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Motivation and History

A new interest in exponential integrators for semilinear problems

ur = Lu+ N(u,t), u(to) = uo
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Motivation and History

A new interest in exponential integrators for semilinear problems

ur = Lu+ N(u,t), u(to) = uo

Brief History

Lawson, 1967
- IF methods, A-stability

Friedli, 1978
- Exp. Exp. RK Methods, nonstiff order

Strehmel and Weiner, 1987
- Adaptive RK Methods, Order theory, B-stability

Hochbruck and Lubich, 1997
- Exp. Integrators (EXP4) with inexact Jacobian
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Motivation and History

A new interest in exponential integrators for semilinear problems

ur = Lu+ N(u,t), u(to) = uo

Cox and Matthews, 2002
- ETDRK Methods of 3™ and 4™ order

Kasam and Trefethen, 2002
- Extensive numerical experiments, overcome the numerical instability

Celledoni, Marthinsen, Owren, 2003
- Commutator Free Lie group methods

Krogstad, 2003
- Generalized IF Methods, connection with CF

Hochbruck and Osterman, 2003
- Exp. Collocation Methods, convergence analyze
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Pure Exponential Integrators

¢ IF = Integrating Factor



Pure Exponential Integrators

IF = Integrating Factor

ETD = Exponential Time Differencing
- ECM = Exponential Collocation Methods
- ETDRK = Exponential time Differencing Runge-Kutta Methods
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Pure Exponential Integrators

IF = Integrating Factor

ETD = Exponential Time Differencing
- ECM = Exponential Collocation Methods
- ETDRK = Exponential time Differencing Runge-Kutta Methods

C'F = Commutator Free Lie-group methods
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Pure Exponential Integrators

IF = Integrating Factor

ETD = Exponential Time Differencing
- ECM = Exponential Collocation Methods
- ETDRK = Exponential time Differencing Runge-Kutta Methods

C'F = Commutator Free Lie-group methods

GI1F = Generalized Integrating Factor
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| ntegrating Factor

After space discretisation we obtain a systems of ODEs

(1) u' = Lu+ N(u(t)), u(to) = uo
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| ntegrating Factor

After space discretisation we obtain a systems of ODEs
(1) u' = Lu+ N(u(t)), u(to) = uo

Solve exactly the linear part then make a change of variables

v(t) = exp(—Lt)u(t)
?Xp(—Lt) (ur — Luz = exp(—Lt)N(u)
v = exp(—Lt)N(exp(Lt)v)
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| ntegrating Factor

After space discretisation we obtain a systems of ODEs
(1) u' = Lu+ N(u(t)), u(to) = uo

Solve exactly the linear part then make a change of variables

v(t) = exp(—Lt)u(t)
?Xp(—Lt) (ur — Luz = exp(—Lt)N(u)
ve = exp(—Lt)N(exp(Lt)v)

Apply a numerical method to the transformed equation
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| ntegrating Factor

After space discretisation we obtain a systems of ODEs
(1) u' = Lu+ N(u(t)), u(to) = uo

Solve exactly the linear part then make a change of variables

v(t) = exp(—Lt)u(t)
?Xp(—Lt) (ur — Luz = exp(—Lt)N(u)
v = exp(—Lt)N(exp(Lt)v)

Apply a numerical method to the transformed equation

Transform back the approximate solution to the original variable
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Exampleof I F

In terms of the original variable the computations performed are

Ui = g

= eC2hL(uo + a21hN(U1))

U3 = ec3hL(u0 + a31hN(Uy) —I—agghe_CQhLN(Ug))

Us = 4" (ug+ as1hN(Uy) 4 agohe™ 2" N (Uy)
+a43he” B3N (U3))

ur = e"(ug+b1hN(Uy) + bahe 2" N(Uy)

+b3he 3L N(Us) + byhe 4" N (Uy))
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Exampleof I F

General form of the order 4 integrating factor method is

0 0 0 0 1
ag1ec2hl 0 0 0 eC2hL
a3 e3Pl gage(ca—c2)hL 0 0 eC3hL
agec4hl  guoelca—c2)hL o o o(ca—c3)hL 0 eCahL

byehl bye(l—c2)hL bge(l—ca)hl  p e(l=ca)hL | chL
Uniformly distributed c vector provides cheapest methods.
This structure requires only classical order conditions.
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Exponential Time Differencing

