Exponential Integrators and Lie group methods

Workshop on Exponential Integrators
October 20-23, 2004, Innsbruck.

Borislav V. Minchev
Borko.Minchev@ii.uib.no
http://www.ii.uib.no/~borko

Department of computer science
University of Bergen, Norway

Outline

- The framework

The choice of action

- LGI for semilinear problems

Implementation issues

- Numerical experiments
- Conclusions
- Future work

Exp. int. and Lie group methods

Lie group methods
Designed to preserve certain qualitatively properties of the exact flow

Exp. int. and Lie group methods

Lie group methods

- Designed to preserve certain qualitatively properties of the exact flow
- The freedom in the choice of the action allows to define the basic motions on the manifold in such a way that they provide a good approximation to the flow of the original vector field.

Background theory

Lie group - (\mathcal{G}, e, \star)
Lie algebra $\mathfrak{g}=T_{e} \mathcal{G}$ - linear space with bracket

$$
\left[\Theta_{1}, \Theta_{2}\right]=\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{t=s=0} \gamma_{1}(s) \star \gamma_{2}(t) \star \gamma_{1}(s)^{-1},
$$

where $\gamma_{1}(s)$ and $\gamma_{2}(t)$ are smooth curves in \mathcal{G} such that $\gamma_{1}(0)=\gamma_{2}(0)=e$ and $\gamma_{1}^{\prime}(0)=\Theta_{1}, \gamma_{2}^{\prime}(0)=\Theta_{2}$.

Background theory

Lie group - (\mathcal{G}, e, \star)
Lie algebra $\mathfrak{g}=T_{e} \mathcal{G}$ - linear space with bracket

$$
\left[\Theta_{1}, \Theta_{2}\right]=\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{t=s=0} \gamma_{1}(s) \star \gamma_{2}(t) \star \gamma_{1}(s)^{-1}
$$

where $\gamma_{1}(s)$ and $\gamma_{2}(t)$ are smooth curves in \mathcal{G} such that $\gamma_{1}(0)=\gamma_{2}(0)=e$ and $\gamma_{1}^{\prime}(0)=\Theta_{1}, \gamma_{2}^{\prime}(0)=\Theta_{2}$.
Define the product $\odot: \mathfrak{g} \times \mathcal{G} \rightarrow T \mathcal{G}$ by

$$
\Theta \odot g=\left.\frac{d}{d t}\right|_{t=0} \gamma(t) \star g
$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0)=e$ and $\gamma^{\prime}(0)=\Theta$.

The Exp map

The exponential map provides connection between \mathcal{G} and \mathfrak{g}.
$\operatorname{Exp}: \mathfrak{g} \rightarrow \mathcal{G}$ is defined as $\operatorname{Exp}(\Theta)=\gamma(1)$, where $\gamma(t) \in \mathcal{G}$ satisfies the differential equation

$$
\gamma(t)^{\prime}=\Theta \odot \gamma(t), \quad \gamma(0)=e .
$$

The Exp map

The exponential map provides connection between \mathcal{G} and \mathfrak{g}.
$\operatorname{Exp}: \mathfrak{g} \rightarrow \mathcal{G}$ is defined as $\operatorname{Exp}(\Theta)=\gamma(1)$, where $\gamma(t) \in \mathcal{G}$ satisfies the differential equation

$$
\gamma(t)^{\prime}=\Theta \odot \gamma(t), \quad \gamma(0)=e .
$$

The differential of the exponential map dExp : $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is defined as the right trivialized tangent

$$
d \operatorname{Exp}(\widehat{\Theta}, \Theta) \operatorname{Exp}(\widehat{\Theta})=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Exp}(\widehat{\Theta}+t \Theta)
$$

The Exp map

The exponential map provides connection between \mathcal{G} and \mathfrak{g}.
$\operatorname{Exp}: \mathfrak{g} \rightarrow \mathcal{G}$ is defined as $\operatorname{Exp}(\Theta)=\gamma(1)$, where $\gamma(t) \in \mathcal{G}$ satisfies the differential equation

$$
\gamma(t)^{\prime}=\Theta \odot \gamma(t), \quad \gamma(0)=e .
$$

The differential of the exponential map dExp : $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ is defined as the right trivialized tangent

$$
\begin{aligned}
& d \operatorname{Exp}(\widehat{\Theta}, \Theta) \operatorname{Exp}(\widehat{\Theta})=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Exp}(\widehat{\Theta}+t \Theta) . \\
& \mathrm{dExp}_{\widehat{\Theta}}(\Theta)=\left.\frac{\mathrm{e}^{z}-1}{z}\right|_{z=\mathrm{ad}_{\widehat{\Theta}}(\Theta)}=\sum_{k=0}^{\infty} \frac{1}{(k+1)!} \operatorname{ad}_{\widehat{\Theta}}^{k}(\Theta), \\
& \mathrm{dExp}_{\widehat{\Theta}}^{-1}(\Theta)=\left.\frac{z}{\mathrm{e}^{z}-1}\right|_{z=\mathrm{ad}_{\hat{\Theta}}(\Theta)}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} \operatorname{ad}_{\widehat{\Theta}}^{k}(\Theta),
\end{aligned}
$$

where the coefficients B_{k} are the Bernoulli numbers and

$$
\operatorname{ad}_{\widehat{\Theta}}^{k}(\Theta)=\operatorname{ad}_{\widehat{\Theta}}\left(\operatorname{ad}_{\widehat{\Theta}}^{k-1} \Theta\right)=[\widehat{\Theta},[\ldots,[\widehat{\Theta}, \Theta]]], \quad \text { for } k>1 \text {. }
$$

