Exponential Integrators and Lie group methods

Workshop on Exponential Integrators October 20-23, 2004, Innsbruck.

Borislav V. Minchev

Borko.Minchev@ii.uib.no http://www.ii.uib.no/~borko

Department of computer science University of Bergen, Norway

Outline

- The framework
- The choice of action
- LGI for semilinear problems
- Implementation issues
- Numerical experiments
- Conclusions
- Future work

Exp. int. and Lie group methods

Lie group methods

Designed to preserve certain qualitatively properties of the exact flow

Exp. int. and Lie group methods

Lie group methods

- Designed to preserve certain qualitatively properties of the exact flow
- The freedom in the choice of the action allows to define the basic motions on the manifold in such a way that they provide a good approximation to the flow of the original vector field.

Background theory

Lie group - (\mathcal{G}, e, \star) Lie algebra $\mathfrak{g} = T_e \mathcal{G}$ - linear space with bracket

$$[\Theta_1, \Theta_2] = \left. \frac{\partial^2}{\partial s \partial t} \right|_{t=s=0} \gamma_1(s) \star \gamma_2(t) \star \gamma_1(s)^{-1},$$

where $\gamma_1(s)$ and $\gamma_2(t)$ are smooth curves in \mathcal{G} such that $\gamma_1(0) = \gamma_2(0) = e$ and $\gamma'_1(0) = \Theta_1, \ \gamma'_2(0) = \Theta_2.$

Background theory

Lie group - (\mathcal{G}, e, \star) Lie algebra $\mathfrak{g} = T_e \mathcal{G}$ - linear space with bracket

$$[\Theta_1, \Theta_2] = \left. \frac{\partial^2}{\partial s \partial t} \right|_{t=s=0} \gamma_1(s) \star \gamma_2(t) \star \gamma_1(s)^{-1},$$

where $\gamma_1(s)$ and $\gamma_2(t)$ are smooth curves in \mathcal{G} such that $\gamma_1(0) = \gamma_2(0) = e$ and $\gamma'_1(0) = \Theta_1, \ \gamma'_2(0) = \Theta_2.$ Define the product $\odot : \mathfrak{g} \times \mathcal{G} \to T\mathcal{G}$ by

$$\Theta \odot g = \left. \frac{d}{dt} \right|_{t=0} \gamma(t) \star g,$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0) = e$ and $\gamma'(0) = \Theta$.

Exponential Integrators and Lie group methods - p.4/2

The Exp map

The exponential map provides connection between \mathcal{G} and \mathfrak{g} .

 $Exp : \mathfrak{g} \to \mathcal{G}$ is defined as $Exp(\Theta) = \gamma(1)$, where $\gamma(t) \in \mathcal{G}$ satisfies the differential equation

 $\gamma(t)' = \Theta \odot \gamma(t), \qquad \gamma(0) = e.$

The Exp map

The exponential map provides connection between \mathcal{G} and \mathfrak{g} .

 $Exp : \mathfrak{g} \to \mathcal{G}$ is defined as $Exp(\Theta) = \gamma(1)$, where $\gamma(t) \in \mathcal{G}$ satisfies the differential equation

$$\gamma(t)' = \Theta \odot \gamma(t), \qquad \gamma(0) = e.$$

The differential of the exponential map dExp : $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ is defined as the right trivialized tangent

$$\mathsf{dExp}(\widehat{\Theta}, \Theta) \; \mathsf{Exp}(\widehat{\Theta}) = \left. \frac{d}{dt} \right|_{t=0} \; \mathsf{Exp}(\widehat{\Theta} + t\Theta).$$

The Exp map

The exponential map provides connection between G and \mathfrak{g} .

 $\text{Exp} : \mathfrak{g} \to \mathcal{G}$ is defined as $\text{Exp}(\Theta) = \gamma(1)$, where $\gamma(t) \in \mathcal{G}$ satisfies the differential equation

$$\gamma(t)' = \Theta \odot \gamma(t), \qquad \gamma(0) = e_{\cdot}$$

The differential of the exponential map dExp : $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ is defined as the right trivialized tangent

$$\mathrm{dExp}(\widehat{\Theta}, \Theta) \, \mathrm{Exp}(\widehat{\Theta}) = \left. \frac{d}{dt} \right|_{t=0} \, \mathrm{Exp}(\widehat{\Theta} + t\Theta).$$

$$\begin{split} \mathrm{dExp}_{\widehat{\Theta}}(\Theta) &= \left. \frac{\mathrm{e}^{z} - 1}{z} \right|_{z = \mathrm{ad}_{\widehat{\Theta}}(\Theta)} = \sum_{k=0}^{\infty} \frac{1}{(k+1)!} \mathrm{ad}_{\widehat{\Theta}}^{k}(\Theta) \\ \mathrm{dExp}_{\widehat{\Theta}}^{-1}(\Theta) &= \left. \frac{z}{\mathrm{e}^{z} - 1} \right|_{z = \mathrm{ad}_{\widehat{\Theta}}(\Theta)} = \sum_{k=0}^{\infty} \frac{B_{k}}{k!} \mathrm{ad}_{\widehat{\Theta}}^{k}(\Theta), \end{split}$$

where the coefficients B_k are the Bernoulli numbers and

 $\mathrm{ad}_{\widehat{\Theta}}^{k}(\Theta) = \mathrm{ad}_{\widehat{\Theta}}(\mathrm{ad}_{\widehat{\Theta}}^{k-1}\Theta) = [\widehat{\Theta}, [\ldots, [\widehat{\Theta}, \Theta]]], \quad \text{for } k > 1.$

