Exp ${ }^{3}$ Integrators for semilinear problems

Séminaire d'analyse numérique
23 March. 2004, Geneve.

Borislav V. Minchev
Borko.Minchev@ii.uib.no
http://www.ii.uib.no/ ~borko

Joint work with Will Wright

Department of computer science
University of Bergen, Norway

Exp $^{3}=$ Explaining Explicit Exponential Integrators

Outline

- Motivation and History
- Formulation of the method
- Connections with Lie group methods
- Numerical schemes
- Numerical experiments
- Generalized IF methods
- Conclusions
- Future work

Motivation and History

A new interest in exponential integrators for semilinear problems

$$
u_{t}=\mathcal{L} u+\mathcal{N}(u, t), u\left(t_{0}\right)=u_{0}
$$

Motivation and History

A new interest in exponential integrators for semilinear problems

$$
u_{t}=\mathcal{L} u+\mathcal{N}(u, t), u\left(t_{0}\right)=u_{0}
$$

Brief History

- Lawson, 1967
- IF methods, A-stability
- Friedli, 1978
- Exp. Exp. RK Methods, nonstiff order
- Strehmel and Weiner, 1987
- Adaptive RK Methods, Order theory, B-stability
- Hochbruck and Lubich, 1997
- Exp. Integrators (EXP4) with inexact Jacobian

Motivation and History

A new interest in exponential integrators for semilinear problems

$$
u_{t}=\mathcal{L} u+\mathcal{N}(u, t), u\left(t_{0}\right)=u_{0}
$$

- Cox and Matthews, 2002
- ETDRK Methods of $3^{\text {th }}$ and $4^{\text {-th }}$ order
- Kasam and Trefethen, 2002
- Extensive numerical experiments, overcome the numerical instability
- Celledoni, Marthinsen, Owren, 2003
- Commutator Free Lie group methods
- Krogstad, 2003
- Generalized IF Methods, connection with CF
- Hochbruck and Osterman, 2003
- Exp. Collocation Methods, convergence analyze

Pure Exponential Integrators

- $I F=$ Integrating Factor

Pure Exponential Integrators

- $I F=$ Integrating Factor
- $E T D=$ Exponential Time Differencing
- $E C M=$ Exponential Collocation Methods
- ETDRK = Exponential time Differencing Runge-Kutta Methods

Pure Exponential Integrators

- $I F=$ Integrating Factor
- $E T D=$ Exponential Time Differencing
- $E C M=$ Exponential Collocation Methods
- ETDRK = Exponential time Differencing Runge-Kutta Methods
- $C F=$ Commutator Free Lie-group methods

Pure Exponential Integrators

- $I F=$ Integrating Factor
- $E T D=$ Exponential Time Differencing
- $E C M=$ Exponential Collocation Methods
- ETDRK = Exponential time Differencing Runge-Kutta Methods
- $C F=$ Commutator Free Lie-group methods
- $G I F=$ Generalized Integrating Factor

Integrating Factor

After space discretisation we obtain a systems of ODEs

$$
\begin{equation*}
u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t)), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

Integrating Factor

After space discretisation we obtain a systems of ODEs

$$
\begin{equation*}
u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t)), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

Solve exactly the linear part then make a change of variables

$$
\begin{aligned}
v(t) & =\exp (-\mathbf{L} t) u(t) \\
\underbrace{\exp (-\mathbf{L} t)\left(u_{t}-\mathbf{L} u\right)}_{v_{t}} & =\exp (-\mathbf{L} t) \mathbf{N}(u) \\
v_{t} & =\exp (-\mathbf{L} t) \mathbf{N}(\exp (\mathbf{L} t) v)
\end{aligned}
$$

Integrating Factor

After space discretisation we obtain a systems of ODEs

$$
\begin{equation*}
u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t)), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

Solve exactly the linear part then make a change of variables

$$
\begin{aligned}
v(t) & =\exp (-\mathbf{L} t) u(t) \\
\underbrace{\exp (-\mathbf{L} t)\left(u_{t}-\mathbf{L} u\right)}_{v_{t}} & =\exp (-\mathbf{L} t) \mathbf{N}(u) \\
v_{t} & =\exp (-\mathbf{L} t) \mathbf{N}(\exp (\mathbf{L} t) v)
\end{aligned}
$$

Apply a numerical method to the transformed equation

Integrating Factor

After space discretisation we obtain a systems of ODEs

$$
\begin{equation*}
u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t)), u\left(t_{0}\right)=u_{0} \tag{1}
\end{equation*}
$$

Solve exactly the linear part then make a change of variables

$$
\begin{aligned}
v(t) & =\exp (-\mathbf{L} t) u(t) \\
\underbrace{\exp (-\mathbf{L} t)\left(u_{t}-\mathbf{L} u\right)}_{v_{t}} & =\exp (-\mathbf{L} t) \mathbf{N}(u) \\
v_{t} & =\exp (-\mathbf{L} t) \mathbf{N}(\exp (\mathbf{L} t) v)
\end{aligned}
$$

Apply a numerical method to the transformed equation
Transform back the approximate solution to the original variable

Example of IF

In terms of the original variable the computations performed are

$$
\begin{aligned}
U_{1}= & u_{0} \\
U_{2}= & e^{c_{2} h L}\left(u_{0}+a_{21} h N\left(U_{1}\right)\right) \\
U_{3}= & e^{c_{3} h L}\left(u_{0}+a_{31} h N\left(U_{1}\right)+a_{32} h e^{-c_{2} h L} N\left(U_{2}\right)\right) \\
U_{4}= & e^{c_{4} h L}\left(u_{0}+a_{41} h N\left(U_{1}\right)+a_{42} h e^{-c_{2} h L} N\left(U_{2}\right)\right. \\
& \left.+a_{43} h e^{-c_{3} h L} N\left(U_{3}\right)\right) \\
u_{1}= & e^{h L}\left(u_{0}+b_{1} h N\left(U_{1}\right)+b_{2} h e^{-c_{2} h L} N\left(U_{2}\right)\right. \\
& \left.+b_{3} h e^{-c_{3} h L} N\left(U_{3}\right)+b_{4} h e^{-c_{4} h L} N\left(U_{4}\right)\right)
\end{aligned}
$$

