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Introduction and Motivation

First exponential integrators were introduced as an alternative approach for solving

stiff problems

�

Certain’60 - multistep type�

Lawson’69 - multistage type

A new interest in exponential integrators for semilinear problems

where , and is a discretization parameter equal

to the number of spatial grid points.
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Exponential multistep methods

� �� � Integrating Factor methods (Lawson)

Recall

Solve exactly the linear part and then make a change of variables
(also known as Lawson transformation)

The same result can be alternatively derived by premultiplying (1) by the so called inte-

grating factor .
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Exponential multistep methods

� �� � Integrating Factor methods (Lawson)� �� � � Exponential Time Differencing metods (Certain)

Recall

Solve exactly the linear part and then make a change of variables
(also known as Lawson transformation)

The same result can be alternatively derived by premultiplying (1) by the so called inte-

grating factor .
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Solve exactly the linear part and then make a change of variables
(also known as Lawson transformation)
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The initial value problem written in the new variable is then given by
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where  � � ! " #'& $ �� .

The same result can be alternatively derived by premultiplying

(1) by the so called integrating factor .
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Integrating Factor

Consider the Jacobian of the transformed equation

( %(  � ! " # $ ( 

( � ! # $ �

Since ! " # $ � � ! # $ � " ) , it follows that the eigenvalues of
( % * (  are those of

( 
 * ( �.

For example:
IF Euler method is

where represents the stepsize of the method and .
IF implicit Euler method is
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Since ! " # $ � � ! # $ � " ) , it follows that the eigenvalues of
( % * (  are those of

( 
 * ( �.
The idea now is to apply any numerical method on the transformed equation and then to
transform back the result into the original variable.

For example:
IF Euler method is

where represents the stepsize of the method and .
IF implicit Euler method is
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More IF multistep methods

Similarly

1

-step IF Adams methods are defined as

�,+ � ! - $ �.+ " ) 	 2
354 �

6 3! 3- $/ 
+ " 3�

where

6 3are the coefficients of the Adams method and


+ " 3 � 
 � �7+ " 3� 
+ " 3� for8 � 9 � � � : �� � � � 1

.

IF BDF methods are defined as

where and are the coefficients of the underlying BDF method.
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ETD multistep methods

Similar approach to the

��

methods, but we do not make a complete change of
variables. Premultiplying the original problem (1) by the integrating factor ! " # $ we get! " # $ � � � ! " # $ � � 	 ! " # $ 
 � ��� 
 � �� ! " # $ � � � � ! " # $ 
 � ��� 
 ��

Integrating the last equation between and , we obtain

(vcf) d

The approach now is to replace the nonlinear term in the variation of constants formulae
by a Newton interpolation polynomial and then solve the resulting integral exactly.

When we obtain the ETD Euler method

In general, using higher order approximations to the nonlinear part we obtain

ETD Adams–Bashforth (Nørsett’69,..., Cox–Matthews’02).
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An alternative approach

An alternative approach for deriving exponential Adams methods, both explicit and
implicit, is to use the following result (Beylkin at al.’98)

Lemma 1. The exact solution of the initial value problem
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 � ��� 
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can be expressed in the form
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E F 3G � H �

are recursively defined as

E F� G ��H � � ! I � E F 3M ) G � H � � E F 3G ��H �J ) 3VH � for
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ETD Adams methods

The exact solution

� � 
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Its numerical approximation
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where

6� � 6 ) �� � � � 6 2 are coefficients which have to be computed by expanding in Taylor
series the nonlinear terms.

k

1 0 0 0

2 0 0

3 0

4 X

where X

Coefficients of ETD Adams–Bashforth methods.
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ETD Adams methods
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Coefficients of ETD Adams–Bashforth methods.
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ETD Adams methods
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Coefficients of ETD Adams–Moulton methods.

It is not possible to construct ETD BDF methods !
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Exponential Runge–Kuta methods

IF Runge–Kuta methods (Lawson’69)

For simplicity, we represent the initial value problem (1) in autonomous form

� � � � � 	 
 � � � 
 � � � � � 
�� � � �� �
Similarly to the the multistep case, the idea now is to apply an arbitrary a-stage
Runge–Kutta method to the transformed equation

 � � 
 � � ! " # $ 
 � ! # $  � 
 � � � % �  � �  � 
� � �  � �

and then to transform back the result into the original variable. If

b � � ; 3c � , d � � 6 3�

and e � � e 3� are the coefficients of the underlying multistage method then in terms of the
original variable the computations performed are

General form of an order 4
integrating factor method is

Uniformly distributed vector provides cheapest methods.