Actions on the manifold

A group action on a manifold $\mathcal M$ is a smooth map $\cdot:\mathcal G\times\mathcal M\to\mathcal M$ satisfying

 $e \cdot p = p \quad \forall \ p \in \mathcal{M},$ $g \cdot (k \cdot p) = (g \star k) \cdot p \quad \forall \ g, k \in \mathcal{G}, \ p \in \mathcal{M}.$

Actions on the manifold

A group action on a manifold $\mathcal M$ is a smooth map $\cdot:\mathcal G\times\mathcal M\to\mathcal M$ satisfying

 $e \cdot p = p \quad \forall \ p \in \mathcal{M},$ $g \cdot (k \cdot p) = (g \star k) \cdot p \quad \forall \ g, k \in \mathcal{G}, \ p \in \mathcal{M}.$ An algebra action $* : \mathfrak{g} \times \mathcal{M} \to \mathcal{M}$ on \mathcal{M} is given by

 $\Theta * p = \mathsf{Exp}(\Theta) \cdot p.$

Actions on the manifold

A group action on a manifold $\mathcal M$ is a smooth map $\cdot:\mathcal G\times\mathcal M\to\mathcal M$ satisfying

 $e \cdot p = p \quad \forall \ p \in \mathcal{M},$ $g \cdot (k \cdot p) = (g \star k) \cdot p \quad \forall \ g, k \in \mathcal{G}, \ p \in \mathcal{M}.$ An algebra action $* : \mathfrak{g} \times \mathcal{M} \to \mathcal{M}$ on \mathcal{M} is given by

 $\Theta * p = \mathsf{Exp}(\Theta) \cdot p.$

Note: The algebra action is not uniquely determined by the group action. Every diffeomorphism

$$\Psi:\mathfrak{g}\to\mathcal{G},$$

such that $\Psi(0) = e$ and $\Psi'(0) = I$, where *I* is the identity of the algebra, defines an algebra action by the formula $\Theta * p = \Psi(\Theta) \cdot p$.

Generic presentation of a diff. eq.

The product $\circledast: \mathfrak{g} \times \mathcal{M} \to T\mathcal{M}$ between \mathfrak{g} and \mathcal{M} is defined by

$$\Theta \circledast p = \left. \frac{d}{dt} \right|_{t=0} \gamma(t) \cdot p,$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0) = e$ and $\gamma'(0) = \Theta$.

Generic presentation of a diff. eq.

The product \circledast : $\mathfrak{g} \times \mathcal{M} \to T\mathcal{M}$ between \mathfrak{g} and \mathcal{M} is defined by

$$\Theta \circledast p = \left. \frac{d}{dt} \right|_{t=0} \gamma(t) \cdot p,$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0) = e$ and $\gamma'(0) = \Theta$. For a fix $\Theta \in \mathfrak{g}$ the product $\Theta \circledast p$ gives a vector field on \mathcal{M}

$$\mathcal{F}_{\Theta}(p) = \Theta \circledast p = \left. \frac{d}{dt} \right|_{t=0} \operatorname{Exp}(t\Theta) \cdot p.$$

The vector field \mathcal{F}_{Θ} is called a frozen vector field.

Generic presentation of a diff. eq.

The product $\circledast: \mathfrak{g} \times \mathcal{M} \to T\mathcal{M}$ between \mathfrak{g} and \mathcal{M} is defined by

$$\Theta \circledast p = \left. \frac{d}{dt} \right|_{t=0} \gamma(t) \cdot p,$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0) = e$ and $\gamma'(0) = \Theta$. For a fix $\Theta \in \mathfrak{g}$ the product $\Theta \circledast p$ gives a vector field on \mathcal{M}

$$\mathcal{F}_{\Theta}(p) = \Theta \circledast p = \left. \frac{d}{dt} \right|_{t=0} \operatorname{Exp}(t\Theta) \cdot p.$$

The vector field \mathcal{F}_{Θ} is called a frozen vector field.

Every differential equation evolving on a homogeneous space $\ensuremath{\mathcal{M}}$ can always be written as

$$u'(t) = F(u) \circledast u, \qquad u(t_0) = u_0,$$

where $F: \mathcal{M} \to \mathfrak{g}$.

Algotithm. (Grouch-Grocemen 28) for i = 1, ..., s do $U_i = Exp(h\alpha_{is}F_s) \cdots Exp(h\alpha_{i1}F_1) \cdot u_n$ $F_i = F(U_i)$

end

$$u_{n+1} = \operatorname{Exp}(heta_sF_s)\cdots\operatorname{Exp}(heta_1F_1)\cdot u_n$$