Actions on the manifold

A group action on a manifold \mathcal{M} is a smooth map $\cdot: \mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$ satisfying

$$
\begin{aligned}
e \cdot p & =p \quad \forall p \in \mathcal{M}, \\
g \cdot(k \cdot p) & =(g \star k) \cdot p \quad \forall g, k \in \mathcal{G}, p \in \mathcal{M} .
\end{aligned}
$$

Actions on the manifold

A group action on a manifold \mathcal{M} is a smooth map $\cdot: \mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$ satisfying

$$
\begin{aligned}
e \cdot p & =p \quad \forall p \in \mathcal{M}, \\
g \cdot(k \cdot p) & =(g \star k) \cdot p \quad \forall g, k \in \mathcal{G}, p \in \mathcal{M} .
\end{aligned}
$$

An algebra action $*: \mathfrak{g} \times \mathcal{M} \rightarrow \mathcal{M}$ on \mathcal{M} is given by

$$
\Theta * p=\operatorname{Exp}(\Theta) \cdot p .
$$

Actions on the manifold

A group action on a manifold \mathcal{M} is a smooth map $\cdot: \mathcal{G} \times \mathcal{M} \rightarrow \mathcal{M}$ satisfying

$$
\begin{aligned}
e \cdot p & =p \quad \forall p \in \mathcal{M}, \\
g \cdot(k \cdot p) & =(g \star k) \cdot p \quad \forall g, k \in \mathcal{G}, p \in \mathcal{M} .
\end{aligned}
$$

An algebra action $*: \mathfrak{g} \times \mathcal{M} \rightarrow \mathcal{M}$ on \mathcal{M} is given by

$$
\Theta * p=\operatorname{Exp}(\Theta) \cdot p
$$

Note: The algebra action is not uniquely determined by the group action. Every diffeomorphism

$$
\Psi: \mathfrak{g} \rightarrow \mathcal{G},
$$

such that $\Psi(0)=e$ and $\Psi^{\prime}(0)=I$, where I is the identity of the algebra, defines an algebra action by the formula $\Theta * p=\Psi(\Theta) \cdot p$.

Generic presentation of a diff. cq.

The product $\circledast: \mathfrak{g} \times \mathcal{M} \rightarrow T \mathcal{M}$ between \mathfrak{g} and \mathcal{M} is defined by

$$
\Theta \circledast p=\left.\frac{d}{d t}\right|_{t=0} \gamma(t) \cdot p,
$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0)=e$ and $\gamma^{\prime}(0)=\Theta$.

Generic presentation of a diff. eq.

The product $\circledast: \mathfrak{g} \times \mathcal{M} \rightarrow T \mathcal{M}$ between \mathfrak{g} and \mathcal{M} is defined by

$$
\Theta \circledast p=\left.\frac{d}{d t}\right|_{t=0} \gamma(t) \cdot p,
$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0)=e$ and $\gamma^{\prime}(0)=\Theta$.
For a fix $\Theta \in \mathfrak{g}$ the product $\Theta \circledast p$ gives a vector field on \mathcal{M}

$$
\mathcal{F}_{\Theta}(p)=\Theta \circledast p=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Exp}(t \Theta) \cdot p .
$$

The vector field \mathcal{F}_{Θ} is called a frozen vector field.

Generic presentation of a diff. eq.

The product $\circledast: \mathfrak{g} \times \mathcal{M} \rightarrow T \mathcal{M}$ between \mathfrak{g} and \mathcal{M} is defined by

$$
\Theta \circledast p=\left.\frac{d}{d t}\right|_{t=0} \gamma(t) \cdot p,
$$

where $\gamma(t)$ is a smooth curve in \mathcal{G} such that $\gamma(0)=e$ and $\gamma^{\prime}(0)=\Theta$.
For a fix $\Theta \in \mathfrak{g}$ the product $\Theta \circledast p$ gives a vector field on \mathcal{M}

$$
\mathcal{F}_{\Theta}(p)=\Theta \circledast p=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Exp}(t \Theta) \cdot p .
$$

The vector field \mathcal{F}_{Θ} is called a frozen vector field.
Every differential equation evolving on a homogeneous space \mathcal{M} can always be written as

$$
u^{\prime}(t)=F(u) \circledast u, \quad u\left(t_{0}\right)=u_{0}
$$

where $F: \mathcal{M} \rightarrow \mathfrak{g}$.

Lie group integrators

Algotithm. (Crouch-Grossman'93)

```
for }i=1,\ldots,s\mathrm{ do
    Ui}=\operatorname{Exp}(h\mp@subsup{\alpha}{is}{}\mp@subsup{F}{s}{})\cdots\operatorname{Exp}(h\mp@subsup{\alpha}{i1}{}\mp@subsup{F}{1}{})\cdot\mp@subsup{u}{n}{
    Fi}=F(\mp@subsup{U}{i}{}
end
un+1}=\operatorname{Exp}(h\mp@subsup{\beta}{s}{}\mp@subsup{F}{s}{})\cdots\operatorname{Exp}(h\mp@subsup{\beta}{1}{}\mp@subsup{F}{1}{})\cdot\mp@subsup{u}{n}{
```


Lie group integrators

Algotithm. (Crouch-Grossman'93)

```
for }i=1,\ldots,s\mathrm{ do
    Ui}=(h\mp@subsup{\alpha}{is}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\alpha}{i1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
    Fi}=F(\mp@subsup{U}{i}{}
end
un+1}=(h\mp@subsup{\beta}{s}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\beta}{1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
```


