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Abstract. Recently a lot of effort has been placed in the construction
and implementation of a class of methods called exponential integrators.
These methods are preferable when one has to deal with stiff and highly
oscillatory semilinear problems, which often arise after spatial discretiza-
tion of Partial Differential Equations (PDEs). The main idea behind the
methods is to use the exponential and some closely related functions
inside the numerical scheme. In this note we show that the integrating
factor methods, introduced by Lawson in 1967, are also examples of expo-
nential integrators with very special structure for the related exponential
functions. In order to prove this relation, we use the approach based on
bi-coloured rooted trees and B-series. We also show under what condi-
tions every bi-coloured rooted tree can be express as a linear combination
of standard non-coloured rooted trees.

1 Introduction

Realistic models of many physical processes require effective numer-
ical solvers for a special class of partial differential equations, which
after semidiscretization in space can be written in the following form

u′ = Lu + N(u(t)), u(t0) = u0, (1.1)

where u : R → R
d, L ∈ R

d×d, N : R
d → R

d and d is a discretiza-
tion parameter equal to the number of spatial grid points. Several
interesting problems can be brought to this form. Examples are
Allen-Cahn, Burgers, Cahn-Hilliard, Kuramoto-Sivashinsky, Navier-
Stokes, Swift-Hohenberg, nonlinear Scrödinger equations. Typically
the linear part of the problem will be stiff and the nonlinear part
will be nonstiff. Many numerical integrators have been developed to
overcome the phenomenon of stiffness. Exponential integrators was
introduced in the early sixties as an alternative approach for solving
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stiff systems. The main idea behind these methods is to integrate
exactly the linear part of the problem and then use an appropriate
approximation of the nonlinear part. Thus the exponential function,
and functions which are closely related to the exponential function,
appear in the format of the method. This was the reason why, until
recently, these methods have not been regarded as practical. The
latest achievements in the field of computing approximations to the
matrix exponential, have provided a new interest in the construction
and implementation of exponential integrators [2, 3, 6, 7, 9].

The main requirements imposed on the functions, which appear
in the format of an exponential integrator are, to be analytic, map
the spectrum of L into a bounded region in C and can be computed
exactly or up to arbitrary high order cheaply. Suppose that, for all
l ∈ N and λ ∈ R, the operators φ[l](λ) : R

d×d → R
d×d satisfy the

above conditions and can be expanded in the form

φ[l](λ)(hL) =
∑

j≥0

φ
[l]
j (λ)(hL)j.

The φ[l] functions, which are used in practice are associated with
the so called Exponential Time Differencing methods [3, 4, 10, 11],
and can be written explicitly as

φ[l](λ)(hL) = (λhL)−l

(

eλhL −
l−1
∑

k=0

(λhL)k

k!

)

. (1.2)

If h represents the stepsize and Ui denotes the internal stage ap-
proximation of the exact solution for i = 1, 2, . . . , s then the compu-
tations performed in step number n of an exponential Runge–Kutta
(RK) method are related by the equations

Ui =
s
∑

j=1

s
∑

l=1

α
[l]
ij φ[l](ci)(hL) hN(Uj) + ecihLun−1,

un =
s
∑

j=1

s
∑

l=1

β
[l]
j φ[l](1)(hL) hN(Uj) + ehLun−1,

(1.3)

where α
[l]
ij and β

[l]
j are the parameters of the method and the vector

c = (c1, c2 . . . , cs)
T is the abscissae vector. If α

[l]
ij = 0 for all j ≥ i
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the method is explicit and implicit otherwise. Alternatively the com-
putations performed in step number n can be represented in a more
Runge–Kutta type formulation as follows

c α[1] α[2] · · · α[s]

β[1]T β[2]T · · · β[s]T
,

where each element in row number i of the matrix α[l] is multiplied
by φ[l](ci)(hL) and each element in the vector β [l]T is multiplied by
φ[l](1)(hL). The resulting matrices are then added in a component
by component sense.

Other important class of methods which are also used for solving
the semilinear problem (1.1) are the Integrating Factor (IF) methods.
The idea behind these methods goes back to the work of Lawson
[8]. He proposes to ameliorate the effect of the stiff linear part of
equation (1.1) by using change of variables (also known as Lawson
transformation),

v(t) = e−tLu(t).

The initial value problem (1.1) written in the new variable is

v′(t) = e−tLN(etLv(t)) v(t0) = v0, (1.4)

where v0 = e−t0Lu0. The approach now is to apply an arbitrary s-
stage Runge–Kutta method to the transformed equation (1.4) and
then to transform the result back into the original variable. Thus, a
method which satisfy just the nonstiff order conditions will not suffer
from sever order reduction, when it is applied to stiff problems.