Exponential Integrators and Lie group methods - p.8/2

Algotithm. (Crouch-Grossman'93)

for
$$i = 1, \dots, s$$
 do
 $U_i = (h\alpha_{is}F_s) * \dots * (h\alpha_{i1}F_1) * u_n$
 $F_i = F(U_i)$

end

$$u_{n+1} = (h\beta_s F_s) * \cdots * (h\beta_1 F_1) * u_n$$

Algotithm. (Crouch-Grossman'93)

for
$$i = 1, \dots, s$$
 do
 $U_i = (h\alpha_{is}F_s) * \dots * (h\alpha_{i1}F_1) * u_n$
 $F_i = F(U_i)$

end

 $u_{n+1} = \overline{(h\beta_s F_s) \ast \cdots \ast (h\beta_1 F_1) \ast u_n}$

Algorithm. (Funge-Kula Munihe-Kaae 99) for i = 1, ..., s do $\Theta_i = h \sum_{j=1}^s \alpha_{ij} K_j$ $F_i = F(\Psi(\Theta_i) \cdot u_n)$ $K_i = d\Psi^{-1}(F_i)$

end

 $u_{n+1} = \Psi(h \sum_{i=1}^{s} \beta_i K_i) \cdot u_n$

Algotithm. (Crouch-Grossman'93)

for
$$i = 1, \dots, s$$
 do
 $U_i = (h\alpha_{is}F_s) * \dots * (h\alpha_{i1}F_1) * u_n$
 $F_i = F(U_i)$

end

 $u_{n+1} = \overline{(h\beta_s F_s) \ast \cdots \ast (h\beta_1 F_1) \ast u_n}$

Algorithm. (Funge-Kuta Munthe-Kaas 99) for i = 1, ..., s do $\Theta_i = h \sum_{j=1}^s \alpha_{ij} K_j$ $F_i = F((\Theta_i) * u_n)$ $K_i = d\Psi^{-1}(F_i)$

end

 $u_{n+1} = (h \sum_{i=1}^{s} \beta_i K_i) * u_n$

Algotithm. (Crouch-Grossman'98)

for
$$i = 1, \dots, s$$
 do
 $U_i = (h\alpha_{is}F_s) * \dots * (h\alpha_{i1}F_1) * u_n$
 $F_i = F(U_i)$

end

 $u_{n+1} = (h\beta_s F_s) * \cdots * (h\beta_1 F_1) * u_n$

Algotithm. (Funge-Kuta Munihe-Kaae 99) for i = 1, ..., s do $\Theta_i = h \sum_{j=1}^s \alpha_{ij} K_j$ $F_i = F((\Theta_i) * u_n)$ $K_i = d\Psi^{-1}(F_i)$

end

 $u_{n+1} = (h \sum_{i=1}^{s} \beta_i K_i) * u_n$

The values on \mathcal{M} can be computed via the formula $U_i = \Theta_i * u_n$.

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren 03)

for $i = 1, \dots, s$ do $U_i = \operatorname{Exp}(h \sum_{k=1}^s \alpha_{iJ}^k F_k) \cdots \operatorname{Exp}(h \sum_{k=1}^s \alpha_{i1}^k F_k) \cdot u_n$ $F_i = F(U_i)$

end

 $\overline{u_{n+1}} = \operatorname{Exp}(h\sum_{k=1}^{s}\beta_{J}^{k}F_{k})\cdots\operatorname{Exp}(h\sum_{k=1}^{s}\beta_{1}^{k}F_{k})\cdot u_{n}$

Algotithm. Commutator-free Lie group method (Geledoni, Marihinsen, Owren 03)

for
$$i = 1, \dots, s$$
 do

$$U_i = (h \sum_{k=1}^s \alpha_{iJ}^k F_k) * \dots * (h \sum_{k=1}^s \alpha_{i1}^k F_k) * u_n$$

$$F_i = F(U_i)$$

end

 $u_{n+1} = (h \sum_{k=1}^{s} \beta_J^k F_k) * \dots * (h \sum_{k=1}^{s} \beta_1^k F_k) * u_n$

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren 03)

for
$$i = 1, \dots, s$$
 do

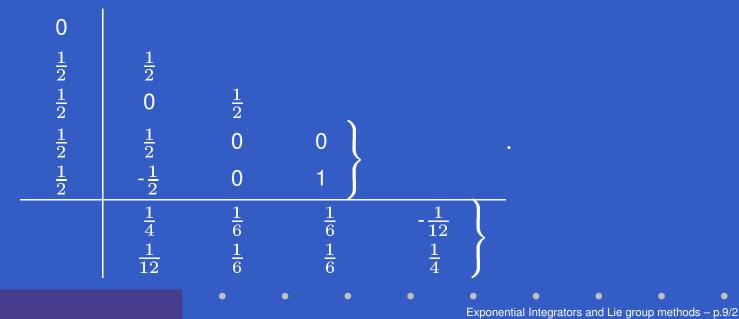
$$U_i = (h \sum_{k=1}^s \alpha_{iJ}^k F_k) * \dots * (h \sum_{k=1}^s \alpha_{i1}^k F_k) * u_n$$

$$F_i = F(U_i)$$

end

$$u_{n+1} = (h \sum_{k=1}^{s} \beta_J^k F_k) * \dots * (h \sum_{k=1}^{s} \beta_1^k F_k) * u_n$$

An example of a fourth order method, based on the classical fourth order Runge–Kutta method



Basic motions on ${\cal M}$

Consider the following nonautonomous problem defined on \mathbb{R}^d

$$u' = f(u,t), \qquad u(t_0) = u_0$$

By adding the trivial differential equation t' = 1, we can rewrite it in the form

$$y' = \mathsf{f}(y(t)), \qquad y(t_0) = y_0,$$

where

$$\mathsf{f} = \left[\begin{array}{c} f(u,t) \\ 1 \end{array} \right], \quad y = \left[\begin{array}{c} u \\ t \end{array} \right].$$

Basic motions on ${\cal M}$

Consider the following nonautonomous problem defined on \mathbb{R}^d

$$u' = f(u,t), \qquad u(t_0) = u_0.$$

By adding the trivial differential equation t' = 1, we can rewrite it in the form

$$y' = f(y(t)), \qquad y(t_0) = y_0.$$

Define:

- the basic movements on \mathcal{M} to be given by the solution of a simpler diff. equation

(2)
$$y' = \mathcal{F}_{\Theta}(y), \qquad y(t_0) = y_0$$

where $\mathcal{F}_{\Theta}(y)$ approximates f(y(t)).