This structure requires only classical order conditions.

IF RK methods perform poorly for stiff problems.
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Exponential Runge–Kuta methods

IF Runge–Kuta methods (Lawson’69)

General form of an order 4 integrating factor method is

k
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History of ETD RK methods

ETD Runge–Kuta methods

�

Friedli’78
- Explicit ETD RK methods, nonstiff order 5 conditions�

Steihaug and Wolfbrand’79
-

r

methods, order conditions�

Hairer, Bader and Lubich’82
- Linearly implicit methods�

Strehmel and Weiner’82
- Adaptive RK methods, order theory, B-stability

Pure exponential Runge–Kuta methods

Hochbruck and Lubich’97
- Rosenbrock-like exponential integrators, which use the first ETD function

Munthe-Kaas’99
- Runge–Kutta Munthe-Kaas (RKMK) methods with affine action

Celledoni Marthinsen and Owren’03
- Commutator Free (CF) Lie group methods

Krogstad’03
- Generalized IF methods, connection with CF

Hochbruck and Osterman’04
- Exponential collocation methods, convergence analyze for parabolic PDEs
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History of ETD RK methods

Pure exponential Runge–Kuta methods
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Hochbruck and Lubich’97
- Rosenbrock-like exponential integrators, which use the first ETD function

E F ) G
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General format of Exp. RK methods

Aims:

�

Construct a class of exponential integrators which overcome the stiffness by using
a set of precomputed functions

E F WG

along with evaluations of the nonlinear part of
the differential equation.�

Include all exponential integrators of Runge–Kutta type in one framework.�

Derive the nonstiff order theory for this class of method
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The functions

�

The IF

E

functions are

E F 3G � e c � �/ � � � ! > g N " gs @ - $ 8 � � � : �� � � �

In general, for and , the functions could be

and must:

Be computed exactly or to arbitrary high order cheaply

Map the spectrum of to a bounded region

Given the IF and ETD functions as basis elements then
- linear combinations
- products
- inverses
produce mehods.
Other choices are also posible (approximations with trigonometric polynomials in vcf).

The exact structure of , which leads to methods is still unclear!
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The functions

In general, for

w� x
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, the
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Other choices are also posible (approximations with trigonometric polynomials in vcf).

The exact structure of , which leads to methods is still unclear!
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Formulation of the methods

The computations performed are

f 3 � {
c 4 )

|
W4 )

; F WG 3c E F WG � e 3� �/ � �/ 
 � f c � 	 ! g N - $ �.+ " ) �

�0+ � {
c 4 )

|
W4 )

6 F WGc E F WG � � � �/ � �/ 
 � f c � 	 ! - $ ��+ " ) �

where } puts a limit on the number of

E F WG

functions which can be computed,/

represents the stepsize and

f 3denotes the internal stage approximation.

Interpreted in a Runge–Kutta type tableau
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The computations performed are

f 3 � {
c 4 )

|
W4 )

; F WG 3c E F WG � e 3� �/ � �/ 
 � f c � 	 ! g N - $ �.+ " ) �

�0+ � {
c 4 )

|
W4 )

6 F WGc E F WG � � � �/ � �/ 
 � f c � 	 ! - $ ��+ " ) �

where } puts a limit on the number of

E F WG

functions which can be computed,/

represents the stepsize and

f 3denotes the internal stage approximation.

Interpreted in a Runge–Kutta type tableau

E F ) G E F X G E F | " ) G E F | G

e ; F ) G ; F X G u u u ; F | " ) G ; F | G

6 F ) G ~ 6 F X G ~ u u u 6 F | " ) G ~ 6 F | G ~
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Nonstiff order conditions

Use rooted trees and B-series.
Represent the elementary differentials using trees:�

Associate a closed node with

�

and an open node with



�

2T

�

- Bi-coloured rooted trees with one child closed nodes

1 2 3 4 5 6 7 8 9 10

2 4 11 34 117 421 1589 6162 24507 99268

2 6 17 51 168 589 2178 8340 32847 132115

The number of rooted trees in T for all orders up to ten.