The aim of this paper is to show that the IF methods are ex-
amples of exponential RK methods with special choices for the φ[l]

functions and the parameters α[l] and β[l]T . We also prove that in
this special case the nonstiff order theory for the exponential RK
methods reduces to the classical Runge–Kutta order theory, which
explains why the IF methods exhibit the expected order.

The paper is organized as follows: we briefly survey the nonstiff
order theory for the exponential RK methods in Section 2. Next, in
Section 3, we define the structure the matrices α[l] and the vectors
β[l]T as well as the form of the functions φ[l], which correspond to the
IF methods. Finally, in Section 4, we conclude with several remarks
and questions of future interest.
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2 Nonstiff order conditions

The nonstiff order theory for the exponential RK methods was first
constructed in [4] and later developed in [11]. Here we follow the
approach suggested in [9]. It is based on bi-coloured rooted trees
and B-series. For those not familiar with these concepts we suggest
the monographs [1, 5] for a complete treatment.

Let 2T∗ denote the set of all bi-coloured (black and white) rooted
trees with the requirement that the valency of the white nodes is
always one. This correspods to the fact that the first term on the
right hand side of (1.1) is linear. Let ∅ represents the empty set
which remains if the root of the one node tree or is removed. The
order of the tree τ ∈ 2T∗ is defined as the number of vertices in the
tree, and it is denoted by |τ |. The density γ of the tree is defined
as the product over all vertices of the order of the subtree rooted at
that vertex. An exponential Runge–Kutta method with elementary
weight function a : 2T∗ → R, has nonstiff order p, if for all τ ∈ 2T∗,
such that |τ | ≤ p, a(τ) = 1/γ(τ).

In order to give a practical representation of the elementary
weight function a of the numerical solution, it is convenient to in-
troduce some notations. Let for l = 0, 1, . . . and k = 1, . . . ,m the s×s

matrix φ
[k]
l (c) = diag

(

φ
[k]
l (c1), . . . , φ

[k]
l (cs)

)

and C = diag(c1, . . . , cs).

Define

A[l] =
s
∑

k=1

φ
[k]
l (c)α[k],

b[l]T =
s
∑

k=1

φ
[k]
l (1)β[k]T ,

C [l] = 1
(l+1)!

C l+1.

(2.1)

The elementary weight function a of the numerical solution can be
computed using the following non-recursive rule:

– Attach b[j]T to the root black node.
– Attach A[j] to all remaining nonterminal black nodes.
– Attach A[j]e to all terminal black nodes.
– Attach C [j]e to all terminal white nodes.
– Attach I to all remaining white nodes.
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The value j is the number of white nodes directly below the corre-
sponding node, I is the s × s identity matrix and e = (1, . . . , 1)T .
Now for each tree multiply from the root to the leaf as in the case for
Runge–Kutta methods, then multiply these expressions in a compo-
nent by component sense.

3 IF methods as a special case

Applying a standard s-stage Runge–Kutta method to the trans-
formed equation (1.4) and then transforming back the result into
the original variable, leads us to the following φ[l] functions

φ[l](λ)(hL) = e(λ−cl)hL. (3.1)

Every IF method can be represented in the form (1.3) with φ[l] func-
tions given by (3.1) and with a special choice of the coefficient ma-
trices α[l] and the coefficient vectors β [l]T . This choice reduces the
set of all order conditions to a set, which consists only of the order
conditions corresponding to the black trees. To proof of this fact we
need the following lemma.

Lemma 1. Let t ∈ R\{0,−1,−2, ...}, then for j = 0, 1, 2, . . .

j
∑

k=0

(−1)k

k!(j − k)!

1

(k + t)
=

1

t(t + 1) · · · (t + j)
.

Proof. The proof of this statement is by induction on j.

The following theorem defines the structure of the matrices α[l]

and the vectors β [l]T for the IF methods. With this structure of the
coefficients, to achieve certain nonstiff order, it is sufficient to satisfy
only the black trees. This implies that the transformed differential
equation (1.4) is solved using a Runge–Kutta method.

Theorem 1. Let all the non-zero coefficients of an exponential Runge–
Kutta method (1.3), with φ[l] functions given by (3.1) be located in
column number l of the matrix α[l] and in position number l of the
vector β[l]T for l = 1, 2, . . . , s. The method has nonstiff order p iff all
order conditions corresponding to the black trees are satisfied.