Similar approach to I F' but we do not make a complete change of variables

© (exp(~Lt)u) = exp(~LoN(u(t))
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Exponential Time Differencing

Similar approach to I F' but we do not make a complete change of variables

© (exp(~Lt)u) = exp(~LoN(u(t))

Integrate over a single time step of length c; h

Cih
u(tn +c;h) = exp(c;hL)un + exp(cihL)/ exp(—L7)N(u(t, + 7))dr
0
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Exponential Time Differencing

Similar approach to I F' but we do not make a complete change of variables
d
— (exp(~Lt)u) = exp(~Lt)N(u(t))

Integrate over a single time step of length c; h

Cih
u(tn +c;h) = exp(c;hL)un + exp(cihL)/ exp(—L7)N(u(ty, + 7))dr
0]

ETD methods of multistep type use polynomial approximation to the function N (u(t,+7))

(Narsett’69, Cox and Matthews’02)
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Approximationsto N (u(t))

-If N(u(t)) ~ &;ert, where §; is a constant such that the approximation matches
N(u(t)) for t = c¢;h, then the coefficients of the method will be linear combinations of

PN (hL) = eP el 5 =123 ...
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Approximationsto N (u(t))

-If N(u(t)) =~ Ps—1(t), where Ps_1(t) is a Lagrange interpolation polynomial of degree
s — 1 that matches N (u(t) at the points t = c1h, c2h, ..., csh then
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Approximationsto N (u(t))

-If N(u(t)) =~ Ps—1(t), where Ps_1(t) is a Lagrange interpolation polynomial of degree
s — 1 that matches N (u(t) at the points t = c1h, c2h, ..., csh then

ARL ARL
[1] R S _ € — ML — 1
SN(L) = S, ) (hL) L
: [4] — olil
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Approximationsto N (u(t))

-If N(u(t)) =~ Ps—1(t), where Ps_1(t) is a Lagrange interpolation polynomial of degree
s — 1 that matches N (u(t) at the points t = c1h, c2h, ..., csh then

] A A2 5 A3 5 A 4

[2] — . o 2 3 _— 4 * o o
PENML) = Slm+ 5 (hL) + 5 (AL)* + 2 (hL)” + - (RL)" + -+,

[3] — o D 2 3 _— 4 « o o
¢ (N)(hL) = 3!Im + (hL) + = (hL)? + o (hL)3 + = (RL)* + - .
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Approximationsto N (u(t))

-If N(u(t)) =~ Ps—1(t), where Ps_1(t) is a Lagrange interpolation polynomial of degree
s — 1 that matches N (u(t) at the points t = c1h, c2h, ..., csh then

] A PCIEUD . SO C

[2] — . o 2 3 — 4 e o o

[3] — o D 2 3 — 4 e o o
P (A)(RL) = 3 im™ + 10 (hL) + o (hL)* + o (hL)° + = (hL)* + --- .

-If N(u(t)) = Ts—1(t), where Ts_1 () is a trigonometrical polynomial of sin(at), then
el _ T el — [ sin(\h) — cos(\h)
AhL AR(L + I)?
aet — [ sin(alh) — acos(ah)
Ah(L2 + 1)

(N (RL) = , oI (\)(RL) =

Y

ol TN (RL) =

a=1,2,3,...
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Exponential Collocation M ethods (1/2)

Recall vcf

h
Unt+1 = exp(Lh)uy, + ea:p(Lh)/O exp(—L7)N(u(ty + 7))dT



Exponential Collocation M ethods (1/2)

Recall vcf
h
Un+1 = exp(Lh)un + ea:p(Lh)/ exp(—L7T)N(u(ty, + 7))dr
0

choose collocation nodes c1, ..., cs
let un, = u(tn), Un,i = u(tn + c;h)

pn collocational polynomial of degree s — 1 p,(c;h) = N(Uy, ;)
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Exponential Collocation M ethods (1/2)