Exponential Integrators - History and Recent Developments – p.16/38



Nonstiff order conditions

Use rooted trees and B-series.
Represent the elementary differentials using trees:�

Associate a closed node with

�

and an open node with



�

2T

�
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�
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Represent the elementary differentials using trees:�

Associate a closed node with

�

and an open node with



�

2T

�

- Bi-coloured rooted trees with one child closed nodes

� 1 2 3 4 5 6 7 8 9 10

�+ 2 4 11 34 117 421 1589 6162 24507 99268

� � � + 3 �+ 2 6 17 51 168 589 2178 8340 32847 132115

The number of rooted trees in

:

T

�

for all orders up to ten.

Exponential Integrators - History and Recent Developments – p.16/38



Elementary differentials and B-series

The elementary differentials are recursively generated as

� �A � � � � �
���

�
� � �A ) � � � � ifA � � ��� A ) �


 >� @ � � � � � �A ) � � � � �� � � � � �A � � � � � � ifA � � � � A ) �� � � � A � �

For an elementary weight function the B-series is

The elementary weight function for the exact solution is

where is the density of single coloured tree
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The lemmas

To obtain B-series expansions of the numerical solution we need three Lemmas.

Lemma 1. Let , with , then

where
if
if

Lemma 2. Let , then

where
if
if
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The lemmas

To obtain B-series expansions of the numerical solution we need three Lemmas.

Lemma 2. Let �� : � � � �

, with � � � � � � , then

/ 
 � � � � � � � � � � � � � � � � �
where

� � �A � � � 9

ifA � � �v� A ) �� �A ) �� � � � �A � �
ifA � � � � A ) �� � � � A � �
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The lemmas

To obtain B-series expansions of the numerical solution we need three Lemmas.

Lemma 3. Let �� : � � � �

, with � � � � � � , then

/ 
 � � � � � � � � � � � � � � � � �
where

� � �A � � � 9

ifA � � �v� A ) �� �A ) �� � � � �A � �
ifA � � � � A ) �� � � � A � �

Lemma 4. Let �� : � � � �

, then

�/ � � W � � � � � � � � �� W��� � � �

where �� W� � �A � � � �� W�" ) � � �A ) � ifA � � � � A ) �9

ifA � � � � A ) �� � � � A � �
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The lemmas

Lemma 5. Let

��� � H �

be a power series

� � ��H � � Wz � ¡ F WG H W
and let �� : � � � �

, then �� �/ � � � � ��� � � � � � �� �� � ��� � � �

where the elementary weight function satisfies,

� � � �� � � � � � � � ¡ F� G � � � � , and

� �� �� � � � �A � � Wz � ¡ F WG �� W� � �A �
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General rule

The rule for computing the elementary weight is:�

Attach

d F 3G ~

to the root open (black) node�

Attach

¢ F 3G

to all remaining nonterminal open (black) nodes�

Attach

¢ F 3G ! to all terminal open (black) nodes�

Attach

£ F 3G ! to all terminal closed (white) nodes�

Attach

�

to all remaining closed (white) nodes

where

8

is the number of closed (white) nodes below the corresponding node and

¢ F 3G � |
2 4 )

E F 2 GW � e � ; F 2 G � d F 3G ~ � |
2 4 )

E F 2 GW �� � 6 F 2 G ~ �

£ F 3G � �
� 8 	 � � t £ 3M )�
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¤ ¥§¦¨¤ª© « ¦¬¤­©®¦¨¯°© ±�¦¬¤­©
² 1 ³ ´¶µ¸·º¹¼»°½
²² 2 ³ ¾Y³ ´ µ¸·º¹ »À¿ µÁ·Â¹ ½
²Ã 2 ³ ¾YÄ ¯ ´ µ¸·º¹¼»°Å µ¸·º¹ ½
Ã ² 2 Ä ³ ´ µ�Æ<¹ »°½