6

Proof. It follows directly that if the exponential Runge–Kutta method
has nonstiff order p then all order conditions corresponding to the
black trees are satisfied. Let us assume that all the order conditions
corresponding to the black trees are satisfied. We need to prove that
all the remaining order conditions are also satisfied. From the defi-
nition of the φ[l] functions (3.1), it follows that for j = 0, 1, 2, . . . ,

φ
[l]
j (1) =

(1 − cl)
j

j!
, φ

[l]
j (c) =

1

j!
diag((c1 − cl)

j, . . . , (cs − cl)
j).(3.2)

Since all order conditions corresponding to the black trees involve
only the coefficients A[0], b[0]T and c, we need to express every other
order condition in terms of these coefficients. Having in mind the
special structure of the matrices α[l] and the vectors β [l]T , after sub-
stituting (3.2) into (2.1), we obtain for j = 1, 2, . . .,

A[j] =

j
∑

k=0

(−1)k

k!(j − k)!
C [0]j−k

A[0]C [0]k ,

b[j]T =

j
∑

k=0

(−1)k

k!(j − k)!
b[0]T C [0]k .

(3.3)

From the fact that all order conditions corresponding to the black
trees are satisfied, it follows that A[0], b[0]T and c form a Runge–Kutta
method. Therefore,

C [0]e = A[0]e, C [0]ζ = (A[0]e)ζ,

C [0]kζ = (A[0]e) . . . (A[0]e)ζ,
(3.4)

where ζ is an arbitrary vector and the multiplications between the
elements in the brackets are in a component by component sense.

Now, we are in a position to define a procedure which transforms
every coloured tree τ into a linear combination of black trees of
order at most |τ |. Each tree τ can be decomposed as τ = (τb, τj, τt),
where τb is a coloured tree on the bottom with less number of white
nodes than τ ; τj is tall white tree with j ≥ 1 white nodes and τt is
black tree on the top. First applying formula (3.3) and then (3.4),
for the order condition corresponding to a tree τ , we obtain the
following three representations in terms of black trees or trees with
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less white vertices.
If τt = ∅ then τ reduces to

τ =
τb

=
1

j! τb

.

If τb = ∅ then τ reduces to

τ =

τt

= δ0
τt + · · · + δk

τt + · · · + δj
τt ,

where δk = (−1)k

k!(j−k)!
for k = 0, 1, 2, . . . , j. In the general case when

τ{t,b} 6= ∅, then τ can be represented as

τ =

τt

τb

= δ0

τt

τb

+ · · · + δk

τt

τb

+ · · · + δj

τt

τb

. (3.5)

For each of the trees in the linear combination we apply the
same procedure. Thus, after a finite number of steps all the trees in
the combination will be black. From (2.1) it is clear that the order
of every single black tree cannot exceed the order of coloured tree.
To complete the proof we need to show that a(τ) = 1/γ(τ) for all
coloured trees τ , where |τ | ≤ p. We prove this by induction on the
number of steps θ in the transformation process. Let θ = 1. Every
coloured tree τ has representation τ =

∑j

k=0 δkτk, where all τk are
black trees. If γ(τt) = x1|τt|x2 then a(τk) = 1

γ(τk)
= 1

x1(|τt|+k)x2

and

by Lemma 1 for t = |τt| it follows that

a(τ) =

j
∑

k=0

(−1)k

k!(j − k)!
a(τk) =

j
∑

k=0

(−1)k

k!(j − k)!

1

x1(|τt| + k)x2

=
1

x1|τt|(|τt| + 1) · · · (|τt| + j)x2

=
1

γ(τ)
.

Assume that a(τ) = 1/γ(τ) for all coloured trees τ with θ steps in
the transformation process. Let τ be a tree with θ + 1 steps in the
transformation process. From (3.5) it follows that τ =

∑j

k=0 δkτk,
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where τk are coloured trees with θ steps in the transformation pro-
cess and hence a(τk) = 1/γ(τk). If γ(τt) = x1|τt|x2 then a(τk) =

1
γ(τk)

= 1
x1(|τt|+k)x2

and by Lemma 1 for t = |τt| it again follows that

a(τ) = 1/γ(τ).

4 Conclusions

We have shown that the IF methods are examples of exponential
Runge–Kutta methods with special structure of the coefficients ma-
trices and the related φ[l] functions. We have also proven that, in this
special case, the nonstiff order theory for the exponential RK meth-
ods reduces to the classical Runge–Kutta order theory. This explains
why the IF methods exhibit the expected order. Other examples of
the φ[l] functions, rather than (1.2) and (3.1), arise from the frame-
work of Lie group methods see [9]. The question how to find the best
set of φ[l] functions is open and needs further investigation.
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