Recall vcf
h
Un+1 = exp(Lh)un + ea:p(Lh)/ exp(—L7T)N(u(ty, + 7))dr
0

choose collocation nodes c1, ..., cs
let un, = u(tn), Un,i = u(tn + c;h)
pn collocational polynomial of degree s — 1 p,(c;h) = N(Uy, ;)

explicit methods: p,, ; polynomial of degree i — 1 using N(U,, ;), j<i—1

Cih
Un = eLhun—|—/ e(cih_T)Lpn,i(T)dT
0]
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Exponential Collocation M ethods (2/2)

key point: integrals can be calculated exactly

Cih S
0

j=1

/ eh=mLy (7)dr = th (hRL)N (U, ;)

=1
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Exponential Collocation M ethods (2/2)

key point: integrals can be calculated exactly

Cih S
0 .
71=1

h S
/ e~ Lp, (r)dr = kY biy(RL)N(Un,;)
0 i=1

coefficients b;, a;; are linear combination of ¢l1, ... 4[5l (Beylkin, Keiser, Vozovi'98)

defined as
1

(e — 1)ty

Pl (—tL) = / (t—7)"te ldr, i>1
0
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Exponential Collocation M ethods (2/2)

key point: integrals can be calculated exactly

Cih S
0 .
71=1

h S
/ e~ p, (t)dr = h)_ bi(RL)N(Unp,;)
0]

i=1
coefficients b;, a;; are linear combination of ¢l1, ... 4[5l (Beylkin, Keiser, Vozovi'98)
defined as
: 1 t :
[¢] - = . e R— o .
o' (—tL) (i—l)!tj/o(t T)' e THdr, 1>1

No need of new order theory

Easy to solve all order conditions

° ° ° ° ° ° ° °
3

Exp* Integrators for semilinear problems — p.11/33



Exponential Collocation M ethods (2/2)

key point: integrals can be calculated exactly

Cih S
0 .
71=1

h, S
0 =1

coefficients b;, a;; are linear combination of ¢l1, ... 4[5l (Beylkin, Keiser, Vozovi'98)
defined as
: 1 t :
[¢] - = . e R— o .
o' (—tL) - /0 (t—7)"" e "Hdr, i>1

Are they too restrictive in the choice of the quadrature formula?
What if C; = Cj?

How to analyze the methods of Cox and Matthews and Krogstad?
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The ¢ function

The generality of the ¢ functions is not known. For A € R and hL. € R™*™ |et

oI\ (hL) = Z¢ (A)(RL)?
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The ¢ function

The generality of the ¢ functions is not known. For A € R and hL € R™*™ let
Sl (N (L) = Z ¢

The ¢ function must
Be computed exactly or to arbitrary high order cheaply.

Other requirement?
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The ¢ function

The generality of the ¢ functions is not known. For A € R and hL € R™*™ let
AN (L) = Z ¢

The ¢ function must
Be computed exactly or to arbitrary high order cheaply.

Other requirement?

The ¢ functions of the IF and ETD work. Certain their linear combinations also work. Are

there others?
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The method coefficients

The matrix A is defined as

d
A=Y "oll(c)(hL) (') @ Im),

1=1

where (%) are s x s strictly lower triangular matrices with the first ; rows equal to zero
and m is the dimensionality of the problem.
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The method coefficients

The matrix A is defined as

d
A=Y "oll(c)(hL) (') @ Im),

1=1

where (%) are s x s strictly lower triangular matrices with the first ; rows equal to zero
and m is the dimensionality of the problem.
The matrix b?" is defined as

Z¢ J(RL)(BD" ® Im).

where 3(¥) are arbitrary s vectors.
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The method coefficients

The matrix A is defined as
d . .
A=Y all(e)(hL) (e ® In),
1=1

where (%) are s x s strictly lower triangular matrices with the first ; rows equal to zero
and m is the dimensionality of the problem.
The matrix b?" is defined as

Z¢ J(RL)(BD" ® Im).

where 3(¥) are arbitrary s vectors.
The matrix @l s

ol (¢)(hL) = diag(¢!” (c1) (L), ..., ¢ (cs)(RL))
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Formulation of the method