Lie group integrators

Algotithm. (Crouch-Grossman'93)

```
for i=1,\ldots,s do
    Ui}=(h\mp@subsup{\alpha}{is}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\alpha}{i1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
    Fi}=F(\mp@subsup{U}{i}{}
end
un+1}=(h\mp@subsup{\beta}{s}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\beta}{1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
```

Algotithm. (Runge-Kutta Munthe-Kaas'99)

$$
\begin{aligned}
& \text { for } i=1, \ldots, s \text { do } \\
& \qquad \begin{aligned}
\Theta_{i} & =h \sum_{j=1}^{s} \alpha_{i j} K_{j} \\
F_{i} & =F\left(\Psi\left(\Theta_{i}\right) \cdot u_{n}\right) \\
K_{i} & =d \Psi^{-1}\left(F_{i}\right)
\end{aligned} \\
& \text { end } \\
& u_{n+1}=\Psi\left(h \sum_{i=1}^{s} \beta_{i} K_{i}\right) \cdot u_{n}
\end{aligned}
$$

Lie group integrators

Algotithm. (Crouch-Grossman'93)

```
for i=1,\ldots,s do
    Ui}=(h\mp@subsup{\alpha}{is}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\alpha}{i1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
    Fi}=F(\mp@subsup{U}{i}{}
end
un+1}=(h\mp@subsup{\beta}{s}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\beta}{1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
```

Algotithm. (Runge-Kutta Munthe-Kaas'99)

$$
\text { for } \begin{aligned}
i & =1, \ldots, s \text { do } \\
\Theta_{i} & =h \sum_{j=1}^{s} \alpha_{i j} K_{j} \\
F_{i} & =F\left(\left(\Theta_{i}\right) * u_{n}\right) \\
K_{i} & =d \Psi^{-1}\left(F_{i}\right)
\end{aligned}
$$

end
$u_{n+1}=\left(h \sum_{i=1}^{s} \beta_{i} K_{i}\right) * u_{n}$

Lie group integrators

Algotithm. (Crouch-Grossman'93)

```
for i=1,\ldots,s do
    Ui}=(h\mp@subsup{\alpha}{is}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\alpha}{i1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
    Fi}=F(\mp@subsup{U}{i}{}
end
un+1}=(h\mp@subsup{\beta}{s}{}\mp@subsup{F}{s}{})*\cdots*(h\mp@subsup{\beta}{1}{}\mp@subsup{F}{1}{})*\mp@subsup{u}{n}{
```

Algotithm. (Runge-Kutta Munthe-Kaas'99)

$$
\begin{aligned}
& \text { for } i=1, \ldots, s \text { do } \\
& \qquad \begin{aligned}
\Theta_{i} & =h \sum_{j=1}^{s} \alpha_{i j} K_{j} \\
F_{i} & =F\left(\left(\Theta_{i}\right) * u_{n}\right) \\
K_{i} & =d \Psi^{-1}\left(F_{i}\right)
\end{aligned} \\
& \text { end } \\
& u_{n+1}=\left(h \sum_{i=1}^{s} \beta_{i} K_{i}\right) * u_{n}
\end{aligned}
$$

The values on \mathcal{M} can be computed via the formula $U_{i}=\Theta_{i} * u_{n}$.

Lie group integrators

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren'03)

```
for i=1,\ldots,s do
    U
    Fi}=F(\mp@subsup{U}{i}{}
end
un+1}=\operatorname{Exp}(h\mp@subsup{\sum}{k=1}{s}\mp@subsup{\beta}{J}{k}\mp@subsup{F}{k}{})\cdots\operatorname{Exp}(h\mp@subsup{\sum}{k=1}{s}\mp@subsup{\beta}{1}{k}\mp@subsup{F}{k}{})\cdot\mp@subsup{u}{n}{
```


Lie group integrators

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren'03)

```
for }i=1,\ldots,s\mathrm{ do
    Ui}=(h\mp@subsup{\sum}{k=1}{s}\mp@subsup{\alpha}{iJ}{k}\mp@subsup{F}{k}{})*\cdots*(h\mp@subsup{\sum}{k=1}{s}\mp@subsup{\alpha}{i1}{k}\mp@subsup{F}{k}{})*\mp@subsup{u}{n}{
    Fi}=F(\mp@subsup{U}{i}{}
end
un+1}=(h\mp@subsup{\sum}{k=1}{s}\mp@subsup{\beta}{J}{k}\mp@subsup{F}{k}{})*\cdots*(h\mp@subsup{\sum}{k=1}{s}\mp@subsup{\beta}{1}{k}\mp@subsup{F}{k}{})*\mp@subsup{u}{n}{
```


Lie group integrators

Algotithm. Commutator-free Lie group method (Celledoni, Marthinsen, Owren'03)

$$
\begin{aligned}
& \text { for } i=1=\ldots, s \text { do } \\
& U_{i}=\left(h \sum_{k=1}^{s} \alpha_{i J}^{k} F_{k}\right) * \cdots *\left(h \sum_{k=1}^{s} \alpha_{i 1}^{k} F_{k}\right) * u_{n} \\
& F_{i}=F\left(U_{i}\right) \\
& \text { end } \\
& u_{n+1}=\left(h \sum_{k=1}^{s} \beta_{J}^{k} F_{k}\right) * \cdots *\left(h \sum_{k=1}^{s} \beta_{1}^{k} F_{k}\right) * u_{n}
\end{aligned}
$$