- the Lie algebra g to be the set of all coefficients Θ of the *frozen* vector fields \mathcal{F}_{Θ} .
- the algebra action $h\Theta * y_0$ to be the solution of (2) at time $t_0 + h$.

The simplest case

- $\textbf{-}\,\mathfrak{g} = \{ \mathsf{b} \in \mathbb{R}^{d+1} \} = \{ (b^{[0]}, \lambda) : b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R} \}.$
- The generic function is given by $F\left(\begin{bmatrix}u_0\\t_0\end{bmatrix}\right) = (f(u_0,t_0),1) = (b^{[0]},1).$
- The frozen vector field is $\mathcal{F}_{(b^{[0]},\lambda)}({u \brack t}) = {b^{[0]} \choose \lambda}$.
- The algebra action is $h(b^{[0]}, \lambda) * \begin{bmatrix} u_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} u_0 + hb^{[0]} \\ t_0 + h\lambda \end{bmatrix}$ (translations).
- The commutators are given by $[\Theta_1, \Theta_2] = (0, 0)$.

In this case we recover the traditional integration schemes.

The simplest case

- $\textbf{-}\,\mathfrak{g} = \{ \mathsf{b} \in \mathbb{R}^{d+1} \} = \{ (b^{[0]}, \lambda) : b^{[0]} \in \mathbb{R}^d, \lambda \in \mathbb{R} \}.$
- The generic function is given by $F\left(\begin{bmatrix}u_0\\t_0\end{bmatrix}\right) = (f(u_0,t_0),1) = (b^{[0]},1).$
- The frozen vector field is $\mathcal{F}_{(b^{[0]},\lambda)}({u \brack t}) = {b^{[0]} \choose \lambda}$.
- The algebra action is $h(b^{[0]}, \lambda) * \begin{bmatrix} u_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} u_0 + hb^{[0]} \\ t_0 + h\lambda \end{bmatrix}$ (translations).
- The commutators are given by $[\Theta_1, \Theta_2] = (0, 0)$.

In this case we recover the traditional integration schemes.

• When f(u,t) = L(u,t)u + N(u,t) (such a representation is always possible)

The simplest case

- $-\mathfrak{g} = \{ \mathsf{b} \in \mathbb{R}^{d+1} \} = \{ (b^{[0]}, \lambda) : b^{[0]} \in \mathbb{R}^d, \lambda \in \mathbb{R} \}.$
- The generic function is given by $F\left(\begin{bmatrix}u_0\\t_0\end{bmatrix}\right) = (f(u_0,t_0),1) = (b^{[0]},1).$
- The frozen vector field is $\mathcal{F}_{(b^{[0]},\lambda)}({u \brack t}) = {b^{[0]} \choose \lambda}$.
- The algebra action is $h(b^{[0]}, \lambda) * \begin{bmatrix} u_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} u_0 + hb^{[0]} \\ t_0 + h\lambda \end{bmatrix}$ (translations).
- The commutators are given by $[\Theta_1, \Theta_2] = (0, 0)$.

In this case we recover the traditional integration schemes.

• When f(u,t) = L(u,t)u + N(u,t) (such a representation is always possible) - $\mathfrak{g} = \{(\mathsf{A},\mathsf{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1}\}$, with

$$\mathsf{A} = \left[\begin{array}{cc} A & 0 \\ 0 & 0 \end{array} \right], \quad \mathsf{b} = \left[\begin{array}{c} b^{[0]} \\ \lambda \end{array} \right],$$

- The simplest case
 - $\textbf{-}\,\mathfrak{g} = \{ \mathsf{b} \in \mathbb{R}^{d+1} \} = \{ (b^{[0]}, \lambda) : b^{[0]} \in \mathbb{R}^d, \lambda \in \mathbb{R} \}.$
 - The generic function is given by $F\left(\begin{bmatrix}u_0\\t_0\end{bmatrix}\right) = (f(u_0,t_0),1) = (\overline{b}^{[0]},1).$
 - The frozen vector field is $\mathcal{F}_{(b^{[0]},\lambda)}({u \brack t}) = {b^{[0]} \choose \lambda}$.
 - The algebra action is $h(b^{[0]}, \lambda) * \begin{bmatrix} u_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} u_0 + hb^{[0]} \\ t_0 + h\lambda \end{bmatrix}$ (translations).
 - The commutators are given by $[\Theta_1, \Theta_2] = (0, 0)$.

In this case we recover the traditional integration schemes.

