — X ||

for all slarge enough.

The proof is similar to that of Theorem 6.

4. Numerical experiments

We have made numerical experiments to compute a positive definite solution of
Egs. (1) and (2). The solution was computed for different matrcesd differ-
ent values oh. Computations were done on a PENTIUM 200 MHz computer. All
programs were written in MATLAB. We denote

e1(Z) = | Z + A*Z7%A — 1|
and
£2(Z) = | Z — A*Z7%A — I||oo.
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We have tested our iteration processes for solving the equiitiem* X —2A = I
on the followingn x n matrices. We use the stopping criterionfZ) < 1.0e— 8.

Examplel. Consider Eq. (1) with

001 002 003 004
0.01 0225 Q12 002
0 0.09 007 003
012 001 002 019

The spectral norm oA is 0.292.

Consider the iterative method (3) X = o/ anda = 0, then 15 iterations are re-
quired for computing(’. In this case we obtain a monotonically increasing sequence
which converges to the solutioxy.

Consider the casEg = B1.1f 8 = % then 16 iterations are required for comput-
ing X’. If B = 0.368, then 12 iterations are required for computifigin this case8
satisfies conditions of Theorem 2. We obtain a monotonically decreasing sequence
which converges to the solutiaki’. There is a value of (8 = 0.368) for which
the iterative method (3) wittkkg = 81 is faster than the iterative method (3) with
Xo = al. Herep is a solution of the scalar equatifd |2 = %(1 — B).

Consider the iterative method (5). We choose initial vatige= o and% <a<
1 (see Theorem 5). In this case the matrix sequence converges to the s#ltion
If « =1, then 12 iterations are required for computikg. If « = %2)” then
11 iterations are required for computing'. If « = 0.892, then nine iterations are
required for computingt”. We chooseax to be a solution of the scalar equation
|AI2 = «?(1 — &) (see Theorem 5).

A=

Example 2. Consider Eq. (1) with

-01 -01 0.02 008
-0.09 03 -02 -01
—0.04 01 001 -01
-0.08 -006 -01 -0.2

A=

For this example the conditions of Theorems 2 and 5 are not satigfigd=£
0.422 > ,/2%). But the iterative method (5) is convergent. We use this method for

computing thex”. If n = % then 14 iterations are required for computiig. If

n =1, then 13 iterations are required for computikg. If n = %2)” then 13
iterations are required for computidg'.

We have tested our iteration processes for solving the equsitiet* X —2A = I
on the followingn x n matrices. We use the stopping criteriggiZ) < 108,

Example3. We haveA = UAU 1, whereU is a randomly generated matrix and

5 1 1 1
A =diagl 12+ =, 12+ —, ..., 12+ = |.
g[ + - 124 +n2]
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Table 1
Iterative method (7)
n Al o kxo
5 122204 5605 20
10 122342 5563 22
20 121455 5570 21
30 122832 5524 23
50 132733 5238 27

The matrixA satisfies the conditions of Theorem 9. kket, be the smallest num-
bers, for whichea(X,) < 1078 for the iterative method (7). The results are given in
Table 1.

Example4. Consider Eq. (2) with

0.1 02 -006 -0.16
-02 -03 0.16 033
0.1 0 002 01
0 01 0 003

A=

Consider the iterative method (10). The matigatisfies the conditions of Theo-
rem 8. We choosg = 1. We computg/A|| = 0.587. Ifa = 1.345, then six iterations
are required for computiny .

5. Conclusion

In this paper we consider special nonlinear matrix equations. We introduce itera-
tion algorithms by which positive definite solutions of the equations can be calculat-
ed.

It was proved in [4, Theorem 13] that|ffA|| < % then the equatio® + A*X 1
A = I has a positive definite solution. From Theorem 2 (Theorem 5) we can see that
if

1A]% < maxg(x) = x*(1—x) = ¢ (%) =—

then the equatio® + A*X~2A = I has a positive definite solution.
There are matriced (see Examples 3 and 4) for whid|| > % and || A| >

,/2i7 and for which we can still compute a positive definite solution of the equation
X —A*X2A=1.
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