An example of a fourth order method, based on the classical fourth order Runge-Kutta method

Basic motions on \mathcal{M}

Consider the following nonautonomous problem defined on \mathbb{R}^{d}

$$
u^{\prime}=f(u, t), \quad u\left(t_{0}\right)=u_{0} .
$$

By adding the trivial differential equation $t^{\prime}=1$, we can rewrite it in the form

$$
y^{\prime}=\mathrm{f}(y(t)), \quad y\left(t_{0}\right)=y_{0}
$$

where

$$
\mathrm{f}=\left[\begin{array}{c}
f(u, t) \\
1
\end{array}\right], \quad y=\left[\begin{array}{l}
u \\
t
\end{array}\right] .
$$

Basic motions on \mathcal{M}

Consider the following nonautonomous problem defined on \mathbb{R}^{d}

$$
u^{\prime}=f(u, t), \quad u\left(t_{0}\right)=u_{0} .
$$

By adding the trivial differential equation $t^{\prime}=1$, we can rewrite it in the form

$$
y^{\prime}=\mathrm{f}(y(t)), \quad y\left(t_{0}\right)=y_{0} .
$$

Define:

- the basic movements on \mathcal{M} to be given by the solution of a simpler diff. equation

$$
\begin{equation*}
y^{\prime}=\mathcal{F}_{\Theta}(y), \quad y\left(t_{0}\right)=y_{0}, \tag{2}
\end{equation*}
$$

where $\mathcal{F}_{\Theta}(y)$ approximates $\mathrm{f}(y(t))$.

- the Lie algebra \mathfrak{g} to be the set of all coefficients Θ of the frozen vector fields \mathcal{F}_{Θ}.
- the algebra action $h \Theta * y_{0}$ to be the solution of (2) at time $t_{0}+h$.

The choice of action

- The simplest case
$-\mathfrak{g}=\left\{\mathrm{b} \in \mathbb{R}^{d+1}\right\}=\left\{\left(b^{[0]}, \lambda\right): b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R}\right\}$.
- The generic function is given by $F\left(\left[\begin{array}{c}u_{0} \\ t_{0}\end{array}\right]\right)=\left(f\left(u_{0}, t_{0}\right), 1\right)=\left(b^{[0]}, 1\right)$.

- The algebra action is $h(b[0], \lambda) *\left[\begin{array}{c}u_{0} \\ t_{0}\end{array}\right]=\left[\begin{array}{c}u_{0}+h b^{[0]} \\ t_{0}+h \lambda\end{array}\right]$ (translations).
- The commutators are given by $\left[\Theta_{1}, \Theta_{2}\right]=(0,0)$.

In this case we recover the traditional integration schemes.

The choice of action

- The simplest case
$-\mathfrak{g}=\left\{\mathrm{b} \in \mathbb{R}^{d+1}\right\}=\left\{\left(b^{[0]}, \lambda\right): b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R}\right\}$.
- The generic function is given by $F\left(\left[u_{0} t_{0}\right]\right)=\left(f\left(u_{0}, t_{0}\right), 1\right)=\left(b^{[0]}, 1\right)$.

- The algebra action is $h(b[0], \lambda) *\left[\begin{array}{c}u_{0} \\ t_{0}\end{array}\right]=\left[\begin{array}{c}u_{0}+h b^{[0]} \\ t_{0}+h \lambda\end{array}\right]$ (translations).
- The commutators are given by $\left[\Theta_{1}, \Theta_{2}\right]=(0,0)$.

In this case we recover the traditional integration schemes.

- When $f(u, t)=L(u, t) u+N(u, t)$ (such a representation is always possible)

The choice of action

- The simplest case
$-\mathfrak{g}=\left\{\mathrm{b} \in \mathbb{R}^{d+1}\right\}=\left\{\left(b^{[0]}, \lambda\right): b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R}\right\}$.
- The generic function is given by $F\left(\left[u_{0}\right]\right)=\left(f\left(u_{0}, t_{0}\right), 1\right)=\left(b^{[0]}, 1\right)$.
- The frozen vector field is $\mathcal{F}_{(b[0], \lambda)}\left(\left[\begin{array}{c}u \\ t\end{array}\right]\right)=\left[\begin{array}{c}{[0]} \\ \lambda\end{array}\right]$.
- The algebra action is $h(b[0], \lambda) *\left[\begin{array}{c}u_{0} \\ t_{0}\end{array}\right]=\left[\begin{array}{c}u_{0}+h b^{[0]} \\ t_{0}+h \lambda\end{array}\right]$ (translations).
- The commutators are given by $\left[\Theta_{1}, \Theta_{2}\right]=(0,0)$.

In this case we recover the traditional integration schemes.

- When $f(u, t)=L(u, t) u+N(u, t)$ (such a representation is always possible)
$-\mathfrak{g}=\left\{(\mathrm{A}, \mathrm{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1}\right\}$, with

$$
\mathrm{A}=\left[\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{c}
{[0]} \\
\lambda
\end{array}\right]
$$

The choice of action

- The simplest case
$-\mathfrak{g}=\left\{\mathrm{b} \in \mathbb{R}^{d+1}\right\}=\left\{\left(b^{[0]}, \lambda\right): b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R}\right\}$.
- The generic function is given by $F\left(\left[\begin{array}{c}u_{0} \\ t_{0}\end{array}\right]\right)=\left(f\left(u_{0}, t_{0}\right), 1\right)=\left(b^{[0]}, 1\right)$.