Example of IF

General form of the order 4 integrating factor method is

$$
\left[\begin{array}{cccc|c}
0 & 0 & 0 & 0 & 1 \\
a_{21} e^{c_{2} h L} & 0 & 0 & 0 & e^{c_{2} h L} \\
a_{31} e^{c_{3} h L} & a_{32} e^{\left(c_{3}-c 2\right) h L} & 0 & 0 & e^{c_{3} h L} \\
a_{41} e^{c_{4} h L} & a_{42} e^{\left(c_{3}-c 2\right) h L} & a_{43} e^{\left(c_{4}-c 3\right) h L} & 0 & e^{c_{4} h L} \\
\hline b_{1} e^{h L} & b_{2} e^{\left(1-c_{2}\right) h L} & b_{3} e^{\left(1-c_{3}\right) h L} & b_{4} e^{\left(1-c_{4}\right) h L} & e^{h L}
\end{array}\right]
$$

- Uniformly distributed c vector provides cheapest methods.
- This structure requires only classical order conditions.

Exponential Time Differencing

Similar approach to $I F$ but we do not make a complete change of variables

$$
\frac{d}{d t}(\exp (-\mathbf{L} t) u)=\exp (-\mathbf{L} t) \mathbf{N}(u(t))
$$

Exponential Time Differencing

Similar approach to $I F$ but we do not make a complete change of variables

$$
\frac{d}{d t}(\exp (-\mathbf{L} t) u)=\exp (-\mathbf{L} t) \mathbf{N}(u(t))
$$

Integrate over a single time step of length $c_{i} h$

$$
u\left(t_{n}+c_{i} h\right)=\exp \left(c_{i} h \mathbf{L}\right) u_{n}+\exp \left(c_{i} h \mathbf{L}\right) \int_{0}^{c_{i} h} \exp (-\mathbf{L} \tau) \mathbf{N}\left(u\left(t_{n}+\tau\right)\right) d \tau
$$

Exponential Time Differencing

Similar approach to $I F$ but we do not make a complete change of variables

$$
\frac{d}{d t}(\exp (-\mathbf{L} t) u)=\exp (-\mathbf{L} t) \mathbf{N}(u(t))
$$

Integrate over a single time step of length $c_{i} h$

$$
u\left(t_{n}+c_{i} h\right)=\exp \left(c_{i} h \mathbf{L}\right) u_{n}+\exp \left(c_{i} h \mathbf{L}\right) \int_{0}^{c_{i} h} \exp (-\mathbf{L} \tau) \mathbf{N}\left(u\left(t_{n}+\tau\right)\right) d \tau
$$

ETD methods of multistep type use polynomial approximation to the function $\mathbf{N}\left(u\left(t_{n}+\tau\right)\right)$
(Nørsett'69, Cox and Matthews'02)

Approximations to $N(u(t))$

- If $N(u(t)) \approx \delta_{i} e^{L t}$, where δ_{i} is a constant such that the approximation matches
$N(u(t))$ for $t=c_{i} h$, then the coefficients of the method will be linear combinations of

$$
\phi^{[i]}(\lambda)(h L)=e^{\left(\lambda-c_{i}\right) h L} \quad i=1,2,3, \ldots
$$

Approximations to $N(u(t))$

- If $N(u(t)) \approx P_{s-1}(t)$, where $P_{s-1}(t)$ is a Lagrange interpolation polynomial of degree
$s-1$ that matches $N\left(u(t)\right.$ at the points $t=c_{1} h, c_{2} h, \ldots, c_{s} h$ then

Approximations to $N(u(t))$

- If $N(u(t)) \approx P_{s-1}(t)$, where $P_{s-1}(t)$ is a Lagrange interpolation polynomial of degree
$s-1$ that matches $N\left(u(t)\right.$ at the points $t=c_{1} h, c_{2} h, \ldots, c_{s} h$ then

$$
\begin{gathered}
\phi^{[1]}(\lambda)(h L)=\frac{e^{\lambda h L}-I}{\lambda h L}, \phi^{[2]}(\lambda)(h L)=\frac{e^{\lambda h L}-\lambda h L-I}{(\lambda h L)^{2}}, \\
\phi^{[i+1]}(\lambda)(h L)=\frac{\phi^{[i]}(\lambda)(h L)-\phi^{[i]}(0)(h L)}{\lambda h L} i=1,2,3, \ldots
\end{gathered}
$$

Approximations to $N(u(t))$

- If $N(u(t)) \approx P_{s-1}(t)$, where $P_{s-1}(t)$ is a Lagrange interpolation polynomial of degree
$s-1$ that matches $N\left(u(t)\right.$ at the points $t=c_{1} h, c_{2} h, \ldots, c_{s} h$ then

$$
\begin{aligned}
\phi^{[1]}(\lambda)(h L) & =1 I_{m}+\frac{\lambda}{2!} h L+\frac{\lambda^{2}}{3!}(h L)^{2}+\frac{\lambda^{3}}{4!}(h L)^{3}+\frac{\lambda^{4}}{5!}(h L)^{4}+\cdots, \\
\phi^{[2]}(\lambda)(h L) & =\frac{1}{2!} I_{m}+\frac{\lambda}{3!}(h L)+\frac{\lambda^{2}}{4!}(h L)^{2}+\frac{\lambda^{3}}{5!}(h L)^{3}+\frac{\lambda^{4}}{6!}(h L)^{4}+\cdots, \\
\phi^{[3]}(\lambda)(h L) & =\frac{1}{3!} I_{m}+\frac{\lambda}{4!}(h L)+\frac{\lambda^{2}}{5!}(h L)^{2}+\frac{\lambda^{3}}{6!}(h L)^{3}+\frac{\lambda^{4}}{7!}(h L)^{4}+\cdots .
\end{aligned}
$$