²²
²

6 ³ ¾ ³ ¾ ³ ´¶µ¸·º¹ » ¿ µÁ·Â¹Ç¿ µ¸·Â¹È½

²²
Ã

6 ³ ¾Y³ ¾ Ä ¯ ´ µ¸·º¹ »À¿ µÁ·Â¹ Å µÁ·Â¹ ½

²Ã
²

6 ³ ¾ Ä ³ ´¶µ¸·º¹ » ¿ µ�ÆÉ¹Ê½

Ã ²
²

6 Ä ³ ¾Ë³ ´ µ�Æ<¹ »À¿ µÁ·Â¹ ½

²Ã
Ã

6 ³ ¾YÄÌÄ ¯ ´ µ¸·º¹ » Å Æ ½

Ã ²
Ã

6 Ä ³ ¾ Ä ¯ ´¶µ�Æ<¹¼» Å µ¸·º¹È½

ÃÃ
²

6 ÄÌÄ ³ ´ µ0ÍÎ¹¼» ½
²²�ÏÏ ²Ð Ð

3 ³ ¾v¾ ¦ ³ Ñ ³ © ´ µ¸·º¹ » ¦ ¿ µ¸·Â¹ ½ ©Ò¦ ¿ µÁ·Â¹ ½ ©
²² ÏÏ ÃÐ Ð

3 ³ ¾v¾ ¦ ³ Ñ Ä ¯°© ´ µ¸·º¹¼» ¦ ¿ µ¸·Â¹ ½ ©Ò¦ Å µ¸·º¹ ½ ©
²Ã ÏÏ ÃÐ Ð

3 ³ ¾v¾ ¦ Ä ¯ Ñ Ä ¯Ó© ´ µ¸·º¹ » ¦ Å µ¸·Â¹ ½ ©®¦ Å µ¸·Â¹ ½ ©

Relations between elementary differentials and elementary weights
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Exp. RK methods for parabolic PDEs

� Stiff order theory for ETD RK methods for parabolic PDEs (Hochbruck–Ostermann’04)�

Abstract ODEs on a Banach spaces�

Sectorial operators�

Locally Lipschitz continuous functions

Implicit Exp RK methods of collocation type

The methods converge at least with their stage order. Higher and even fractional order of
convergence is possible if additional temporal and spatial regularity are required
Hochbruck–Ostermann’04.

No need of new order theory

Higher stage order

Solve the nonlinear equations by fixed-point iterations
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The error bounds depend form the space where the solution evolves!

It is not possible to construct stiff fourth order
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General linear methods

Consider � � � Ô � � � 
 � � � � � 
�� � � �� � Ô � � � 
 � � � � � � � ��
Assume that at the beginning of step number �, Õ quantities

� F+ " ) G) � � F+ " ) GX �� � � � � F+ " ) GÖ �
are available from approximations computed in the previous steps. If

f ) � fX �� � � � f {

are the internal stage approximations to the solution at points near the current time step,
then then the quantities imported into and evaluated in step number � are related by the
equations

f 3 � {
c 4 )

� 3c/ Ô � f× � 	 Ö
c 4 )

� 3c � F+ " ) Gc � 8 � � � : �� � � a �

� F+ G3 � {
c 4 )

d 3c/ Ô � f× � 	 Ö
c 4 )  3c � F+ " ) Gc � 8 � � � : �� � � Õ�
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Vector notations

f 3 � {
c 4 )

� 3c/ Ô � f× � 	 Ö
c 4 )

� 3c � F+ " ) Gc � 8 � � � : �� � � a �

� F+ G3 � {
c 4 )

d 3c/ Ô � f× � 	 Ö
c 4 )  3c � F+ " ) Gc � 8 � � � : �� � � Õ�

allows us to rewrite the above method in the following more compact form

where is the Kronecker product and is the identity matrix.
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Vector notations

f 3 � {
c 4 )

� 3c/ Ô � f× � 	 Ö
c 4 )

� 3c � F+ " ) Gc � 8 � � � : �� � � a �

� F+ G3 � {
c 4 )

d 3c/ Ô � f× � 	 Ö
c 4 )  3c � F+ " ) Gc � 8 � � � : �� � � Õ�

Introducing the vector notations

f �
k

lQlPlQlmlmlQn
f )

fX

... f {
o

pQpPpQpmpmpQq
� Ô � f � �

k
lQlPlQlmlmlQn

Ô � f ) �Ô � fX �
...Ô � f { �

o
pQpPpQpmpmpQq

� � F+ " ) G �
k

lQlPlQlmlmlQn
� F+ " ) G)