- The algebra action is $h(b[0], \lambda) *\left[\begin{array}{c}u_{0} \\ t_{0}\end{array}\right]=\left[\begin{array}{c}u_{0}+h b[0] \\ t_{0}+h \lambda\end{array}\right]$ (translations).
- The commutators are given by $\left[\Theta_{1}, \Theta_{2}\right]=(0,0)$.

In this case we recover the traditional integration schemes.

- When $f(u, t)=L(u, t) u+N(u, t)$ (such a representation is always possible)
$-\mathfrak{g}=\left\{(\mathrm{A}, \mathrm{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1}\right\}=\left\{\left(A, b^{[0]}, \lambda\right): A \in \mathbb{R}^{d \times d}, b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R}^{d}\right\}$.
- The generic function is given by $F\left(\left[\begin{array}{c}u_{0} \\ t_{0}\end{array}\right]\right)=\left(L\left(u_{0}, t_{0}\right), N\left(u_{0}, t_{0}\right), 1\right)=\left(A, b^{[0]}, 1\right)$.
- The frozen vector field is $\mathcal{F}_{(A, b[0], \lambda)}\left(\left[\begin{array}{c}u \\ t\end{array}\right]\right)=\left[\begin{array}{c}A u+b \\ \lambda\end{array}\right]$.
- The algebra action is given by $h\left(A, b^{[0]}, \lambda\right) *\left[\begin{array}{c}\left.u_{0}\right] \\ t_{0}\end{array}\right]=\left[\begin{array}{c}e^{h A} u_{0}+h b^{[0]} \phi_{\phi^{[1]}}(h A) \\ t_{0}+h \lambda\end{array}\right]$, where $e^{h A}$ denotes the matrix exponential and $\phi^{[1]}$ is the first ETD $\phi^{[i]}$ function.
- The commutators are given by $\left[\Theta_{1}, \Theta_{2}\right]=\left(A_{1} A_{2}-A_{2} A_{1}, A_{1} b_{2}^{[0]}-A_{2} b_{1}^{[0]}, 0\right)$.

In this case we recover the affine algebra action proposed by Munthe-Kaas'99.

Nonautonomous frozen vector fields

- Similarly, when $f(u, t)=L(u, t) u+N^{[0]}(u, t)+t N^{[1]}(u, t)$.
$-\mathfrak{g}=\left\{(\mathrm{A}, \mathrm{b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1}\right\}$, with

$$
\mathrm{A}=\left[\begin{array}{cc}
A & b^{[1]} \\
0 & 0
\end{array}\right], \quad \mathrm{b}=\left[\begin{array}{c}
b^{[0]} \\
\lambda
\end{array}\right]
$$

Nonautonomous frozen vector fields

- Similarly, when $f(u, t)=L(u, t) u+N^{[0]}(u, t)+t N^{[1]}(u, t)$.

$$
\begin{aligned}
-\mathfrak{g} & =\left\{(\mathrm{A}, \mathrm{~b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1}\right\} \\
& =\left\{\left(A, b^{[1]}, b^{[0]}, \lambda\right): A \in \mathbb{R}^{d \times d}, b^{[1]}, b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R}\right\} .
\end{aligned}
$$

- The generic function is given by

$$
F\left(\left[\begin{array}{l}
u_{0} \\
t_{0}
\end{array}\right]\right)=\left(L\left(u_{0}, t_{0}\right), N^{[1]}\left(u_{0}, t_{0}\right), N^{[0]}\left(u_{0}, t_{0}\right), 1\right)=\left(A, b^{[1]}, b^{[0]}, 1\right) .
$$

- The frozen vector field is

$$
\begin{aligned}
& \mathcal{F}_{\left(A, b^{[1]}, b^{[0]}, \lambda\right)}\left(\left[\begin{array}{l}
u \\
t
\end{array}\right]\right)=\left(A, b^{[1]}, b^{[0]}, \lambda\right) \circledast\left[\begin{array}{l}
u \\
t
\end{array}\right]=\left[\begin{array}{c}
A u+c_{0}+t c_{1} \\
\lambda
\end{array}\right], \\
& \text { where } c_{0}=b^{[0]}+t_{0}(1-\lambda) b^{[1]} \text { and } c_{1}=\lambda b^{[1]} .
\end{aligned}
$$

- The algebra action is given by

$$
h\left(A, b^{[1]}, b^{[0]}, \lambda\right) *\left[\begin{array}{c}
u_{0} \\
t_{0}
\end{array}\right]=\left[e^{h A} u_{0}+h\left(b^{[0]}+t_{0} b^{[1]}\right) \phi_{0}^{[1]}(h A)+h^{2} \lambda b^{[1]} \phi^{[2]}(h A)\right] .
$$

- The commutators are given by

$$
\left[\Theta_{1}, \Theta_{2}\right]=\left(\left[A_{1}, A_{2}\right], A_{1} b_{2}^{[1]}-A_{2} b_{1}^{[1]}, A_{1} b_{2}^{[0]}-A_{2} b_{1}^{[0]}+\lambda_{2} b_{1}^{[1]}-\lambda_{1} b_{2}^{[1]}, 0\right) .
$$

Nonautonomous frozen vector fields

- Similarly, when $f(u, t)=L(u, t) u+N^{[0]}(u, t)+t N^{[1]}(u, t)$.

$$
\begin{aligned}
-\mathfrak{g} & =\left\{(\mathrm{A}, \mathrm{~b}) \in \mathbb{R}^{d+1 \times d+1} \rtimes \mathbb{R}^{d+1}\right\} \\
& =\left\{\left(A, b^{[1]}, b^{[0]}, \lambda\right): A \in \mathbb{R}^{d \times d}, b^{[1]}, b^{[0]} \in \mathbb{R}^{d}, \lambda \in \mathbb{R}\right\} .
\end{aligned}
$$