Approximations to $N(u(t))$

- If $N(u(t)) \approx P_{s-1}(t)$, where $P_{s-1}(t)$ is a Lagrange interpolation polynomial of degree
$s-1$ that matches $N\left(u(t)\right.$ at the points $t=c_{1} h, c_{2} h, \ldots, c_{s} h$ then

$$
\begin{aligned}
\phi^{[1]}(\lambda)(h L) & =1 I_{m}+\frac{\lambda}{2!} h L+\frac{\lambda^{2}}{3!}(h L)^{2}+\frac{\lambda^{3}}{4!}(h L)^{3}+\frac{\lambda^{4}}{5!}(h L)^{4}+\cdots, \\
\phi^{[2]}(\lambda)(h L) & =\frac{1}{2!} I_{m}+\frac{\lambda}{3!}(h L)+\frac{\lambda^{2}}{4!}(h L)^{2}+\frac{\lambda^{3}}{5!}(h L)^{3}+\frac{\lambda^{4}}{6!}(h L)^{4}+\cdots, \\
\phi^{[3]}(\lambda)(h L) & =\frac{1}{3!} I_{m}+\frac{\lambda}{4!}(h L)+\frac{\lambda^{2}}{5!}(h L)^{2}+\frac{\lambda^{3}}{6!}(h L)^{3}+\frac{\lambda^{4}}{7!}(h L)^{4}+\cdots .
\end{aligned}
$$

- If $N(u(t)) \approx T_{s-1}(t)$, where $T_{s-1}(t)$ is a trigonometrical polynomial of $\sin (\alpha t)$, then

$$
\begin{gathered}
\phi^{[1]}(\lambda)(h L)=\frac{e^{\lambda h L}-I}{\lambda h L}, \phi^{[2]}(\lambda)(h L)=\frac{e^{\lambda h L}-L \sin (\lambda h)-\cos (\lambda h)}{\lambda h(L+I)^{2}}, \\
\phi^{[\alpha+1]}(\lambda)(h L)=\frac{\alpha e^{\lambda h L}-L \sin (\alpha \lambda h)-\alpha \cos (\alpha \lambda h)}{\lambda h\left(L^{2}+\alpha^{2} I\right)} \quad \alpha=1,2,3, \ldots
\end{gathered}
$$

Exponential Collocation Methods (1/2)

Recall vcf

$$
u_{n+1}=\exp (\mathbf{L} h) u_{n}+\exp (\mathbf{L} h) \int_{0}^{h} \exp (-\mathbf{L} \tau) \mathbf{N}\left(u\left(t_{n}+\tau\right)\right) d \tau
$$

Exponential Collocation Methods (1/2)

Recall vcf

$$
u_{n+1}=\exp (\mathbf{L} h) u_{n}+\exp (\mathbf{L} h) \int_{0}^{h} \exp (-\mathbf{L} \tau) \mathbf{N}\left(u\left(t_{n}+\tau\right)\right) d \tau
$$

- choose collocation nodes c_{1}, \ldots, c_{s}
- let $u_{n} \approx u\left(t_{n}\right), U_{n, i} \approx u\left(t_{n}+c_{i} h\right)$
- p_{n} collocational polynomial of degree $s-1 p_{n}\left(c_{i} h\right)=\mathbf{N}\left(U_{n, i}\right)$

Exponential Collocation Methods (1/2)

Recall vcf

$$
u_{n+1}=\exp (\mathbf{L} h) u_{n}+\exp (\mathbf{L} h) \int_{0}^{h} \exp (-\mathbf{L} \tau) \mathbf{N}\left(u\left(t_{n}+\tau\right)\right) d \tau
$$

- choose collocation nodes c_{1}, \ldots, c_{s}
- let $u_{n} \approx u\left(t_{n}\right), U_{n, i} \approx u\left(t_{n}+c_{i} h\right)$
- p_{n} collocational polynomial of degree $s-1 p_{n}\left(c_{i} h\right)=\mathbf{N}\left(U_{n, i}\right)$
- explicit methods: $p_{n, i}$ polynomial of degree $i-1$ using $\mathbf{N}\left(U_{n, j}\right), \quad j \leq i-1$

$$
\begin{gathered}
U_{n, i}=e^{\mathbf{L} h} u_{n}+\int_{0}^{c_{i} h} e^{\left(c_{i} h-\tau\right) \mathbf{L}} p_{n, i}(\tau) d \tau \\
u_{n, i}=e^{\mathbf{L} h} u_{n}+\int_{0}^{h} e^{(h-\tau) \mathbf{L}} p_{n}(\tau) d \tau
\end{gathered}
$$

Exponential Collocation Methods (2/2)

key point: integrals can be calculated exactly

$$
\begin{gathered}
\int_{0}^{c_{i} h} e^{\left(c_{i} h-\tau\right) \mathbf{L}} p_{n, i}(\tau) d \tau=h \sum_{j=1}^{s} a_{i j}\left(c_{i} h \mathbf{L}\right) \mathbf{N}\left(U_{n, j}\right) \\
\int_{0}^{h} e^{(h-\tau) \mathbf{L}} p_{n}(\tau) d \tau=h \sum_{i=1}^{s} b_{i}(h \mathbf{L}) \mathbf{N}\left(U_{n, i}\right)
\end{gathered}
$$

Exponential Collocation Methods (2/2)

key point: integrals can be calculated exactly

$$
\begin{gathered}
\int_{0}^{c_{i} h} e^{\left(c_{i} h-\tau\right) \mathbf{L}} p_{n, i}(\tau) d \tau=h \sum_{j=1}^{s} a_{i j}\left(c_{i} h \mathbf{L}\right) \mathbf{N}\left(U_{n, j}\right) \\
\int_{0}^{h} e^{(h-\tau) \mathbf{L}} p_{n}(\tau) d \tau=h \sum_{i=1}^{s} b_{i}(h \mathbf{L}) \mathbf{N}\left(U_{n, i}\right)
\end{gathered}
$$

coefficients $b_{i}, \quad a_{i j}$ are linear combination of $\phi^{[1]}, \ldots, \phi^{[s]}$ (Beylkin, Keiser, Vozovi'98) defined as

$$
\phi^{[i]}(-t \mathbf{L})=\frac{1}{(i-1)!t^{j}} \int_{0}^{t}(t-\tau)^{i-1} e^{-\tau \mathbf{L}} d \tau, \quad i \geq 1
$$