� F+ " ) GX

...� F+ " ) GÖ
o

pQpPpQpmpmpQq
� � F0+ G �

k
lQlPlQlmlmlQn

� F+ G)
� F+ GX

...� F+ GÖ
o

pQpPpQpmpmpQq
�

allows us to rewrite the above method in the following more compact form

where is the Kronecker product and is the identity matrix.
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Vector notations

f 3 � {
c 4 )

� 3c/ Ô � f× � 	 Ö
c 4 )

� 3c � F+ " ) Gc � 8 � � � : �� � � a �

� F+ G3 � {
c 4 )

d 3c/ Ô � f× � 	 Ö
c 4 )  3c � F+ " ) Gc � 8 � � � : �� � � Õ�

allows us to rewrite the above method in the following more compact form

k
n f
� F+ G

o
q �

k
n ¢Ø � � � Ø � �

� Ø � � Ù Ø � �
o

q
k

n / Ô � f �
� F+ " ) G

o
q �

where Ø is the Kronecker product and

� � is the

�'Ú �

identity matrix.
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Examples of GLMs

Consider

1

-step linear multistep methods of Adams type

�,+ � �.+ " ) 	 / 2
3 4 �

6 3 Ô � �7+ " 3��
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Examples of GLMs

Consider

1

-step linear multistep methods of Adams type

�,+ � �.+ " ) 	 / 2
3 4 �

6 3 Ô � �7+ " 3��
In general linear form

k
lQlPlQlQlPlQlPlQlmlmlQn

f )
�0+/ Ô � f ) �/ Ô � �.+ " ) �

.../ Ô � �Û+ " 2 " ) �
o

pQpPpQpQpPpQpPpQpmpmpQq
�

k
lQlPlQlQlPlQlPlQlmlmlQn

6� � 6 ) u u u 6 2 " ) 6 2

6� � 6 ) u u u 6 2 " ) 6 2

� 9 9 u u u 9 9

9 9 � u u u 9 9

...
...

...
...

...9 9 9 u u u � 9
o

pQpPpQpQpPpQpPpQpmpmpQq
k

lQlPlQlQlPlQlPlQlmlmlQn
/ Ô � f ) �

�.+ " )/ Ô � �.+ " ) �/ Ô � �.+ " X �

.../ Ô � �Û+ " 2 �
o

pQpPpQpQpPpQpPpQpmpmpQq
�
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Examples of GLMs

The classical fourth order Runge–Kutta method

9
)X )X)X 9 )X� 9 9 �

) ] )Z )Z ) ]
�
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Examples of GLMs

The classical fourth order Runge–Kutta method

9
)X )X)X 9 )X� 9 9 �

) ] )Z )Z ) ]
�

can be written as

k
lQlQlPlQlPlQlmlÜn

f )
fX

fZ
f[

�0+
o

pQpQpPpQpPpQpmpÜq
�

k
lQlQlPlQlPlQlmlÜn

9 9 9 9 �

)X 9 9 9 �

9 )X 9 9 �

9 9 � 9 �

) ] )Z )Z ) ] �
o

pQpQpPpQpPpQpmpÜq
k

lQlQlPlQlPlQlmlÜn
/ Ô � f ) �/ Ô � fX �

/ Ô � fZ �
/ Ô � f[ �

�.+ " )
o

pQpQpPpQpPpQpmpÜq
�
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Examples of GLMs

It is not always appropriate to represent a Runge–Kutta method like a general liner
method with Õ � � . Example is the Lobatto IIIA method

9
)X ÝX [ )Z J )X [)X ) ] X Z ) ]) ] X Z ) ]

�
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Examples of GLMs

It is not always appropriate to represent a Runge–Kutta method like a general liner
method with Õ � � . Example is the Lobatto IIIA method

9
)X ÝX [ )Z J )X [)X ) ] X Z ) ]) ] X Z ) ]