• When f(u,t) = L(u,t)u + N(u,t) (such a representation is always possible)

- $\cdot \mathfrak{g} = \{ (\mathsf{A},\mathsf{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1} \} = \{ (A, b^{[0]}, \lambda) : A \in \mathbb{R}^{d \times d}, b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R} \}.$
- The generic function is given by $F\left(\begin{bmatrix}u_0\\t_0\end{bmatrix}\right) = (L(u_0, t_0), N(u_0, t_0), 1) = (A, b^{[0]}, 1).$
- The frozen vector field is $\mathcal{F}_{(A,b^{[0]},\lambda)}({u\brack t})={Au+b^{[0]}\choose \lambda}$.
- The algebra action is given by $h(A, b^{[0]}, \lambda) * \begin{bmatrix} u_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} e^{hA}u_0 + hb^{[0]}\phi^{[1]}(hA) \\ t_0 + h\lambda \end{bmatrix}$, where e^{hA} denotes the matrix exponential and $\phi^{[1]}$ is the first ETD $\phi^{[i]}$ function. - The commutators are given by $[\Theta_1, \Theta_2] = (A_1A_2 - A_2A_1, A_1b_2^{[0]} - A_2b_1^{[0]}, 0)$. In this case we recover the affine algebra action proposed by Number-Kaas 95.

Nonautonomous frozen vector fields

• Similarly, when $f(u, t) = L(u, t)u + N^{[0]}(u, t) + tN^{[1]}(u, t)$.

- $\mathfrak{g} = \{(\mathsf{A},\mathsf{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1}\},$ with

$$\mathsf{A} = \begin{bmatrix} A & b^{[1]} \\ 0 & 0 \end{bmatrix}, \quad \mathsf{b} = \begin{bmatrix} b^{[0]} \\ \lambda \end{bmatrix},$$

Nonautonomous frozen vector fields

- Similarly, when $f(u,t) = L(u,t)u + N^{[0]}(u,t) + tN^{[1]}(u,t)$.
 - $\begin{aligned} \mathfrak{g} &= \{ (\mathsf{A},\mathsf{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1} \} \\ &= \{ (A,b^{[1]},b^{[0]},\lambda) : A \in \mathbb{R}^{d \times d}, b^{[1]}, b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R} \}. \end{aligned}$
 - The generic function is given by

$$F\left(\begin{bmatrix}u_0\\t_0\end{bmatrix}\right) = \left(L(u_0,t_0), N^{[1]}(u_0,t_0), N^{[0]}(u_0,t_0), 1\right) = (A,b^{[1]},b^{[0]},1).$$

- The frozen vector field is

$$\mathcal{F}_{(A,b^{[1]},b^{[0]},\lambda)}\left(\begin{bmatrix} u\\t \end{bmatrix}\right) = (A,b^{[1]},b^{[0]},\lambda) \circledast \begin{bmatrix} u\\t \end{bmatrix} = \begin{bmatrix} Au+c_0+tc_1\\\lambda \end{bmatrix},$$
 where $c_0 = b^{[0]} + t_0(1-\lambda)b^{[1]}$ and $c_1 = \lambda b^{[1]}.$

- The algebra action is given by $h(A, b^{[1]}, b^{[0]}, \lambda) * \begin{bmatrix} u_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} e^{hA}u_0 + h(b^{[0]} + t_0b^{[1]})\phi^{[1]}(hA) + h^2\lambda b^{[1]}\phi^{[2]}(hA) \\ t_0 + h\lambda \end{bmatrix}.$ - The commutators are given by

$$[\Theta_1, \Theta_2] = \left([A_1, A_2], A_1 b_2^{[1]} - A_2 b_1^{[1]}, A_1 b_2^{[0]} - A_2 b_1^{[0]} + \lambda_2 b_1^{[1]} - \lambda_1 b_2^{[1]}, 0 \right).$$

Nonautonomous frozen vector fields

- Similarly, when $f(u,t) = L(u,t)u + N^{[0]}(u,t) + tN^{[1]}(u,t)$.
 - $\begin{aligned} \mathfrak{g} &= \{ (\mathsf{A},\mathsf{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1} \} \\ &= \{ (A,b^{[1]},b^{[0]},\lambda) : A \in \mathbb{R}^{d \times d}, b^{[1]}, b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R} \}. \end{aligned}$
 - The generic function is given by

$$F\left(\begin{bmatrix}u_0\\t_0\end{bmatrix}\right) = \left(L(u_0,t_0), N^{[1]}(u_0,t_0), N^{[0]}(u_0,t_0), 1\right) = (A, b^{[1]}, b^{[0]}, 1).$$

- The frozen vector field is

$$\mathcal{F}_{(A,b^{[1]},b^{[0]},\lambda)}\left(\begin{bmatrix} u\\t \end{bmatrix}\right) = (A,b^{[1]},b^{[0]},\lambda) \circledast \begin{bmatrix} u\\t \end{bmatrix} = \begin{bmatrix} Au+c_0+tc_1\\\lambda \end{bmatrix},$$
 where $c_0 = b^{[0]} + t_0(1-\lambda)b^{[1]}$ and $c_1 = \lambda b^{[1]}.$

- The algebra action is given by $h(A, b^{[1]}, b^{[0]}, \lambda) * \begin{bmatrix} u_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} e^{hA}u_0 + h(b^{[0]} + t_0b^{[1]})\phi^{[1]}(hA) + h^2\lambda b^{[1]}\phi^{[2]}(hA) \\ t_0 + h\lambda \end{bmatrix}.$ - The commutators are given by

$$[\Theta_1, \Theta_2] = \left([A_1, A_2], A_1 b_2^{[1]} - A_2 b_1^{[1]}, A_1 b_2^{[0]} - A_2 b_1^{[0]} + \lambda_2 b_1^{[1]} - \lambda_1 b_2^{[1]}, 0 \right).$$

Can generalize this approach to the case $f(u,t) = L(u,t)u + \sum_{k=0}^{p} t^k N^{[k]}(u,t)$.