Exponential Collocation Methods (2/2)

key point: integrals can be calculated exactly

$$
\begin{gathered}
\int_{0}^{c_{i} h} e^{\left(c_{i} h-\tau\right) \mathbf{L}} p_{n, i}(\tau) d \tau=h \sum_{j=1}^{s} a_{i j}\left(c_{i} h \mathbf{L}\right) \mathbf{N}\left(U_{n, j}\right) \\
\int_{0}^{h} e^{(h-\tau) \mathbf{L}} p_{n}(\tau) d \tau=h \sum_{i=1}^{s} b_{i}(h \mathbf{L}) \mathbf{N}\left(U_{n, i}\right)
\end{gathered}
$$

coefficients $b_{i}, \quad a_{i j}$ are linear combination of $\phi^{[1]}, \ldots, \phi^{[s]}$ (Beylkin, Keiser, Vozovi'98) defined as

$$
\phi^{[i]}(-t \mathbf{L})=\frac{1}{(i-1)!t^{j}} \int_{0}^{t}(t-\tau)^{i-1} e^{-\tau \mathbf{L}} d \tau, \quad i \geq 1
$$

- No need of new order theory
- Easy to solve all order conditions

Exponential Collocation Methods (2/2)

key point: integrals can be calculated exactly

$$
\begin{gathered}
\int_{0}^{c_{i} h} e^{\left(c_{i} h-\tau\right) \mathbf{L}} p_{n, i}(\tau) d \tau=h \sum_{j=1}^{s} a_{i j}\left(c_{i} h \mathbf{L}\right) \mathbf{N}\left(U_{n, j}\right) \\
\int_{0}^{h} e^{(h-\tau) \mathbf{L}} p_{n}(\tau) d \tau=h \sum_{i=1}^{s} b_{i}(h \mathbf{L}) \mathbf{N}\left(U_{n, i}\right)
\end{gathered}
$$

coefficients $b_{i}, \quad a_{i j}$ are linear combination of $\phi^{[1]}, \ldots, \phi^{[s]}$ (Beylkin, Keiser, Vozovi'98) defined as

$$
\phi^{[i]}(-t \mathbf{L})=\frac{1}{(i-1)!t^{j}} \int_{0}^{t}(t-\tau)^{i-1} e^{-\tau \mathbf{L}} d \tau, \quad i \geq 1
$$

- Are they too restrictive in the choice of the quadrature formula?
- What if $c_{i}=c_{j}$?
- How to analyze the methods of Cox and Matthews and Krogstad?

The ϕ function

The generality of the ϕ functions is not known. For $\lambda \in \mathbb{R}$ and $h L \in \mathbb{R}^{m \times m}$, let

$$
\phi^{[i]}(\lambda)(h L)=\sum_{j=0}^{\infty} \phi_{j}^{[i]}(\lambda)(h L)^{j} .
$$

The ϕ function

The generality of the ϕ functions is not known. For $\lambda \in \mathbb{R}$ and $h L \in \mathbb{R}^{m \times m}$, let

$$
\phi^{[i]}(\lambda)(h L)=\sum_{j=0}^{\infty} \phi_{j}^{[i]}(\lambda)(h L)^{j} .
$$

The ϕ function must

- Be computed exactly or to arbitrary high order cheaply.
- Other requirement?

The ϕ function

The generality of the ϕ functions is not known. For $\lambda \in \mathbb{R}$ and $h L \in \mathbb{R}^{m \times m}$, let

$$
\phi^{[i]}(\lambda)(h L)=\sum_{j=0}^{\infty} \phi_{j}^{[i]}(\lambda)(h L)^{j} .
$$

The ϕ function must

- Be computed exactly or to arbitrary high order cheaply.
- Other requirement?

The ϕ functions of the IF and ETD work. Certain their linear combinations also work. Are there others?

The method coefficients

The matrix A is defined as

$$
A=\sum_{i=1}^{d} \Phi^{[i]}(c)(h L)\left(\alpha^{(i)} \otimes I_{m}\right),
$$

where $\alpha^{(i)}$ are $s \times s$ strictly lower triangular matrices with the first i rows equal to zero and m is the dimensionality of the problem.

The method coefficients

The matrix A is defined as

$$
A=\sum_{i=1}^{d} \Phi^{[i]}(c)(h L)\left(\alpha^{(i)} \otimes I_{m}\right),
$$

where $\alpha^{(i)}$ are $s \times s$ strictly lower triangular matrices with the first i rows equal to zero and m is the dimensionality of the problem.
The matrix b^{T} is defined as

$$
b^{T}=\sum_{i=1}^{s} \phi^{[i]}(1)(h L)\left(\beta^{(i)^{T}} \otimes I_{m}\right) .
$$

where $\beta^{(i)}$ are arbitrary s vectors.

The method coefficients

The matrix A is defined as

$$
A=\sum_{i=1}^{d} \Phi^{[i]}(c)(h L)\left(\alpha^{(i)} \otimes I_{m}\right),
$$

where $\alpha^{(i)}$ are $s \times s$ strictly lower triangular matrices with the first i rows equal to zero and m is the dimensionality of the problem.
The matrix b^{T} is defined as

$$
b^{T}=\sum_{i=1}^{s} \phi^{[i]}(1)(h L)\left(\beta^{(i)^{T}} \otimes I_{m}\right) .
$$

where $\beta^{(i)}$ are arbitrary s vectors.
The matrix $\Phi^{[i]}$ is

$$
\Phi^{[i]}(c)(h L)=\operatorname{diag}\left(\phi^{[i]}\left(c_{1}\right)(h L), \ldots, \phi^{[i]}\left(c_{s}\right)(h L)\right)
$$

Formulation of the method

$$
\begin{aligned}
U^{[n]} & =A h N\left(U^{[n]}\right)+e^{c h L} u_{n-1} \\
u_{n} & =b^{T} h N\left(U^{[n]}\right)+e^{h L} u_{n-1}
\end{aligned}
$$

