Computer Tomography:
 Computational theory and methods

University of Bergen
15 October 2004, Bergen.
Borislav V. Minchev
Borko.Minchev@ii.uib.no
http://www.ii.uib.no/~borko
Department of computer science
University of Bergen, Norway

Outline

- Introduction
- Fields of applications
- Principles of X-ray CT
- Reconstruction techniques in 2D
- Transform based methods (FBP)
- Algebraic reconstruction techniques
- Con-beam reconstructions
- Circular
- Helical
- Conclusions

Definition

Tomography: technique for imaging cross-sections or slices from a set of external measurements of a spatially varying function.

Fields of applications

- X-ray CT
- medical imaging
- industrial nondestructive evaluation
- airport screening
- microtomography

Fields of applications

- X-ray CT
- medical imaging
- industrial nondestructive evaluation
- airport screening
- microtomography
- Magnetic Resonance Imaging (MRI)
- electromagnetic waves

Fields of applications

- X-ray CT
- medical imaging
- industrial nondestructive evaluation
- airport screening
- microtomography
- Magnetic Resonance Imaging (MRI)
- electromagnetic waves
- Transmission electron microscopy
- an electron beem

Fields of applications

- X-ray CT
- medical imaging
- industrial nondestructive evaluation
- airport screening
- microtomography
- Magnetic Resonance Imaging (MRI)
- electromagnetic waves
- Transmission electron microscopy
- an electron beem
- CT principles are also applied in:
- oceanography
- astronomy
- geophysics
- optics

Some hisrory

- Radon 1917
- reconstruction of a function from its projections

Some hisrory

- Radon 1917
- reconstruction of a function from its projections
- Hounsfield 1972
- patented the first CT scanner

Some hisrory

Radon 1917

- reconstruction of a function from its projections
- Hounsfield 1972
- patented the first CT scanner
- Cormack 1963-1964
- contributionto mathematics of X-ray CT

Some hisrory

Radon 1917

- reconstruction of a function from its projections
- Hounsfield 1972
- patented the first CT scanner
- Cormack 1963-1964
- contributionto mathematics of X-ray CT
- Hounsfield and Cormack shared the 1979 Nobel Prize for medicine

Some hisrory

- Radon 1917
- reconstruction of a function from its projections
- Hounsfield 1972
- patented the first CT scanner
- Cormack 1963-1964
- contributionto mathematics of X-ray CT
- Hounsfield and Cormack shared the 1979 Nobel Prize for medicine
- since then the field is steadily evolving and givis rise to never ceasing flow of new algorithms

Principles of X-ray CT

Computer Tomography: Computational theory and methods - p.6/2

Principles of X-ray CT

- X-ray traverses an object along stight line
- attenuated signals from various directions are recorded
- reconstruction algorithms are used to convert the projections

Projections

Let
$f(x, y) \quad$ represents the density of a two-dimensional object
$I_{i n} \quad$ applied intensity form the X -ray source
Iout the attenuated intensity of a ray as it propagates throught the object along the line $L=L(\theta, t)$

Projections

Let
$f(x, y) \quad$ represents the density of a two-dimensional object
$I_{i n} \quad$ applied intensity form the X -ray source
Iout the attenuated intensity of a ray as it propagates throught the object along the line $L=L(\theta, t)$
then

$$
\int_{L} f(x, y) d s=-\ln \frac{I_{o u t}}{I_{\text {in }}}=P_{\theta}(t)
$$

where
θ - projection angle
t - detector position

Projections

$$
P_{\theta}(t)=\int_{L} f(x, y) d s
$$

Computer Tomography: Computational theory and methods - p.7/2

Projections

$$
P_{\theta}(t)=\int_{L} f(x, y) d s
$$

The line integral can be written as Radon Transform
$P_{\theta}(t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(r(x, y, t)) d x d y$,
where
δ is the Dirac delta function and

$$
\begin{aligned}
& r(x, y, t)=\cos \theta+y \sin \theta-t \\
& \text { (the equation of the X-ray) }
\end{aligned}
$$

Computer Tomography: Computational theory and methods - p.7/2

Fourier Slice Theorem

Consider the two-dimensional FT of the object function

$$
F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y
$$

and the one-dimensional FT of the projection $P_{\theta}(t)$

$$
S_{\theta}(w)=\int_{-\infty}^{\infty} P_{\theta}(t) e^{-j 2 \pi w t} d t
$$

Fourier Slice Theorem

Consider the two-dimensional FT of the object function

$$
F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y
$$

and the one-dimensional FT of the projection $P_{\theta}(t)$

$$
S_{\theta}(w)=\int_{-\infty}^{\infty} P_{\theta}(t) e^{-j 2 \pi w t} d t
$$

Simplest case, when $v=0(\theta=0)$

$$
\begin{aligned}
F(u, 0) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-j 2 \pi u x} d x d y=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty} f(x, y) d y\right] e^{-j 2 \pi u x} d x \\
& =\int_{-\infty}^{\infty}\left[\int_{L} f(x, y) d s\right] e^{-j 2 \pi u x} d x=\int_{-\infty}^{\infty} P_{\theta=0}(x) e^{-j 2 \pi u x} d x=S_{\theta=0}(u)
\end{aligned}
$$