ARN (U  ecPLoy,, 1,
bTAN (UM + el Luy,

°
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Formulation of the method

ulnl = ARNUI) 4 echly, 4,
U, = bThN(U[”]) + e, 1

The computations performed in step number n, are

ynl eChL

AN (U
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Formulation of the method

ulnl = ARNUI) 4 echly, 4,
Up, = bThN(U[”]) + e, 1

The computations performed in step number n, are

Ulnl A | echLl AN (U™
Un, - bl ‘ ehL Un—1
where the corresponding vectors are
i NP
Ulnl — UQFn] N(U[”]) _ N(U2[”]) cChL _
Ul N (Ul

[ eCl1 hL |
eC2 hL

ecShL
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Formulation of the method

ulnl = ARNUI) 4 echly, 4,
Up, = bThN(U[”]) + e, 1

The computations performed in step number n, are

A | eehE AN (U)

T ‘ ohL

Uln]

Un

Un—1

alternative representation of the method in a more Runge-Kutta tabelau formulation is

| a® | a® | ] a1 |

' g ' 3@ ‘ ' gls=nT ' IO

° ° ° ° ° ° ° ° °
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General formulation

A 3 stage example of the general formulation is

| 0 0 0 ec1hl 7
a%1¢1 0 0 ec2hl
az, ¢' + a3z, ¢ az3o$" + a3, ¢ 0 gfaht
R R T R R D R U T N
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General formulation

ETD4-Kr of Krogstad

0
Pl e
% %¢[1] — 2l H12l
1 H1l — 242l 0 2012]
4081 — 34121 4 g1l 4] 4 2421 _403] 4 2421 44[3] — pl2]
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General formulation

ETDRKA4SW of Strehmel and Weiner

0)
bl e
% %¢[1] _ %¢[2] %qu
1 ¢[1] _ 2¢[2] _2¢[2] 4¢[2]
4¢[3] _ 3¢[2] un ¢[1] 0 _8¢[3] 4+ 4¢[2] 4¢[3] _ ¢[2]
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Order theory

Associate a white node with L and black node with N

Elementary differentials can be represented by bi-coloured rooted trees where any
white node has only one child.
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Order theory

Associate a white node with L and black node with N

Elementary differentials can be represented by bi-coloured rooted trees where any

white node has only one child.

The number of rooted trees

n 1 3 4 5 §) 7 8
On, 2 4 11 34 117 421 1589 6162
©=>1"0, 2 17 51 168 589 2178 8340
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Comparison with ARK Methods

“ The order theory is the same



Comparison with ARK Methods

The order theory is the same

ARK use rational approximations to the exp and ¢!

Kuramoto-Sivashinsky equation Allen—-Cahn equation

=65
=31

o
£
®
s
5]
2
ks
©
'3

Relative error at time

——  ETDRK4SW ] ETDRK4SW

ETDRK4SW-Pade —e—  ETDRK4SW-Pade
10" N 107
Stepsize h Stepsize h
° ° ° ° ° ° ° ° °
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Comparison with ARK Methods

The order theory is the same
ARK use rational approximations to the exp and ¢!

The choice of the ¢4 functions in ARK is restricted to the ETD set.

Kuramoto-Sivashinsky equation

——  ETDRK4SW
—6e—  ETDRK4SW-Pade

° ° ° ° ° ° ° ° °
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Comparison with ARK Methods

The order theory is the same
ARK use rational approximations to the exp and ¢!
The choice of the ¢4 functions in ARK is restricted to the ETD set.

Exp. RK methods include IF, ECM and ETDRK methods of Krogstad and Cox and
Matthews as special cases.

Kuramoto-Sivashinsky equation

——  ETDRK4SW
—6e—  ETDRK4SW-Pade

° ° ° ° ° ° ° ° °
Exp* Integrators for semilinear problems — p.17/33
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Connectionswith CF

We can rewrite the equation (1) in the form

v = (L,N(u,t)).u = Fy+(u), u(0) = ug
where . represents the Lie algebra action

(A,a)u = Au+a
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Connectionswith CF

We can rewrite the equation (1) in the form
v = (L,N(u,t)).u = Fy+(u), u(0) = ug
where . represents the Lie algebra action
(A,a)u = Au+a

Let Fa,f(u) be the Frozen Vector Field at the point (4, t)

at(w) = (L,N(4,).u = Lu+ N(a,t)
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Connectionswith CF