Formulation of the method

$$
\begin{aligned}
U^{[n]} & =A h N\left(U^{[n]}\right)+e^{c h L} u_{n-1} \\
u_{n} & =b^{T} h N\left(U^{[n]}\right)+e^{h L} u_{n-1}
\end{aligned}
$$

The computations performed in step number n, are

$$
\left[\begin{array}{c}
U^{[n]} \\
\hline u_{n}
\end{array}\right]=\left[\begin{array}{c|c}
A & e^{c h L} \\
\hline b^{T} & e^{h L}
\end{array}\right]\left[\begin{array}{c}
h N\left(U^{[n]}\right) \\
\hline u_{n-1}
\end{array}\right]
$$

Formulation of the method

$$
\begin{aligned}
U^{[n]} & =A h N\left(U^{[n]}\right)+e^{c h L} u_{n-1}, \\
u_{n} & =b^{T} h N\left(U^{[n]}\right)+e^{h L} u_{n-1}
\end{aligned}
$$

The computations performed in step number n, are

$$
\left[\begin{array}{c}
U^{[n]} \\
\hline u_{n}
\end{array}\right]=\left[\begin{array}{c|c}
A & e^{c h L} \\
\hline b^{T} & e^{h L}
\end{array}\right]\left[\begin{array}{c}
h N\left(U^{[n]}\right) \\
\hline u_{n-1}
\end{array}\right]
$$

where the corresponding vectors are

$$
U^{[n]}=\left[\begin{array}{c}
U_{1}^{[n]} \\
U_{2}^{[n]} \\
\vdots \\
U_{s}^{[n]}
\end{array}\right] \quad N\left(U^{[n]}\right)=\left[\begin{array}{c}
N\left(U_{1}^{[n]}\right) \\
N\left(U_{2}^{[n]}\right) \\
\vdots \\
N\left(U_{s}^{[n]}\right)
\end{array}\right] \quad e^{c h L}=\left[\begin{array}{c}
e^{c_{1} h L} \\
e^{c_{2} h L} \\
\vdots \\
e^{c_{s} h L}
\end{array}\right]
$$

Formulation of the method

$$
\begin{aligned}
U^{[n]} & =A h N\left(U^{[n]}\right)+e^{c h L} u_{n-1}, \\
u_{n} & =b^{T} h N\left(U^{[n]}\right)+e^{h L} u_{n-1}
\end{aligned}
$$

The computations performed in step number n, are

$$
\left[\begin{array}{c}
U^{[n]} \\
\hline u_{n}
\end{array}\right]=\left[\begin{array}{c|c}
A & e^{c h L} \\
\hline b^{T} & e^{h L}
\end{array}\right]\left[\begin{array}{c}
h N\left(U^{[n]}\right) \\
\hline u_{n-1}
\end{array}\right]
$$

alternative representation of the method in a more Runge-Kutta tabelau formulation is

c	$\alpha^{(1)}$	$\alpha^{(2)}$	\cdots	$\alpha^{(s-1)}$	
	$\beta^{(1)^{T}}$	$\beta^{(2)^{T}}$	\cdots	$\beta^{(s-1)^{T}}$	$\beta^{(s)^{T}}$

General formulation

A 3 stage example of the general formulation is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & e^{c_{1} h L} \\
a_{21}^{1} \phi^{1} & 0 & 0 & e^{c_{2} h L} \\
a_{31}^{1} \phi^{1}+a_{31}^{2} \phi^{2} & a_{32}^{1} \phi^{1}+a_{32}^{2} \phi^{2} & 0 & e^{c_{3} h L} \\
\hline b_{1}^{1} \phi^{1}+b_{1}^{2} \phi^{2}+b_{1}^{3} \phi^{3} & b_{2}^{1} \phi^{1}+b_{2}^{2} \phi^{2}+b_{3}^{3} \phi^{3} & b_{3}^{1} \phi^{1}+b_{3}^{1} \phi^{2}+b_{3}^{3} \phi^{3} & e^{h L}
\end{array}\right]
$$

General formulation

ETD4-Kr of Krogstad

0		
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}$	$\phi^{[2]}$
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}-\phi^{[2]}$	0
1	$\phi^{[1]}-2 \phi^{[2]}$	$2 \phi^{[2]}$
	$4 \phi^{[3]}-3 \phi^{[2]}+\phi^{[1]}$	$-4 \phi^{[3]}+2 \phi^{[2]}$

General formulation

ETDRK4SW of Strehmel and Weiner

0			
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}$		
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}-\frac{1}{2} \phi^{[2]}$	$-2 \phi^{[2]}$	$4 \phi^{[2]}$
1	$\phi^{[1]}-2 \phi^{[2]}$	0	$-8 \phi^{[3]}+4 \phi^{[2]}$

Order theory

- Associate a white node with L and black node with N
- Elementary differentials can be represented by bi-coloured rooted trees where any white node has only one child.

Order theory

- Associate a white node with L and black node with N
- Elementary differentials can be represented by bi-coloured rooted trees where any white node has only one child.

The number of rooted trees

n	1	2	3	4	5	6	7	8
θ_{n}	2	4	11	34	117	421	1589	6162
$\Theta=\sum_{i}^{n} \theta_{n}$	2	6	17	51	168	589	2178	8340

Comparison with ARK Methods

- The order theory is the same

Comparison with ARK Methods

- The order theory is the same
- ARK use rational approximations to the exp and $\phi^{[i]}$

Exp ${ }^{3} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet}$

Comparison with ARK Methods

- The order theory is the same
- ARK use rational approximations to the exp and $\phi^{[i]}$
- The choice of the $\phi^{[i]}$ functions in ARK is restricted to the ETD set.

Comparison with ARK Methods

- The order theory is the same
- ARK use rational approximations to the exp and $\phi^{[i]}$
- The choice of the $\phi^{[i]}$ functions in ARK is restricted to the ETD set.
- Exp. RK methods include IF, ECM and ETDRK methods of Krogstad and Cox and Matthews as special cases.