- The generic function is given by

$$
F\left(\left[\begin{array}{c}
u_{0} \\
t_{0}
\end{array}\right]\right)=\left(L\left(u_{0}, t_{0}\right), N^{[1]}\left(u_{0}, t_{0}\right), N^{[0]}\left(u_{0}, t_{0}\right), 1\right)=\left(A, b^{[1]}, b^{[0]}, 1\right) .
$$

- The frozen vector field is

$$
\begin{aligned}
& \mathcal{F}_{\left(A, b^{[1]}, b^{[0]}, \lambda\right)}\left(\left[\begin{array}{l}
u \\
t
\end{array}\right]\right)=\left(A, b^{[1]}, b^{[0]}, \lambda\right) \circledast\left[\begin{array}{l}
u \\
t
\end{array}\right]=\left[\begin{array}{c}
A u+c_{0}+t c_{1} \\
\lambda
\end{array}\right], \\
& \text { where } c_{0}=b^{[0]}+t_{0}(1-\lambda) b^{[1]} \text { and } c_{1}=\lambda b^{[1]} .
\end{aligned}
$$

- The algebra action is given by

$$
h\left(A, b^{[1]}, b^{[0]}, \lambda\right) *\left[\begin{array}{l}
u_{0} \\
t_{0}
\end{array}\right]=\left[e^{h A} u_{0}+h\left(b^{[0]}+t_{0} b^{[1]}\right) \phi_{0}^{[1]}(h A)+h^{2} \lambda b^{[1]} \phi^{[2]}(h A)\right] .
$$

- The commutators are given by

$$
\left[\Theta_{1}, \Theta_{2}\right]=\left(\left[A_{1}, A_{2}\right], A_{1} b_{2}^{[1]}-A_{2} b_{1}^{[1]}, A_{1} b_{2}^{[0]}-A_{2} b_{1}^{[0]}+\lambda_{2} b_{1}^{[1]}-\lambda_{1} b_{2}^{[1]}, 0\right) .
$$

- Can generalize this approach to the case $f(u, t)=L(u, t) u+\sum_{k=0}^{p} t^{k} N^{[k]}(u, t)$.
- append p trivial differential equations corresponding to t, t^{2}, \ldots, t^{p}.

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0}, \tag{1}
\end{equation*}
$$

Natural choice for $*$ is the affine action.

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

- Natural choice for * is the affine action.

A third order Crouch-Grossman method
$\left[\begin{array}{ccc|c}0 & 0 & 0 & I \\ \frac{3}{4} \phi^{[1]} & 0 & 0 & e^{\frac{3}{4} h L} \\ \frac{119}{216} e^{\frac{17}{108} h L} \phi^{[1]}\left(\frac{119}{216} h L\right) & \frac{17}{108} \phi^{[1]}\left(\frac{17}{108} h L\right) & 0 & e^{\frac{17}{24} h L} \\ \hline \frac{13}{51} e^{\frac{38}{51} h L} \phi^{[1]}\left(\frac{13}{51} h L\right) & -\frac{2}{3} e^{\frac{24}{17} h L} \phi^{[1]}\left(-\frac{2}{3} h L\right) & \frac{24}{17} \phi^{[1]}\left(\frac{24}{17} h L\right) & e^{h L}\end{array}\right]$

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0}, \tag{1}
\end{equation*}
$$

Natural choice for * is the affine action.
A fourth order RKMK method with exact Exp
$\left[\begin{array}{cccc|c}0 & 0 & 0 & 0 & I \\ \frac{1}{2} \phi^{[1]} & 0 & 0 & 0 & e^{\frac{1}{2} h L} \\ \frac{1}{2} \phi^{[1]}-\frac{1}{2} I & \frac{1}{2} I & 0 & 0 & e^{\frac{1}{2} h L} \\ \widehat{\phi}^{[3]^{2}}\left(\frac{h L}{2}\right) & -\widehat{\phi}^{[2]} \widehat{\phi}^{[3]}\left(\frac{h L}{2}\right) & \widehat{\phi}^{[2]} & 0 & e^{h L} \\ \hline b_{1}(h L) & b_{2}(h L) & b_{3}(h L) & \frac{1}{6} I & e^{h L}\end{array}\right]$,

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

- Natural choice for * is the affine action.

A fourth order RKMK method with exact Exp
where

$$
\begin{aligned}
& \widehat{\phi}^{[2]}(z)=\phi^{[1]}(z) \phi^{[1]-1}\left(\frac{z}{2}\right)=\frac{e^{\frac{z}{2}}+I}{2}, \\
& \widehat{\phi}^{[3]}(z)=\phi^{[1]-1}(z)-I=\frac{e^{z}-z-I}{I-e^{z}}, \\
& b_{1}(h L)=\frac{1}{6} \phi^{[1]}-\frac{1}{3} \phi^{[1]} \widehat{\phi^{[3]}}\left(\frac{h L}{2}\right)-\frac{1}{6} \phi^{[1]}\left(\widehat{\phi}^{[3]}-2 I\right) \widehat{\phi}^{[3]^{2}}\left(\frac{h L}{2}\right), \\
& b_{2}(h L)=\frac{1}{3} \widehat{\phi}^{[2]}+\frac{1}{6} \widehat{\phi}^{[2]}\left(\widehat{\phi}^{[3]}-2 I\right) \widehat{\phi}^{[3]}\left(\frac{h L}{2}\right), \\
& b_{3}(h L)=\frac{1}{3} \widehat{\phi}^{[2]}-\frac{1}{6} \widehat{\phi}^{[2]} \phi^{[3]} .
\end{aligned}
$$

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0}, \tag{1}
\end{equation*}
$$

- Natural choice for $*$ is the affine action.