We can rewrite the equation (1) in the form
v = (L,N(u,t)).u = Fy+(u), u(0) = ug
where . represents the Lie algebra action
(A,a)u = Au+a

Let Fa,f(u) be the Frozen Vector Field at the point (4, t)

at(w) = (L,N(4,).u = Lu+ N(a,t)

The flow of such vector field is the solution of ' = F;, ;(u), u(0) = ug
¢, p(uo) = Exp(tﬁﬂ,f).uo = exp(tL)ug + toM (tL)N(q, t)
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CF Method

Algorithm (CF)

forr =1:sdo
Yr = Exp(Q_ osz’JFk;) e Exp(Q g osz,le)(p)
Fr = hFy, = h), fi(Yr)E;

end

y1 = Exp(> L BYEFy) - Exp(> L, BY Fr)p
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Numerical schemes

ETDCF4 of Celledoni, Marthinse and Owren

0

b gon

b0 gen

Ll s 0 o

% % [1] 0 o1
1 M1 %(b[l] %¢[1] % [1]
_%gb[l] %(b[l] %¢[1] %(b[l]
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Numerical schemes

ETDRK4 of Cox and Matthews

0
Pl e
: : jol
; ol : :
% %¢[1] 0 o1
40181 — 30121 + o[l —40l31 4 20l2] 431 4 24121 44[3] — p[2]
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Numerical experiments

Example 1: Kuramoto-Sivashinsky equation
with periodic boundary conditions and with the initial condition

u(z,0) = cos(lx—G)(l + sin(lx—G)).
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Numerical experiments

Example 1: Kuramoto-Sivashinsky equation
with periodic boundary conditions and with the initial condition

u(zx,0) = cos(lx—G)(l + sin(—)).

X
L
We discretise the spatial part using Fourier spectral method. The transformed equation

in the Fourier space is

¢ = —%1;24—(/{:2 kM4,
(La)(k) = (k* —kY)a(k) and N(@,t) = — Z(F((F~1(a))?))
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Kuramoto-Sivashinsky equation

Kuramoto-Sivashinsky equation Kuramoto-Sivashinsky equation

=65
=65

[} (0]
€ £
£ =
I ©
<] S
= =
[} (0]

(0]
2 g
8 kS
[3) [0
o o4

107 o

Stepsize h Stepsize h

° ° ° ° ° ° ° ° °
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Numerical experiments

Example 2:  Allen-Cahn equation
Ut = Eugy +u—ud, z€ [—1,1]
with e = 0.01 and with boundary and initial conditions

u(—1,t) = =1, u(l,t) =1, wu(z,0) = .53z + .47sin(—1.57x)
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Numerical experiments

Example 2:  Allen-Cahn equation
Ut = EUgy +u—u’, x€E [—1,1]
with e = 0.01 and with boundary and initial conditions
u(—1,t) = -1, u(l,t) =1, wu(x,0)= .53z + .47sin(—1.57x)

After discretisation in space.
ur = Lu+ N(u(t))

where L = ¢D?, N(u(t)) = u— «3 and D is the Chebyshev differentiation matrix
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Allen-Cahn equation

Allen—-Cahn equation Allen—Cahn equation

31
31

() (0]
E 5
= =
& g
S 2
= =
o [
w g
2 =
= ©
© _
o) [J]

o
o

Stepsize h Stepsize h

° ° ° ° ° ° ° ° °
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Allen-Cahn equation

Allen—Cahn equation

=31

@
£
=
©
=
S
=
@
)
=
ks
3]
o

—— ETDCF4

—=- ETDRK4

—*— ETDRK4B
-©- ERKAF

10"

Stepsize h

° ° ° ° ° ° ° ° °
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Numerical experiments

Example 3: Korteweg de Vries equation
Ut = —Upzr — Uz, x € [—m, ],
with periodic boundary conditions and with initial condition

u(z,0) = 3C/ cosh? (v Cx/2),

where C' = 625. The exact solution is 27 /C' periodic and is given by u(x,t) = u(xz —
Ct,0). We use a 256-point Fourier spectral discretization in space. In this case the matrix

L is again diagonal. The integration in time is done for one period.
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KdV eguation