�

It has the following general linear form

k
lmlmlmlQlÜn

f )
fX

��+/ Ô � fX �
o

pmpmpmpQpÜq
�

k
lmlmlmlQlÜn

)Z J )X [ � ÝX [XZ ) ] � ) ]XZ ) ] � ) ]9 � 9 9
o

pmpmpmpQpÜq
k

lmlmlmlQlÜn
/ Ô � f ) �

/ Ô � fX �
��+ " )/ Ô � ��+ " ) �

o
pmpmpmpQpÜq

�
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Practical GLMs

Introduce initial assumptions�

Stage order equal to the overall order of the method�

Quantities passed from step to step to be approximations of the Nordsieck vector�

Stability regions identical to those corresponding to RK methods (IRKS)

Wright’02
Butcher, Wright’03

Butcher, Zackiewicz’04
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Exp. general linear methods

Consider the following unified format of Exp. GLMs

f 3 � {
c 4 )

|
W4 )

; F WG 3c E F WG � e 3� �/ � � / 
 � f c � 	 Ö
c 4 )

|
W4 )

Þ F WG 3c E F WG � e 3� �/ � � � F+ " ) Gc �

� F+ G3 � {
c 4 )

|
W4 )

6 F WG 3c E F WG �� � �/ � � / 
 � f c � 	 Ö
c 4 )

|
W4 )

ß F WG 3c E F WG � � � �/ � � � F+ " ) Gc �

Similarly, to the traditional GLMs, we can represent the method in the following matrix
form

where each of the coefficient matrices has entries which are

linear combinations of the functions.
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Exp. general linear methods

Consider the following unified format of Exp. GLMs

f 3 � {
c 4 )

|
W4 )

; F WG 3c E F WG � e 3� �/ � � / 
 � f c � 	 Ö
c 4 )

|
W4 )

Þ F WG 3c E F WG � e 3� �/ � � � F+ " ) Gc �

� F+ G3 � {
c 4 )

|
W4 )

6 F WG 3c E F WG �� � �/ � � / 
 � f c � 	 Ö
c 4 )

|
W4 )

ß F WG 3c E F WG � � � �/ � � � F+ " ) Gc �

Similarly, to the traditional GLMs, we can represent the method in the following matrix
form k

n f
� F0+ G

o
q �

k
n ¢ � E � � � E �

� � E � Ù � E �
o

q
k

n / 
 � f �
� F+ " ) G

o
q �

where each of the coefficient matrices

¢ � E � � � � E � � � � E � � Ù � E �

has entries which are

linear combinations of the

E F WG
functions.
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Generalized IF methods

Seek for a solution of the form

� � 
+ 	 
 � � E #áà â0ã �  � 
 � � �
where

E #áà âã is the flow of the differential equation

� � � ä� � ��� 
 � � � � 9 � � �,+ �

The vector field must:

Approximates the original vector field around the point .

Have a flow which is easy to compute exactly.

The corresponding differential equation for the variable is

Use numerical method on the transformed equation and then transform back.
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 � � 
 � � åçæéè æéê ë " ) å Ô � ��� 
+ 	 
 �J ä� � ��� 
 � � ë �  � 9 � � �,+ �

Use numerical method on the transformed equation and then transform back.
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GIF for semilinear problems

For the semilinear problem (1), we can choice

ä� � ��� 
 � � � � 	 L 2 � 
� 
 �
,

where L 2 � 
� 
 �

is the Lagrange interpolating polynomial of degree
1J �

for the function
 � � � 
+ 	 
 � � 
+ 	 
 � , which passes through the

1

points


+ � 
+ " ) �� � � � 
+ " 2 M ) .
The transformed equation is

 � � 
 � � ! " # $ì 
 � � � 
<+ 	 
 � � 
+ 	 
 �J L 2 � 
� 
 � í  � 9 � � �,+ �

Applying a multistep method to the transformed equation leads to a class of
methods which includes as a special cases all exponential multistep methods
considered so far.

Applying a multistage method to the transformed equation leads to a new class of
methods known as GIF/RK methods (Krogstad’03).