- append p trivial differential equations corresponding to t, t^2, \ldots, t^p .

Consider the semilinear problem

(1) $u' = Lu + N(u,t), \ u(t_0) = u_0,$

• Natural choice for * is the affine action.

Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), \ u(t_0) = u_0$$

Natural choice for * is the affine action.

A third order Crouch–Grossman method

$$\begin{bmatrix} 0 & 0 & 0 & I \\ \frac{3}{4}\phi^{[1]} & 0 & 0 & e^{\frac{3}{4}hL} \\ \frac{119}{216}e^{\frac{17}{108}hL}\phi^{[1]}(\frac{119}{216}hL) & \frac{17}{108}\phi^{[1]}(\frac{17}{108}hL) & 0 & e^{\frac{17}{24}hL} \\ \frac{13}{51}e^{\frac{38}{51}hL}\phi^{[1]}(\frac{13}{51}hL) & -\frac{2}{3}e^{\frac{24}{17}hL}\phi^{[1]}(-\frac{2}{3}hL) & \frac{24}{17}\phi^{[1]}(\frac{24}{17}hL) & e^{hL} \end{bmatrix}$$

Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), u(t_0) = u_0$$

• Natural choice for * is the affine action.

A fourth order RKMK method with exact Exp

$$\begin{bmatrix} 0 & 0 & 0 & 0 & I \\ \frac{1}{2}\phi^{[1]} & 0 & 0 & 0 & e^{\frac{1}{2}hL} \\ \frac{1}{2}\phi^{[1]} - \frac{1}{2}I & \frac{1}{2}I & 0 & 0 & e^{\frac{1}{2}hL} \\ \hat{\phi}^{[3]^2}(\frac{hL}{2}) & -\hat{\phi}^{[2]}\hat{\phi}^{[3]}(\frac{hL}{2}) & \hat{\phi}^{[2]} & 0 & e^{hL} \\ \hline b_1(hL) & b_2(hL) & b_3(hL) & \frac{1}{6}I & e^{hL} \\ \end{bmatrix},$$

Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), \ u(t_0) = u_0$$

Natural choice for * is the affine action.

A fourth order RKMK method with exact Exp

where

$$\begin{split} \widehat{\phi}^{[2]}(z) &= \phi^{[1]}(z)\phi^{[1]^{-1}}\left(\frac{z}{2}\right) = \frac{e^{\frac{z}{2}} + I}{2}, \\ \widehat{\phi}^{[3]}(z) &= \phi^{[1]^{-1}}(z) - I = \frac{e^{z} - z - I}{I - e^{z}}, \\ b_{1}(hL) &= \frac{1}{6}\phi^{[1]} - \frac{1}{3}\phi^{[1]}\widehat{\phi}^{[3]}\left(\frac{hL}{2}\right) - \frac{1}{6}\phi^{[1]}\left(\widehat{\phi}^{[3]} - 2I\right)\widehat{\phi}^{[3]^{2}}\left(\frac{hL}{2}\right), \\ b_{2}(hL) &= \frac{1}{3}\widehat{\phi}^{[2]} + \frac{1}{6}\widehat{\phi}^{[2]}\left(\widehat{\phi}^{[3]} - 2I\right)\widehat{\phi}^{[3]}\left(\frac{hL}{2}\right), \\ b_{3}(hL) &= \frac{1}{3}\widehat{\phi}^{[2]} - \frac{1}{6}\widehat{\phi}^{[2]}\widehat{\phi}^{[3]}. \end{split}$$

Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), u(t_0) = u_0,$$

Natural choice for * is the affine action.

RKMK methods with approximations to the Exp map

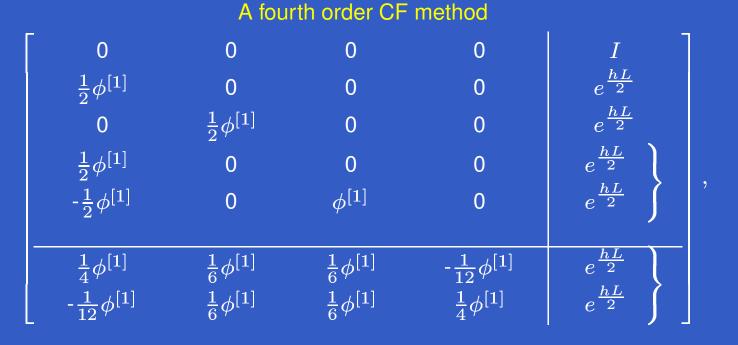
With appropriate choices for the diffeomorphism Ψ it is possible to show that:

- IF RK methods are RKMK methods (Krogslad 08);
- GIF/RK methods are also RKMK methods.

Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), u(t_0) = u_0$$

Natural choice for * is the affine action.



Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), u(t_0) = u_0$$

• Natural choice for * is the affine action.

A fourth order CF method

$$\begin{bmatrix} 0 & 0 & 0 & 0 & I \\ \frac{1}{2}\phi^{[1]} & 0 & 0 & 0 & e^{\frac{1}{2}hL} \\ 0 & \frac{1}{2}\phi^{[1]} & 0 & 0 & e^{\frac{1}{2}hL} \\ \frac{1}{2}\phi^{[1]}(\frac{hL}{2})(e^{\frac{hL}{2}} - I) & 0 & \phi^{[1]}(\frac{hL}{2}) & 0 & e^{hL} \\ \frac{1}{2}\phi^{[1]} - \frac{1}{3}\phi^{[1]}(\frac{hL}{2}) & \frac{1}{3}\phi^{[1]} & \frac{1}{3}\phi^{[1]} & -\frac{1}{6}\phi^{[1]} + \frac{1}{3}\phi^{[1]}(\frac{hL}{2}) & e^{hL} \end{bmatrix}$$

Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), u(t_0) = u_0,$$

• Natural choice for * is the affine action.