RKMK methods with approximations to the Exp map
With appropriate choices for the diffeomorphism Ψ it is possibel to show that:

- IF RK methods are RKMK methods (Krogstad'03);
- GIF/RK methods are also RKMK methods.

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0}, \tag{1}
\end{equation*}
$$

Natural choice for $*$ is the affine action.
A fourth order CF method
$\left[\begin{array}{cccc|c}0 & 0 & 0 & 0 & I \\ \frac{1}{2} \phi^{[1]} & 0 & 0 & 0 & e^{\frac{h L}{2}} \\ 0 & \frac{1}{2} \phi^{[1]} & 0 & 0 & e^{\frac{h L}{2}} \\ \frac{1}{2} \phi^{[1]} & 0 & 0 & 0 & e^{\frac{h L}{2}} \\ -\frac{1}{2} \phi^{[1]} & 0 & \phi^{[1]} & 0 & e^{\frac{h L}{2}}\end{array}\right\}$,

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

- Natural choice for * is the affine action.

A fourth order CF method
$\left[\begin{array}{cccc|c}0 & 0 & 0 & 0 & I \\ \frac{1}{2} \phi^{[1]} & 0 & 0 & 0 & e^{\frac{1}{2} h L} \\ 0 & \frac{1}{2} \phi^{[1]} & 0 & 0 & e^{\frac{1}{2} h L} \\ \frac{1}{2} \phi^{[1]}\left(\frac{h L}{2}\right)\left(e^{\frac{h L}{2}}-I\right) & 0 & \phi^{[1]}\left(\frac{h L}{2}\right) & 0 & e^{h L} \\ \hline \frac{1}{2} \phi^{[1]}-\frac{1}{3} \phi^{[1]}\left(\frac{h L}{2}\right) & \frac{1}{3} \phi^{[1]} & \frac{1}{3} \phi^{[1]} & -\frac{1}{6} \phi^{[1]}+\frac{1}{3} \phi^{[1]}\left(\frac{h L}{2}\right) & e^{h L}\end{array}\right]$

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0}, \tag{1}
\end{equation*}
$$

Natural choice for $*$ is the affine action.

- Other possible choice is to use nonautonomous frozen vctor fields

$$
N(u, t)=N_{n}+t \frac{N(u, t)-N_{n}}{t}=N^{[0]}+t N^{[1]}
$$

LGI for semilinear problems

Consider the semilinear problem

$$
\begin{equation*}
u^{\prime}=L u+N(u, t), u\left(t_{0}\right)=u_{0}, \tag{1}
\end{equation*}
$$

- Natural choice for $*$ is the affine action.
- Other possible choice is to use nonautonomous frozen vctor fields

$$
N(u, t)=N_{n}+t \frac{N(u, t)-N_{n}}{t}=N^{[0]}+t N^{[1]}
$$

or

$$
N(u, t)=N_{n}+t \frac{N_{n}-N_{n-1}}{t}+t^{2} \frac{N(u, t)-2 N_{n}+N_{n-1}}{t^{2}},
$$

where N_{n} and N_{n-1} are the values of N at the end of step number n and $n-1$.
Note: In this way we again obtain GLMs.

Implementation issues

Consider the ETD $\phi^{[i]}$ functions

$$
\phi^{[1]}(z)=\frac{e^{z}-1}{z}, \quad \phi^{[i+1]}(z)=\frac{\phi^{[i]}(z)-\frac{1}{i!}}{z}, \quad \text { for } \quad i=2,3, \ldots
$$

A straightforward implementation suffers from cancellation errors (Kassam and Trefethen).

Implementation issues

Consider the ETD $\phi^{[i]}$ functions

$$
\phi^{[1]}(z)=\frac{e^{z}-1}{z}, \quad \phi^{[i+1]}(z)=\frac{\phi^{[i]}(z)-\frac{1}{i!}}{z}, \quad \text { for } \quad i=2,3, \ldots
$$

A straightforward implementation suffers from cancellation errors (Kassam and Trefethen).

Numerical techniques

- Decomposition methods
- Krylov subspace approximations
- Cauchy integral approach

Cauchy integral approach

Based on the Cauchy integral formula

$$
\phi^{[i]}(A)=\frac{1}{2 \pi i} \int_{\Gamma_{A}} \phi^{[i]}(\lambda)(\lambda I-A)^{-1} d \lambda,
$$

where Γ_{A} is a contour in the complex plane that encloses the eigenvalue of A, and it is also well separated from 0 . It is practical to choose the contour Γ_{A} to be a circle centered on the real axis.
Using the trapezoid rule, we obtain the following approximation

$$
\phi^{[i]}(A) \approx \frac{1}{k} \sum_{j=1}^{k} \lambda_{j} \phi^{[i]}\left(\lambda_{j}\right)\left(\lambda_{j} I-A\right)^{-1}
$$

where k is the number of the equally spaced points λ_{j} along the contour Γ_{A}.