Exponential Integrators - History and Recent Developments – p.28/38



GIF for semilinear problems

For the semilinear problem (1), we can choice

ä� � ��� 
 � � � � 	 L 2 � 
� 
 �
,

where L 2 � 
� 
 �

is the Lagrange interpolating polynomial of degree
1J �

for the function
 � � � 
+ 	 
 � � 
+ 	 
 � , which passes through the

1

points


+ � 
+ " ) �� � � � 
+ " 2 M ) .
The transformed equation is

 � � 
 � � ! " # $ì 
 � � � 
<+ 	 
 � � 
+ 	 
 �J L 2 � 
� 
 � í  � 9 � � �,+ �

�

Applying a multistep method to the transformed equation leads to a class of
methods which includes as a special cases all exponential multistep methods
considered so far.�

Applying a multistage method to the transformed equation leads to a new class of
methods known as GIF/RK methods (Krogstad’03).

Exponential Integrators - History and Recent Developments – p.28/38



GIF/RK methods

L� � 
� 
 � � î J IF RK (Lawson)�
L ) � 
� 
 � � 
+ J GIF1/RK (Krogstad)�

LX � 
� 
 � � 
+ 	 
 ï 
+ J 
+ " )/

ð J GIF2/RK (Krogstad)�
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L� � 
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 � � î J IF RK (Lawson)�
L ) � 
� 
 � � 
+ J GIF1/RK (Krogstad)�

LX � 
� 
 � � 
+ 	 
 ï 
+ J 
+ " )/

ð J GIF2/RK (Krogstad)�

k
lQlQlPlQlmlmlmlQlPlQlmlmlmlQlPlÜn

9 9 9 9 � 9

� X ) �/ � � 9 9 9 ! gh - $ �X X �/ � �

� Z ) �/ � � ; Z X ! > gi " gh @ - $ 9 9 ! gi - $ �Z X �/ � �

� [ ) �/ � � ; [ X ! > gj " gh @ - $ ; [ Z ! > gj " gi @ - $ 9 ! gj - $ �[ X �/ � �

d ) �/ � � 6X ! > ) " gh @ - $ 6Z ! > ) " gi @ - $ 6[ ! > ) " gj @ - $ ! - $  ) X �/ � �

� 9 9 9 9 9
o

pQpQpPpQpmpmpmpQpPpQpmpmpmpQpPpÜq
�

Fourth order GIF2/RK method
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GIF/RK methods

L� � 
� 
 � � î J IF RK (Lawson)�
L ) � 
� 
 � � 
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LX � 
� 
 � � 
+ 	 
 ï 
+ J 
+ " )/

ð J GIF2/RK (Krogstad)�

where� X ) �/ � � � e X E F ) G 	 e XñX E F X G �

� Z ) �/ � � � e Z E F ) G 	 e XñZ E F X G J ; Z X �� 	 eX � ! > gi " gh @ - $ �

� [ ) �/ � � � e [ E F ) G 	 e Xò[ E F X G J ; [ X �� 	 eX � ! > gj " gh @ - $ J ; [ Z �� 	 eZ � ! > gj " gi @ - $ �

d ) �/ � � � E F ) G 	 E F X GJ 6X �� 	 e X � ! > ) " gh @ - $J 6Z �� 	 e Z � ! > ) " gi @ - $J 6[ �� 	 e [ � ! > ) " gj @ - $ �

�X X �/ � � �J e XñX E F X G �

�Z X �/ � � �J e XñZ E F X G 	 e X ; Z X ! > gi " gh @ - $ �
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GIF/RK methods

Similarly, if

ä� � ��� 
 � � � � 	 T 2 � 
� 
 �

, where

T 2 � 
� 
 � � d 	 2
ó 4 )

� e ó ô õ�ö � ; 
 � 	 � ó ÷ø ô � ; 
 � � � 1� x� e ó� � ó� �

it is possible to construct new GIF methods.

This approach leads to the followig

E F WG
funactions

E F óGùú'û �/ � � � ! - $ ;J � ô õ�ö � ;/ �J ; ÷ø ô � ;/ � �

; X � 	 � X �

E F óGüý ù�/ � � � ! - $ �J � ÷ø ô � ;/ � 	 ; ô õ�ö � ;/ � �

; X � 	 � X �
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Exp. Int. and Schrödinger equation

C Symmetric exponential integrators of firs, second and third order - convergence
analysis (Hochbruck, Lubich’99).

C Higher order Exp. RK methods for the nonlinear Schrödinger equation are studied by
Berland, Skaflestad, Owren’04.