Fourier Slice Theorem

In general for any anglr θ

$$
S_{\theta}(w)=F(w, \theta)=F(w \cos \theta, w \sin \theta) .
$$

Fourier reconstruction algorithm

- Take projection of an object function at angles $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$
- Fourier transform each projection to obtain the values of $F(u, v)$
- Recover the object function $f(x, y)$ by using the inverse FT

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v
$$

Fourier reconstruction algorithm

- Take projection of an object function at angles $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$
- Fourier transform each projection to obtain the values of $F(u, v)$
- Recover the object function $f(x, y)$ by using the inverse FT

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v
$$

Note: infinite number of projections on an interval with lenght π allows exact reconstuction.

Fourier reconstruction algorithm

- Take projection of an object function at angles $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$
- Fourier transform each projection to obtain the values of $F(u, v)$
- Recover the object function $f(x, y)$ by using the inverse FT

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v
$$

Discretising on the square $-A / 2<x<A / 2 ;-A / 2<y<A / 2$

$$
f(x, y) \approx \frac{1}{A^{2}} \sum_{m=-N / 2}^{N / 2} \sum_{n=-N / 2}^{N / 2} F\left(\frac{m}{A}, \frac{n}{A}\right) e^{j 2 \pi((m / A) x+(n / A) y)},
$$

where N is even integer.

The values of $F(u, v)$ on a square grid are obtained from the available values along the radial lines by interpolation.

Reconstruction for Parallel Projection

$$
\begin{aligned}
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} F(w, \theta) e^{j 2 \pi w} \overbrace{(x \cos \theta+y \sin \theta)}^{t} w d w d \theta
\end{aligned}
$$

Reconstruction for Parallel Projection

$$
\begin{aligned}
& f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} F(w, \theta) e^{j 2 \pi w} \overbrace{(x \cos \theta+y \sin \theta)}^{t} w d w d \theta \\
& =\int_{0}^{\pi} \underbrace{\int_{-\infty}^{\infty} \quad|w| e^{j 2 \pi w t} d w d \theta}_{Q_{\theta}(t)}
\end{aligned}
$$

Reconstruction for Parallel Projection

$$
\begin{aligned}
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} F(w, \theta) e^{j 2 \pi w} \overbrace{(x \cos \theta+y \sin \theta)}^{t} w d w d \theta
\end{aligned}
$$

Reconstruction for Parallel Projection

$$
\begin{aligned}
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} F(w, \theta) e^{j 2 \pi w} \overbrace{(x \cos \theta+y \sin \theta)}^{t} w d w d \theta \\
& =\int_{0}^{\pi} \underbrace{\int_{-\infty}^{\infty}|w| e^{j 2 \pi w t} d w d \theta}_{Q_{\theta}(t)}=\int_{0}^{\pi} \int_{-\infty}^{\infty} \\
& =\int_{0}^{\pi}[\int_{-\infty}^{\infty} P_{\theta}(\tau) \underbrace{\int_{-\infty}^{\infty}|w| e^{j 2 \pi w(t-\tau)} d w}_{h(t-\tau)} d \tau] d \theta=\int_{0}^{\pi}\left[\int_{-\infty}^{\infty} P_{\theta}(\tau) h(t-\tau) d \tau\right] d \theta
\end{aligned}
$$

Reconstruction for Parallel Projection

$$
\begin{aligned}
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} F(w, \theta) e^{j 2 \pi w} \overbrace{(x \cos \theta+y \sin \theta)}^{t} w d w d \theta \\
& =\int_{0}^{\pi} \underbrace{\int_{-\infty}^{\infty}|w| e^{j 2 \pi w t} d w d \theta=\int_{0}^{\pi} \int_{-\infty}^{\infty}}_{Q_{\theta}(t)} \quad|w| e^{j 2 \pi w t} d w d \theta \\
& =\int_{0}^{\pi}[\int_{-\infty}^{\infty} P_{\theta}(\tau) \underbrace{\int_{-\infty}^{\infty}|w| e^{j 2 \pi w(t-\tau)} d w}_{h(t-\tau)} d \tau] d \theta=\int_{0}^{\pi}\left[\int_{-\infty}^{\infty} P_{\theta}(\tau) h(t-\tau) d \tau\right] d \theta \\
& =\int_{0}^{\pi}\left(P_{\theta} * h\right)(x \cos \theta+y \sin \theta) d \theta=\int_{0}^{\pi} Q_{\theta}(x \cos \theta+y \sin \theta) d \theta
\end{aligned}
$$