Cauchy integral approach

To achieve computational savings we can use the formula

$$
\phi^{[i]}(A)=\phi^{[i]}(\gamma h L)=\frac{1}{2 \pi i} \int_{\Gamma} \phi^{[i]}(\gamma \lambda)(\lambda I-h L)^{-1} d \lambda,
$$

where the contour Γ encloses the eigenvalues of $\gamma h L$ and $\gamma \Gamma$ is well separated from 0 for all γ in the integration process.
As before

$$
\phi^{[i]}(A) \approx \frac{1}{k} \sum_{j=1}^{k} \lambda_{j} \phi^{[i]}\left(\gamma \lambda_{j}\right)\left(\lambda_{j} I-h L\right)^{-1},
$$

where now λ_{j} are the equally spaced points along the contour Γ.
Note: The inverse matrices no longer depend of γ.

Cauchy integral approach

To achieve computational savings we can use the formula

$$
\phi^{[i]}(A)=\phi^{[i]}(\gamma h L)=\frac{1}{2 \pi i} \int_{\Gamma} \phi^{[i]}(\gamma \lambda)(\lambda I-h L)^{-1} d \lambda,
$$

where the contour Γ encloses the eigenvalues of $\gamma h L$ and $\gamma \Gamma$ is well separated from 0 for all γ in the integration process.
As before

$$
\phi^{[i]}(A) \approx \frac{1}{k} \sum_{j=1}^{k} \lambda_{j} \phi^{[i]}\left(\gamma \lambda_{j}\right)\left(\lambda_{j} I-h L\right)^{-1}
$$

where now λ_{j} are the equally spaced points along the contour Γ.
When L arises from a finite difference approximation, we can benefit from its sparse block structure and find the action of the inverse martices to a given vector by:

- iterative methods - preconditioned conjugate gradient and multigrid methods.
- direct methods - CR, FFT, FACR, LU factorization.

Numerical experiments

The methods

- ETD RK4(Kr) The fourth order method of Krogstad;
- IF RK4 The fourth order Integrating Factor Runge-Kutta methd (classical RK);
- CF4 The fourth order Commutator Free Lie group method with affine action;
- CF4A1 A fourth order CF method with action corresponding to nonautonomous FVF.

Kuramoto-Sivashinsky equation

$$
u_{t}=-u u_{x}-u_{x x}-u_{x x x x}, \quad x \in[0,32 \pi]
$$

with periodic boundary conditions and with the initial condition

$$
u(x, 0)=\cos \left(\frac{x}{16}\right)\left(1+\sin \left(\frac{x}{16}\right)\right)
$$

Kuramoto-Sivashinsky equation

$$
u_{t}=-u u_{x}-u_{x x}-u_{x x x x}, \quad x \in[0,32 \pi]
$$

with periodic boundary conditions and with the initial condition

$$
u(x, 0)=\cos \left(\frac{x}{16}\right)\left(1+\sin \left(\frac{x}{16}\right)\right) .
$$

We discretise the spatial part using Fourier spectral method.
The transformed equation in the Fourier space is

$$
\hat{u}_{t}=-\frac{i k}{2} \hat{u^{2}}+\left(k^{2}-k^{4}\right) \hat{u},
$$

$$
(\mathbf{L} \hat{u})(k)=\left(k^{2}-k^{4}\right) \hat{u}(k) \text { and } \mathbf{N}(\hat{u}, t)=-\frac{i k}{2}\left(F\left(\left(F^{-1}(\hat{u})\right)^{2}\right)\right)
$$

Kuramoto-Sivashinsky equation

Allen-Cahn equation

$$
u_{t}=\varepsilon u_{x x}+u-u^{3}, \quad x \in[-1,1]
$$

with $\varepsilon=0.01$ and with boundary and initial conditions

$$
u(-1, t)=-1, \quad u(1, t)=1, \quad u(x, 0)=.53 x+.47 \sin (-1.5 \pi x)
$$

Allen-Cahn equation

$$
u_{t}=\varepsilon u_{x x}+u-u^{3}, \quad x \in[-1,1]
$$

with $\varepsilon=0.01$ and with boundary and initial conditions

$$
u(-1, t)=-1, \quad u(1, t)=1, \quad u(x, 0)=.53 x+.47 \sin (-1.5 \pi x)
$$

After discretisation in space.

$$
u_{t}=\mathbf{L} u+\mathbf{N}(u(t))
$$

where $\mathbf{L}=\varepsilon D^{2}, \mathbf{N}(u(t))=u-u^{3}$ and D is the Chebyshev differentiation matrix.

Allen-Cahn equation

Conclusions

- Studied the connection between exponential integrators and Lie group methods.
- Proposed how to construct exponential integrators with algebra action arising from the solutions of differential equations with nonautonomous frozen vector fields.
- The proposed approach is promising for non-diagonal examples

Future work

- Study the connections between the order of the action and the order of the methods.
- How to find a good algebra action?
- Stability analysis.
- Extensive numerical experiments.

References

- P. Crouch and R. Grossman, Numerical Integration of ordinary differential equations on manifolds, J. Nonlinear. Sci. 3, 1-33, (1993)
- H. Munthe-Kaas, High order Runge-Kutta methods on manifolds, Appl. Num. Math., 29, 115-127 (1999)
- A. Iserles, H. Munthe-Kaas, S.P. Nørsett and A. Zanna, Lie-group methods, Acta Numerica 9, 215-365, (2000)
- E. Celledoni, A. Marthinsen, B. Owren, Commutator-free lie group methods, FGCS 19(3), 341-352 (2003)
- S. Krogstad, Generalized integrating factor methods for stiff PDEs, available at:
http://www.ii.uib.no/~stein
B. Minchev, Exponential integrators for semilinear problems, PhD thesis, available at: http://www.ii.uib.no/~borko