Connections with CF

We can rewrite the equation (1) in the form

$$
u^{\prime}=(\mathbf{L}, \mathbf{N}(u, t)) \cdot u=F_{u, t}(u), u(0)=u_{0}
$$

where . represents the Lie algebra action

$$
(\mathbf{A}, a) \cdot u=\mathbf{A} u+a
$$

Connections with CF

We can rewrite the equation (1) in the form

$$
u^{\prime}=(\mathbf{L}, \mathbf{N}(u, t)) \cdot u=F_{u, t}(u), u(0)=u_{0}
$$

where . represents the Lie algebra action

$$
(\mathbf{A}, a) \cdot u=\mathbf{A} u+a
$$

Let $\hat{F}_{\hat{u}, \hat{t}}(u)$ be the Frozen Vector Field at the point (\hat{u}, \hat{t})

$$
\hat{F}_{\hat{u}, \hat{t}}(u)=(\mathbf{L}, \mathbf{N}(\hat{u}, \hat{t})) \cdot u=\mathbf{L} u+\mathbf{N}(\hat{u}, \hat{t})
$$

Connections with CF

We can rewrite the equation (1) in the form

$$
u^{\prime}=(\mathbf{L}, \mathbf{N}(u, t)) \cdot u=F_{u, t}(u), u(0)=u_{0}
$$

where . represents the Lie algebra action

$$
(\mathbf{A}, a) \cdot u=\mathbf{A} u+a
$$

Let $\hat{F}_{\hat{u}, \hat{t}}(u)$ be the Frozen Vector Field at the point (\hat{u}, \hat{t})

$$
\hat{F}_{\hat{u}, \hat{t}}(u)=(\mathbf{L}, \mathbf{N}(\hat{u}, \hat{t})) \cdot u=\mathbf{L} u+\mathbf{N}(\hat{u}, \hat{t})
$$

The flow of such vector field is the solution of $u^{\prime}=\hat{F}_{\hat{u}, \hat{t}}(u), \quad u(0)=u_{0}$

$$
\phi_{t, \hat{F}}\left(u_{0}\right)=\operatorname{Exp}\left(t \hat{F}_{\hat{u}, \hat{t}}\right) \cdot u_{0}=\exp (t \mathbf{L}) u_{0}+t \phi^{[1]}(t \mathbf{L}) \mathbf{N}(\hat{u}, \hat{t})
$$

CF Method

Algorithm (CF)

for $r=1: s$ do

$$
\begin{aligned}
& Y_{r}=\operatorname{Exp}\left(\sum_{k} \alpha_{r, J}^{k} F_{k}\right) \cdots \operatorname{Exp}\left(\sum_{k} \alpha_{r, 1}^{k} F_{k}\right)(p) \\
& F_{r}=h F_{Y_{r}}=h \sum_{i} f_{i}\left(Y_{r}\right) E_{i}
\end{aligned}
$$

end
$y_{1}=\operatorname{Exp}\left(\sum_{k} \beta_{J}^{k} F_{k}\right) \cdots \operatorname{Exp}\left(\sum_{k} \beta_{1}^{k} F_{k}\right) p$

Numerical schemes

ETDCF4 of Celledoni, Marthinse and Owren

0				
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}$			
$\frac{1}{2}$	0	$\frac{1}{2} \phi^{[1]}$		
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}$	0	0	
$\frac{1}{2}$	$-\frac{1}{2} \phi^{[1]}$	0	$\phi^{[1]}$	
	$\frac{1}{4} \phi^{[1]}$	$\frac{1}{6} \phi^{[1]}$	$\frac{1}{6} \phi^{[1]}$	$-\frac{1}{12} \phi^{[1]}$
	$-\frac{1}{12} \phi^{[1]}$	$\frac{1}{6} \phi^{[1]}$	$\frac{1}{6} \phi^{[1]}$	$\frac{1}{4} \phi^{[1]}$

Numerical schemes

ETDRK4 of Cox and Matthews

0			
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}$	$\frac{1}{2} \phi^{[1]}$	
$\frac{1}{2}$	0	0	0
$\frac{1}{2}$	$\frac{1}{2} \phi^{[1]}$	0	$\phi^{[1]}$
$\frac{1}{2}$	$-\frac{1}{2} \phi^{[1]}$	$-4 \phi^{[3]}+2 \phi^{[2]}$	$-4 \phi^{[3]}+2 \phi^{[2]}$

Numerical experiments

Example 1: Kuramoto-Sivashinsky equation

$$
u_{t}=-u u_{x}-u_{x x}-u_{x x x x x}, \quad x \in[0,32 \pi]
$$

with periodic boundary conditions and with the initial condition

$$
u(x, 0)=\cos \left(\frac{x}{16}\right)\left(1+\sin \left(\frac{x}{16}\right)\right)
$$

Numerical experiments

Example 1: Kuramoto-Sivashinsky equation

$$
u_{t}=-u u_{x}-u_{x x}-u_{x x x x x}, \quad x \in[0,32 \pi]
$$

with periodic boundary conditions and with the initial condition

$$
u(x, 0)=\cos \left(\frac{x}{16}\right)\left(1+\sin \left(\frac{x}{16}\right)\right) .
$$

We discretise the spatial part using Fourier spectral method. The transformed equation in the Fourier space is

$$
\hat{u}_{t}=-\frac{i k}{2} \hat{u}^{2}+\left(k^{2}-k^{4}\right) \hat{u},
$$

$(\mathbf{L} \hat{u})(k)=\left(k^{2}-k^{4}\right) \hat{u}(k)$ and $\mathbf{N}(\hat{u}, t)=-\frac{i k}{2}\left(F\left(\left(F^{-1}(\hat{u})\right)^{2}\right)\right)$

Kuramoto-Sivashinsky equation

$\bullet \quad 0$

Numerical experiments

Example 2: Allen-Cahn equation

$$
u_{t}=\varepsilon u_{x x}+u-u^{3}, \quad x \in[-1,1]
$$

with $\varepsilon=0.01$ and with boundary and initial conditions

$$
u(-1, t)=-1, \quad u(1, t)=1, \quad u(x, 0)=.53 x+.47 \sin (-1.5 \pi x)
$$

Numerical experiments

Example 2: Allen-Cahn equation

$$
u_{t}=\varepsilon u_{x x}+u-u^{3}, \quad x \in[-1,1]
$$

with $\varepsilon=0.01$ and with boundary and initial conditions

$$
u(-1, t)=-1, \quad u(1, t)=1, \quad u(x, 0)=.53 x+.47 \sin (-1.5 \pi x)
$$

After discretisation in space.