Reconstruction for Parallel Projection

$$
\begin{aligned}
& f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{j 2 \pi(u x+v y)} d u d v \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} F(w, \theta) e^{j 2 \pi w} \overbrace{(x \cos \theta+y \sin \theta)}^{t} w d w d \theta \\
& =\int_{0}^{\pi} \underbrace{\int_{-\infty}^{\infty} \quad|w| e^{j 2 \pi w t} d w}_{Q_{\theta}(t)} d \theta=\int_{0}^{\pi} \int_{-\infty}^{\infty} \\
& |w| e^{j 2 \pi w t} d w d \theta \\
& =\int_{0}^{\pi}[\int_{-\infty}^{\infty} P_{\theta}(\tau) \underbrace{\int_{-\infty}^{\infty}|w| e^{j 2 \pi w(t-\tau)} d w}_{h(t-\tau)} d \tau] d \theta=\int_{0}^{\pi}\left[\int_{-\infty}^{\infty} P_{\theta}(\tau) h(t-\tau) d \tau\right] d \theta \\
& =\int_{0}^{\pi} \underbrace{\left(P_{\theta} * h\right)}(x \cos \theta+y \sin \theta) d \theta=\int_{0}^{\pi} Q_{\theta}(x \cos \theta+y \sin \theta) d \theta
\end{aligned}
$$

Filtering

Backprojection

The FBP algorithm

Step 1: Filtering

$$
Q_{\theta}(t)=\int_{-\infty}^{\infty} S_{\theta}(w)|w| e^{j 2 \pi w t} d w
$$

The FBP algorithm

Step 1: Filtering

$$
Q_{\theta}(t)=\int_{-\infty}^{\infty} S_{\theta}(w)|w| e^{j 2 \pi w t} d w
$$

Use badlimited FT to compute $S_{\theta}(w)$ i.e.

$$
S_{\theta}(w) \approx S_{\theta}\left(m \frac{2 W}{N}\right)=\frac{1}{2 W} \sum_{k=-N / 2}^{N / 2-1} P_{\theta}\left(\frac{k}{2 W}\right) e^{-j 2 \pi(m k / N)}, \quad m=-\frac{N}{2}, \ldots, \frac{N}{2},
$$

where W is a frequency band limit and N is some (large) number corresponding to the number of the sampling points. (FFT)

The FBP algorithm

Step 1: Filtering

$$
Q_{\theta}(t)=\int_{-\infty}^{\infty} S_{\theta}(w)|w| e^{j 2 \pi w t} d w
$$

Use badlimited FT to compute $S_{\theta}(w)$ i.e.

$$
S_{\theta}(w) \approx S_{\theta}\left(m \frac{2 W}{N}\right)=\frac{1}{2 W} \sum_{k=-N / 2}^{N / 2-1} P_{\theta}\left(\frac{k}{2 W}\right) e^{-j 2 \pi(m k / N)}, \quad m=-\frac{N}{2}, \ldots, \frac{N}{2},
$$

where W is a frequency band limit and N is some (large) number corresponding to the number of the sampling points. (FFT)
Therefore
$Q_{\theta}\left(\frac{k}{2 W}\right) \approx\left(\frac{2 W}{N}\right) \sum_{m=-N / 2}^{N / 2} S_{\theta}\left(m \frac{2 W}{N}\right)\left|m \frac{2 W}{N}\right| e^{j 2 \pi(m k / N)}, \quad k=-\frac{N}{2}, \ldots, \frac{N}{2}$.
Inverse DFT of the product $S_{\theta}(m(2 W / N))$ and $|m(2 W / N)|$.

The FBP algorithm

Step 1: Filtering

Superior results are obtained by deemphasizing the high frequencies with the
Hamming window function H.

$$
Q_{\theta}\left(\frac{k}{2 W}\right) \approx\left(\frac{2 W}{N}\right) \sum_{m=-N / 2}^{N / 2} S_{\theta}\left(m \frac{2 W}{N}\right)\left|m \frac{2 W}{N}\right| H\left(m \frac{2 W}{N}\right) e^{j 2 \pi(m k / N)}
$$

The FBP algorithm

Step 1: Filtering

Superior results are obtained by deemphasizing the high frequencies with the Hamming window function H.

$$
Q_{\theta}\left(\frac{k}{2 W}\right) \approx\left(\frac{2 W}{N}\right) P_{\theta}\left(\frac{k}{2 W}\right) * \phi\left(\frac{k}{2 W}\right)
$$

where $\phi(k / " W)$ is the inverse DFT of $|m(2 W / N)| H(m(2 W / N))$.