Other possible choice is to use nonautonomous frozen vctor fields

$$N(u,t) = N_n + t \, \frac{N(u,t) - N_n}{t} = N^{[0]} + t \, N^{[1]}$$

Consider the semilinear problem

(1)
$$u' = Lu + N(u,t), u(t_0) = u_0,$$

Natural choice for * is the affine action.

Other possible choice is to use nonautonomous frozen vctor fields

$$N(u,t) = N_n + t \, \frac{N(u,t) - N_n}{t} = N^{[0]} + t \, N^{[1]}$$

or

$$N(u,t) = N_n + t \, \frac{N_n - N_{n-1}}{t} + t^2 \, \frac{N(u,t) - 2N_n + N_{n-1}}{t^2},$$

where N_n and N_{n-1} are the values of N at the end of step number n and n-1.

Note: In this way we again obtain GLMs.

Implementation issues

Consider the ETD $\phi^{[i]}$ functions

$$\phi^{[1]}(z) = \frac{e^z - 1}{z}, \qquad \phi^{[i+1]}(z) = \frac{\phi^{[i]}(z) - \frac{1}{i!}}{z}, \quad \text{for} \quad i = 2, 3, \dots$$

A straightforward implementation suffers from cancellation errors (Kessem and Intersthen).

Implementation issues

Consider the ETD $\phi^{[i]}$ functions

$$\phi^{[1]}(z) = \frac{e^z - 1}{z}, \qquad \phi^{[i+1]}(z) = \frac{\phi^{[i]}(z) - \frac{1}{i!}}{z}, \quad \text{for} \quad i = 2, 3, \dots$$

A straightforward implementation suffers from cancellation errors (Kassam and Indethen).

Numerical techniques

- Decomposition methods
- Krylov subspace approximations
- Cauchy integral approach

Exponential Integrators and Lie group methods - p.14/2

Cauchy integral approach

Based on the Cauchy integral formula

$$\phi^{[i]}(A) = \frac{1}{2\pi i} \int_{\Gamma_A} \phi^{[i]}(\lambda) (\lambda I - A)^{-1} d\lambda,$$

where Γ_A is a contour in the complex plane that encloses the eigenvalue of A, and it is also well separated from 0. It is practical to choose the contour Γ_A to be a circle centered on the real axis.

Using the trapezoid rule, we obtain the following approximation

$$\phi^{[i]}(A) \approx \frac{1}{k} \sum_{j=1}^{k} \lambda_j \phi^{[i]}(\lambda_j) (\lambda_j I - A)^{-1},$$

where k is the number of the equally spaced points λ_i along the contour Γ_A .

Exponential Integrators and Lie group methods - p.15/2

Cauchy integral approach

To achieve computational savings we can use the formula

$$\phi^{[i]}(A) = \phi^{[i]}(\gamma hL) = \frac{1}{2\pi i} \int_{\Gamma} \phi^{[i]}(\gamma \lambda) (\lambda I - hL)^{-1} d\lambda,$$

where the contour Γ encloses the eigenvalues of γhL and $\gamma \Gamma$ is well separated from 0 for all γ in the integration process. As before

$$\phi^{[i]}(A) \approx \frac{1}{k} \sum_{j=1}^{k} \lambda_j \phi^{[i]}(\gamma \lambda_j) (\lambda_j I - hL)^{-1},$$

where now λ_j are the equally spaced points along the contour Γ .

Note: The inverse matrices no longer depend of γ .

Cauchy integral approach

To achieve computational savings we can use the formula

$$\phi^{[i]}(A) = \phi^{[i]}(\gamma hL) = \frac{1}{2\pi i} \int_{\Gamma} \phi^{[i]}(\gamma \lambda) (\lambda I - hL)^{-1} d\lambda$$

where the contour Γ encloses the eigenvalues of γhL and $\gamma \Gamma$ is well separated from 0 for all γ in the integration process. As before

$$\phi^{[i]}(A) \approx \frac{1}{k} \sum_{j=1}^{k} \lambda_j \phi^{[i]}(\gamma \lambda_j) (\lambda_j I - hL)^{-1},$$

where now λ_j are the equally spaced points along the contour Γ .

When L arises from a finite difference approximation, we can benefit from its sparse block structure and find the action of the inverse martices to a given vector by:

- iterative methods preconditioned conjugate gradient and multigrid methods.
- direct methods *CR*, *FFT*, *FACR*, *LU* factorization.

Numerical experiments

The methods

- ETD RK4(Kr) The fourth order method of Krogstad;
- IF RK4 The fourth order Integrating Factor Runge–Kutta methd (classical RK);
- CF4 The fourth order Commutator Free Lie group method with affine action;
- CF4A1 A fourth order CF method with action corresponding to nonautonomous FVF.