IF RK methods seems to be the best for this problem.
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Exp. Int. for oscillatory problems

Consider the following oscillatory second-order differential equation

� � � � � � 	ÿþ � � � � � � 9 � � �� � � � � 9 � � � �� �

whereJ �

is positive semi-definite and has arbitrarily large norm.

Again base the methods on (vcf) (Hochbruck, Lubich’99)

where .

Approximating by a suitable constant we obtain the following numerical
scheme

,

where
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where

� � �J �

.

Approximatingþ � � � 
 � � by a suitable constantþ + we obtain the following numerical
scheme �.+ M ) J : �,+ 	 �.+ " ) � / X � �J / X � � � � � 	 þ + �

� ) � ÷ø ô �/ � � �� 	 � " ) ô õ�ö �/ � � � �� 	 )X / X � �J / X � �þ � ,

where � ��H X � � : � J ÷ø ô H
H X �
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Implementation issues

Consider the ETD

E F 3G

functions

E F ) G � H � � ! IJ �
H � E F 3M ) G ��H � � E F 3G � H �J ) 3VH � for

8 � : � ^ �� � � �

A straightforward implementation suffers from cancellation errors (Kassam and
Trefethen).

Numerical techniques

Decomposition methods

Cauchy integral approach

Krylov subspace approximations
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Implementation issues

C At the heart of all decomposition methods is the similarity transformation

¢ � � � � " ) �
where

¢ � �/ �

. Therefore E F 3G � ¢ � � � E F 3G � � � � " )�

Using the trapezoid rule, we obtain the following approximation

where is the number of the equally spaced points along the contour .
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¢ � � � � " ) �
where

¢ � �/ �

. Therefore E F 3G � ¢ � � � E F 3G � � � � " )�
Two conflicting tasks:

- Make

�

close to diagonal so that

E F 3G � � �
is easy to compute.

- Make

�

well conditioned so that errors are not magnified.

Using the trapezoid
rule, we obtain the following approximation
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Implementation issues
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¢ � � � � " ) �
where

¢ � �/ �

. Therefore E F 3G � ¢ � � � E F 3G � � � � " )�

C Based on the Cauchy integral formula

E F 3G � ¢ � � �
:�� 8 �	�

E F 3G � y � � y �J ¢ � " ) � y�

where


�� is a contour in the complex plane that encloses the eigenvalue of

¢

, and it is
also well separated from

9
.

Using the trapezoid rule, we obtain the following
approximation

where is the number of the equally spaced points along the contour .
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E F 3G � ¢ �.D �
1

2
c 4 )

y c E F 3G � y c � � y c �J ¢ � " ) �
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1

is the number of the equally spaced points

y calong the contour


 � .
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Krylov subspace approximations

Approximately project the action of

E F 3G � ¢ �

on a state vector  � 
 �
, to a small Krylov

subspace

��� � span

�  � ¢  �� � � � ¢ � " )  ��
Construct a orthogonal basis

Ù� � �  ) �  X �� � � �  � �
of

��� (Arnoldi, Lanczos)
If

�� is the � Ú � upper Hessenberg matrix generated by the process then

Ù �
� ¢ Ù� � �� �

Therefore,

�� is the orthogonal projection of

¢
to the subspace

� � and

E F 3G � ¢ �  � Ù� Ù �
� E F 3G � ¢ �  � 6 Ù� Ù �
� E F 3G � ¢ � Ù� ! )

D 6 Ù� E F 3G � �� � ! ) �

where ! ) is the first unit vector in

� �

and

6 � � �  � � X .

Superlinear convergence (Hochbruck, Lubich’98)

Preconditioning the Lanczos process (Hochbruck,Van der Eshof’04)

At every step we need to construct several Krylov bases

Multiple Arnldi methods (Schmitt, Weiner’95)
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Conclusions

�

The exponential integrators have a long history

�

A general framework for analyzing the non-stiff order based on
GLMs can help

�

IF, ETD, GIF, CF, EC are special cases

�

Exp. integrators with Krylov approximation techniques are very
promising
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Open problems

� Need to understand the role of the

� � 8 �

functions.

� Effective algorithms for their computation.

� Are these methods competitive with variable stepsize.

� Extensive numerical experiments.

� Stability analysis - generalize the concept of IRKS

� Exponential integrators for oscillatory problems.
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