$$
u_{t}=\mathbf{L} u+\mathbf{N}(u(t))
$$

where $\mathbf{L}=\varepsilon D^{2}, \quad \mathbf{N}(u(t))=u-u^{3}$ and D is the Chebyshev differentiation matrix

Allen-Cahn equation

Allen-Cahn equation

Numerical experiments

Example 3: Korteweg de Vries equation

$$
u_{t}=-u_{x x x}-u u_{x}, \quad x \in[-\pi, \pi]
$$

with periodic boundary conditions and with initial condition

$$
u(x, 0)=3 C / \cosh ^{2}(\sqrt{C} x / 2)
$$

where $C=625$. The exact solution is $2 \pi / C$ periodic and is given by $u(x, t)=u(x-$ $C t, 0)$. We use a 256 -point Fourier spectral discretization in space. In this case the matrix L is again diagonal. The integration in time is done for one period.

KdV equation

$\bullet \bullet \bullet$

KdV equation

Generalized IF Methods

Consider the semi discretised problem (1)

$$
u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t)), u\left(t_{0}\right)=u_{0}
$$

Generalized IF Methods

Consider the semi discretised problem (1)

$$
u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t)), u\left(t_{0}\right)=u_{0}
$$

Change of variables

$$
u(t)=\exp (t L) v(t)=\phi_{t, \hat{F}}(v(t)),
$$

where $\hat{F}(\hat{u}, t)=L \hat{u}$ approximates F around u_{0}.
The transformed equation is

$$
v^{\prime}(t)=\exp (-t L) N(\exp (t L) v(t))
$$

Generalized IF Methods

Consider the semi discretised problem (1)

$$
u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t)), u\left(t_{0}\right)=u_{0}
$$

In general (Krogstad; Mayday, Patera and Rønquist) substitute

$$
u(t)=\phi_{t, \hat{F}}(v(t))
$$

where $\hat{F}(\hat{u}, t)=L \hat{u}+\mathrm{N}(\mathrm{t})$ approximates F around u_{0}.
The transformed equation is

$$
v^{\prime}(t)=\exp (-t L)[N(\exp (t L) v(t))-N(\mathrm{t})]
$$

Now apply a numerical method to the transformed equation.

GIF like GLMs

- Information from past was used to capture key features of F.

GIF like GLMs

- Information from past was used to capture key features of F.
- These methods reduced to a methods with maximum stage order when $L=0$.

GIF like GLMs

- Information from past was used to capture key features of F.
- These methods reduced to a methods with maximum stage order when $L=0$.
- This is at the cost of smaller stability regions.

GIF like GLMs

- Information from past was used to capture key features of F.
- These methods reduced to a methods with maximum stage order when $L=0$.
- This is at the cost of smaller stability regions.
- When $L=0$ the GIF methods are GLMs.

GIF like GLMs

$$
\left[\begin{array}{c}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4} \\
\hline u_{n+1} \\
h N_{n} \\
h N_{n-1}
\end{array}\right]=\left[\begin{array}{cccc|ccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\frac{17}{24} & 0 & 0 & 0 & 1 & -\frac{7}{24} & \frac{1}{12} \\
-\frac{11}{48} & \frac{1}{2} & 0 & 0 & 1 & \frac{1}{3} & -\frac{5}{48} \\
\frac{1}{24} & 0 & 1 & 0 & 1 & -\frac{1}{12} & \frac{1}{24} \\
\hline \frac{1}{6} & \frac{1}{3} & \frac{1}{3} & \frac{1}{6} & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
h N\left(U_{1}\right) \\
h N\left(U_{2}\right) \\
h N\left(U_{3}\right) \\
h N\left(U_{4}\right) \\
\hline u_{n} \\
h N_{n-1} \\
h N_{n-2}
\end{array}\right]
$$

The GIF showed significant improvements over all other methods.

More Experiments

$0 \quad 0$

GIF like Lie-group methods

We can rewrite the equation $u^{\prime}=\mathbf{L} u+\mathbf{N}(u(t), t), u\left(t_{0}\right)=u_{0}$ in the form

$$
\begin{aligned}
& \dot{y}=\left(\mathbf{A}_{u, t}, a\right) \cdot y=\tilde{F}_{u, t}(y) \\
& y(0)=y_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{A}_{u, t}=\left(\begin{array}{l}
\mathbf{L} \\
\frac{\mathbf{N}(u, t)-\mathbf{N}_{0}}{t} \\
0
\end{array}\right), a=\binom{\mathbf{N}_{0}}{1}, \\
& y=\binom{u}{v}, y_{0}=\binom{u_{0}}{0}, \mathbf{N}_{0}=\mathbf{N}\left(u_{0}, 0\right)
\end{aligned}
$$

GIF like Lie-group methods

Let $\tilde{F}_{\hat{u}, \hat{t}}(y)$ be the Frozen Vector Field at the point (\hat{u}, \hat{t})

$$
\tilde{F}_{\hat{u}, \hat{t}}(u)=\left(\mathbf{A}_{\hat{u}, \hat{t}}, a\right) \cdot y=\mathbf{A}_{\hat{u}, \hat{t}} y+a,
$$

where

$$
\mathbf{A}_{\hat{u}, \hat{t}}=\left(\begin{array}{cc}
\mathbf{L} & \frac{\hat{\mathbf{N}}-\mathbf{N}_{0}}{\hat{t}} \\
0 & 0
\end{array}\right), \quad \hat{\mathbf{N}}=\mathbf{N}(\hat{u}, \hat{t})
$$