Korteweg de Vries equation

Korteweg de Vries equation

=2mC
=2mC

Error at time

)
£
5
®
=
<]
=
[T

Stepsize h Stepsize h

° ° ° ° ° ° ° ° °
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KdV eguation

Korteweg de Vries equation

=21C

(0]
£
£
=
N
o
=
m

—— ETDCF4

—=- ETDRK4

—*— ETDRK4B
-©- ERKAF

Stepsize h

° ° ° ° ° ° ° ° °
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Generalized | F M ethods

Consider the semi discretised problem (1)

u' = Lu+ N(u(t)), u(to) = uo
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Generalized | F M ethods

Consider the semi discretised problem (1)
u' = Lu+ N(u(t)), u(to) = uo

Change of variables
u(t) = exp(tL)v(t) = ¢, p(v(t)),

where F(4,t) = Lt approximates F around ug.
The transformed equation is

v’ (t) = exp(—tL)N (exp(tL)v(t))
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Generalized | F M ethods

Consider the semi discretised problem (1)
u' = Lu+ N(u(t)), u(to) = uo
In general (Krogstad; Mayday, Patera and Rgnquist ) substitute
u(t) = ¢, p(v(1))

where F'(a,t) = L + N(t) approximates F around ug.
The transformed equation is

v’ (t) = exp(—tL) [N (exp(tL)v(t)) — N(t)]
Now apply a numerical method to the transformed equation.
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GIF like GLMs

Information from past was used to capture key features of F'.
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GIF like GLMs

Information from past was used to capture key features of F'.
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GIF like GLMs

Information from past was used to capture key features of F.

These methods reduced to a methods with maximum stage order when L = 0.

This is at the cost of smaller stability regions.

When L = 0 the GIF methods are GLMs.

3
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GIF like GLMs

Uy 0O 0 0 0]1 0 0 AN (Up) |
Us 0 0 01 —-L & hN (Us)
Us -= 3 0 0|1 3 =2 hN(Us)
Uy = = 0 1 0|1 —-& hN (Us)
Un 1 c 2 £ 2]1 0 0 Wi
hNn 1 0 0 0|0 © 0 hNp_1
| ANp-1 | | O 0 0 0|0 1 0 | | hANn—2 _

The GIF showed significant improvements over all other methods.
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ore Experiments

Kuramoto-Sivashinsky equation Allen-Cahn equation
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GIF like Lie-group methods

We can rewrite the equation v/ = Lu + N(u(t),t), u(tg) = ug in the form

ly — (Auat’a')'y — Fuat(y)

y(0) = yo
where
L N(u7tt)_NO NO
Au,t — y @ = ’
0] 0] 1
U uUQ
Yy = y Yo = ’ NO — N(U0,0)
v 0]
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GIF like Lie-group methods

Let F, ;(y) be the Frozen Vector Field at the point (1, £)
Fae(u) = (Agpa)y = Ay y+a,

where
L N—ANO
t

i1
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GIF like Lie-group methods

Fy(u) = (Agpa)y = Ay y+a,
where
N—Ng
L 5 : A
Ay; = , N = N(a,1)

0) 0

The flow of such vector field is the solution of § = F, ;(y), (0) = yo
_ exp(tL)ug + ¢ (L) Ng + ¢24[2) (t1) N=No
¢, 7 (yo) = Exp(tFy 1)yo = )
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GIF like Lie-group methods

where
N—Ng
L 5 ) A
Ay = , N = N(a,i)
0) 0
The flow of such vector field is the solution of § = F, ;(y), (0) = yo
_ exp(tL)ug + ¢ (L) Ng + ¢24[2) (t1) N=No
¢; 7(yo) =Exp(tFy 1)yo = )
and satisfies
Pt i = Ptk Pot O Py = ¢(a+ﬁ)t,ﬁ
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Conclusion

The exponential Runge-Kutta methods designed to solve stiff semi discretised
PDEs were introduced.
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Conclusion

The exponential Runge-Kutta methods designed to solve stiff semi discretised
PDEs were introduced.

The order theory were rederived in a more general settings.

The IF, ECM (ETDRK) methods are special cases of these methods.
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Work In progress

* Other ¢! functions
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Effective ways of their computation
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