Kuramoto-Sivashinsky equation

$$u_t = -uu_x - u_{xx} - u_{xxxx}, \quad x \in [0, 32\pi]$$

with periodic boundary conditions and with the initial condition

$$u(x,0) = \cos(\frac{x}{16})(1 + \sin(\frac{x}{16})).$$

Kuramoto-Sivashinsky equation

$$u_t = -uu_x - u_{xx} - u_{xxxx}, \quad x \in [0, 32\pi]$$

with periodic boundary conditions and with the initial condition

$$u(x,0) = \cos(\frac{x}{16})(1 + \sin(\frac{x}{16})).$$

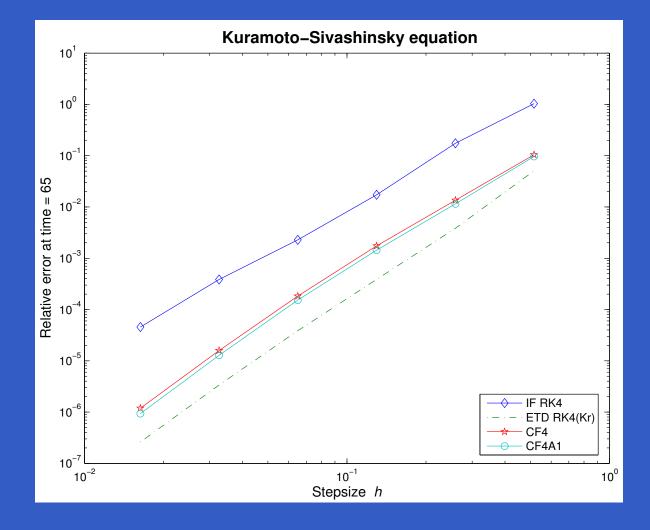
We discretise the spatial part using Fourier spectral method. The transformed equation in the Fourier space is

$$\hat{u}_t = -\frac{ik}{2}\hat{u}^2 + (k^2 - k^4)\hat{u},$$

 $(\mathbf{L}\hat{u})(k) = (k^2 - k^4)\hat{u}(k)$ and $\mathbf{N}(\hat{u}, t) = -\frac{ik}{2}(F((F^{-1}(\hat{u}))^2))$

Exponential Integrators and Lie group methods - p.17/2

Kuramoto-Sivashinsky equation



Allen-Cahn equation

$$u_t = \varepsilon u_{xx} + u - u^3, \quad x \in [-1, 1]$$

with $\varepsilon = 0.01$ and with boundary and initial conditions

 $u(-1,t) = -1, \ u(1,t) = 1, \ u(x,0) = .53x + .47\sin(-1.5\pi x)$

Allen-Cahn equation

$$u_t = \varepsilon u_{xx} + u - u^3, \quad x \in [-1, 1]$$

with $\varepsilon = 0.01$ and with boundary and initial conditions

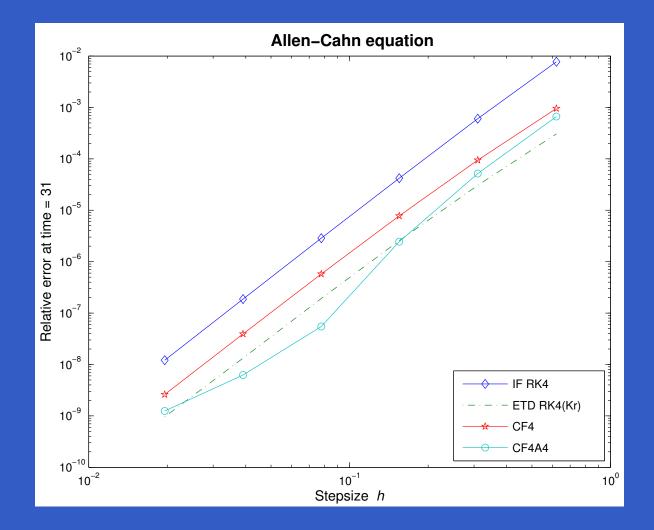
 $u(-1,t) = -1, \ u(1,t) = 1, \ u(x,0) = .53x + .47\sin(-1.5\pi x)$

After discretisation in space.

 $u_t = \mathbf{L}u + \mathbf{N}(u(t))$

where $\mathbf{L} = \varepsilon D^2$, $\mathbf{N}(u(t)) = u - u^3$ and D is the Chebyshev differentiation matrix.

Allen-Cahn equation



Exponential Integrators and Lie group methods - p.18/2

Conclusions

- Studied the connection between exponential integrators and Lie group methods.
- Proposed how to construct exponential integrators with algebra action arising from the solutions of differential equations with nonautonomous frozen vector fields.
- The proposed approach is promising for non-diagonal examples

Future work

- Study the connections between the order of the action and the order of the methods.
- How to find a good algebra action?
- Stability analysis.
- Extensive numerical experiments.

References

- P. Crouch and R. Grossman, Numerical Integration of ordinary differential equations on manifolds, J. Nonlinear. Sci. 3, 1-33, (1993)
- H. Munthe-Kaas, High order Runge–Kutta methods on manifolds, Appl. Num.
 Math., 29, 115-127 (1999)
- A. Iserles, H. Munthe-Kaas, S.P. Nørsett and A. Zanna, Lie-group methods, Acta Numerica 9, 215-365, (2000)
- E. Celledoni, A. Marthinsen, B. Owren, Commutator-free lie group methods, *FGCS* 19(3), 341-352 (2003)
- S. Krogstad, Generalized integrating factor methods for stiff PDEs, available at: http://www.ii.uib.no/~stein
- B. Minchev, Exponential integrators for semilinear problems, PhD thesis, available at: http://www.ii.uib.no/~borko