GIF like Lie-group methods

Let $\tilde{F}_{\hat{u}, \hat{t}}(y)$ be the Frozen Vector Field at the point (\hat{u}, \hat{t})

$$
\tilde{F}_{\hat{u}, \hat{t}}(u)=\left(\mathbf{A}_{\hat{u}, \hat{t}}, a\right) \cdot y=\mathbf{A}_{\hat{u}, \hat{t}} y+a,
$$

where

$$
\mathbf{A}_{\hat{u}, \hat{t}}=\left(\begin{array}{cc}
\mathbf{L} & \frac{\hat{\mathbf{N}}-\mathbf{N}_{0}}{\hat{t}} \\
0 & 0
\end{array}\right), \quad \hat{\mathbf{N}}=\mathbf{N}(\hat{u}, \hat{t})
$$

The flow of such vector field is the solution of $\dot{y}=\tilde{F}_{\widehat{u}, \hat{t}}(y), \quad y(0)=y_{0}$

$$
\phi_{t, \tilde{F}}\left(y_{0}\right)=\operatorname{Exp}\left(t \tilde{F}_{\hat{u}, \hat{t}}\right) \cdot y_{0}=\binom{\exp (t \mathbf{L}) u_{0}+t \phi^{[1]}(t \mathbf{L}) \mathbf{N}_{0}+t^{2} \phi^{[2]}(t \mathbf{L}) \frac{\hat{\mathbf{N}}-\mathbf{N}_{0}}{\hat{t}}}{t}
$$

GIF like Lie-group methods

Let $\tilde{F}_{\hat{u}, \hat{t}}(y)$ be the Frozen Vector Field at the point (\hat{u}, \hat{t})

$$
\tilde{F}_{\hat{u}, \hat{t}}(u)=\left(\mathbf{A}_{\hat{u}, \hat{t}}, a\right) \cdot y=\mathbf{A}_{\hat{u}, \hat{t}} y+a,
$$

where

$$
\mathbf{A}_{\hat{u}, \hat{t}}=\left(\begin{array}{cc}
\mathbf{L} & \frac{\hat{\mathbf{N}}-\mathbf{N}_{0}}{\hat{t}} \\
0 & 0
\end{array}\right), \quad \hat{\mathbf{N}}=\mathbf{N}(\hat{u}, \hat{t})
$$

The flow of such vector field is the solution of $\dot{y}=\tilde{F}_{\widehat{u}, \hat{t}}(y), \quad y(0)=y_{0}$

$$
\phi_{t, \tilde{F}}\left(y_{0}\right)=\operatorname{Exp}\left(t \tilde{F}_{\hat{u}, \hat{t}}\right) \cdot y_{0}=\binom{\exp (t \mathbf{L}) u_{0}+t \phi^{[1]}(t \mathbf{L}) \mathbf{N}_{0}+t^{2} \phi^{[2]}(t \mathbf{L}) \frac{\hat{\mathbf{N}}-\mathbf{N}_{0}}{\hat{t}}}{t}
$$

and satisfies

$$
\phi_{\alpha t, \tilde{F}}=\phi_{t, \alpha \tilde{F}} \quad \phi_{\alpha t, \tilde{F}} \circ \phi_{\beta t, \tilde{F}}=\phi_{(\alpha+\beta) t, \tilde{F}}
$$

Conclusion

- The exponential Runge-Kutta methods designed to solve stiff semi discretised PDEs were introduced.

Conclusion

- The exponential Runge-Kutta methods designed to solve stiff semi discretised PDEs were introduced.
- The order theory were rederived in a more general settings.

Conclusion

- The exponential Runge-Kutta methods designed to solve stiff semi discretised PDEs were introduced.
- The order theory were rederived in a more general settings.
- The IF, ECM (ETDRK) methods are special cases of these methods.

Work in progress

- Other $\phi^{[i]}$ functions

Work in progress

- Other $\phi^{[i]}$ functions
- Effective ways of their computation

Work in progress

- Other $\phi^{[i]}$ functions
- Effective ways of their computation
- Construct alternative exponential general linear methods

Work in progress

- Other $\phi^{[i]}$ functions
- Effective ways of their computation
- Construct alternative exponential general linear methods
- B-convergence and stability results

Work in progress

- Other $\phi^{[i]}$ functions
- Effective ways of their computation
- Construct alternative exponential general linear methods
- B-convergence and stability results

References

- J. Certaine, The solution of ordinary differential equations with large time constants, Math. Meth. Dig. Comp., 129-132 (1960).
- Y. Maday, A. T. Patera and E. M. Rønquist,An operator-integration-factor splitting method for time dependant problems: Application to incompressible fluid flow, J. Sci. Comput., 263-292 (1990).
- J. D. Lawson, Generalized Runge-Kutta processes for satble systems with large Lipschitz constants, SIAM J. Num. Anal., 4, 372-380 (1967).
- S.P. Nørsett, An A-Stable modification of the Adams-Bashforth methods, Lecture Note in Mathematics, 109, 214-219 (1969).
- A. Friedli, Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differential gleichundssysteme, Lecture Note in Mathematics, 631, (1978).
- T. Steihaug A. Wolfbrandt, An Attempt to Avoid Exact Jacobian and Nonlinear Equations in the Numerical Solution of Stiff Differential Equations, Mathematics of computation, 33, 521-534 (1979).
- R. Strehmel, R. Weiner, B-convergence results for linearly implicit one step methods, BIT, 27, 264-282 (1987).

References

- M. Hochbruck, Ch. Lubich, H. Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput., 19, 1552-1574 (1998).
- G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147, 362-387 (1998).
- S.M. Cox, P.C. Matthews, Exponential time differencing for stiff systems, J. Comp. Phys. 176, 430-455 (2002)
- A.K. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, Submitted to SIAM J. Sci. Comput. (2002)
- E. Celledoni, A. Martinsen, B. Owren, Commutator-free lie group methods, FGCS 19(3), 341-352 (2003)
- S. Krogstad, Generalized integrating factor methods for stiff PDEs, available at: http://www.ii.uib.no/~stein
- M. Hochbruck, A. Osterman, Exponential Runge-Kutta methods for parabolic problems, available at:
http://techmath.uibk.ac.at/numbau/alex/publications.html