The FBP algorithm

Step 1: Filtering

Superior results are obtained by deemphasizing the high frequencies with the
Hamming window function H.

$$
Q_{\theta}\left(\frac{k}{2 W}\right) \approx\left(\frac{2 W}{N}\right) P_{\theta}\left(\frac{k}{2 W}\right) * \phi\left(\frac{k}{2 W}\right),
$$

where $\phi(k / " W)$ is the inverse DFT of $|m(2 W / N)| H(m(2 W / N))$.
Step 2: Backprojection
Reconstruc $f(x, y)$ by the formula

$$
f(x, y) \approx \frac{\pi}{K} \sum_{i=1}^{K} Q_{\theta_{i}}\left(x \cos \theta_{i}+y \sin \theta_{i}\right)
$$

where K is the number of the projection angles θ_{i}.
Note The values of Q_{θ} in Step 2 can be approxiamted from the values obtained in Step 1 by interpolation (linear).

The FBP algorithm

Step 1: Filtering

Superior results are obtained by deemphasizing the high frequencies with the
Hamming window function H.

$$
Q_{\theta}\left(\frac{k}{2 W}\right) \approx\left(\frac{2 W}{N}\right) P_{\theta}\left(\frac{k}{2 W}\right) * \phi\left(\frac{k}{2 W}\right)
$$

where $\phi(k / " W)$ is the inverse DFT of $|m(2 W / N)| H(m(2 W / N))$.
Step 2: Backprojection
Reconstruc $f(x, y)$ by the formula

$$
f(x, y) \approx \frac{\pi}{K} \sum_{i=1}^{K} Q_{\theta_{i}}\left(x \cos \theta_{i}+y \sin \theta_{i}\right)
$$

where K is the number of the projection angles θ_{i}.
Note The values of Q_{θ} in Step 2 can be approxiamted from the values obtained in Step 1 by interpolation (linear).

Computational cost: Backprojection summation $\longrightarrow \mathcal{O}\left(N^{3}\right)$
Fast backprojections (Nilsson'96) $\longrightarrow \mathcal{O}\left(N^{2} \log N\right)$

Reconstruction for Fan Projections

Equiangular Rays

Let $R_{\beta}(\gamma)$ be a fan projection
β is the angle between the source and a reference axis.
γ gives the location of a ray
$D=|\mathrm{SO}|$ source to origin dist.
L - source to point (x, y) dist. In polar coordinates [(r, ϕ)]
$L=\sqrt{D+(r \sin \eta)^{2}+(r \cos \eta)^{2}}$, where $\eta=\beta-\phi$.

Reconstruction for Fan Projections

Equiangular Rays

$$
\begin{aligned}
& f(x, y)=\int_{0}^{\pi} \int_{-\infty}^{\infty} P_{\theta}(t) h(x \cos \theta+y \sin \theta-t) d t d \theta \\
& f(r, \phi)=\frac{1}{2} \int_{0}^{2 \pi} \int_{-\infty}^{\infty} P_{\theta}(t) h(r \cos (\theta-\phi)-t) d t d \theta
\end{aligned}
$$

Reconstruction for Fan Projections

Equiangular Rays

$$
\begin{aligned}
f(x, y) & =\int_{0}^{\pi} \int_{-\infty}^{\infty} P_{\theta}(t) h(x \cos \theta+y \sin \theta-t) d t d \theta \\
f(r, \phi) & =\frac{1}{2} \int_{0}^{2 \pi} \int_{-\infty}^{\infty} P_{\theta}(t) h(r \cos (\theta-\phi)-t) d t d \theta \\
& =\ldots \\
& =\int_{0}^{2 \pi} \frac{1}{L^{2}} Q_{\beta}\left(\gamma^{\prime}\right) d \beta
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{\beta}(\gamma) & =R_{\beta}^{\prime}(\gamma) * g(\gamma) \\
R_{\beta}^{\prime}(\gamma) & =R_{\beta}(\gamma) \cdot D \cdot \cos \gamma \\
g(\gamma) & =\frac{1}{2}\left(\frac{\gamma}{\sin \gamma}\right)^{2} h(\gamma)
\end{aligned}
$$

Weighted Backprojection Algorithm

Equiangular Rays

Let $\quad \alpha \quad$ is the sampling interval of the projection
$\beta_{i} \quad$ are the angles at which projections are taken
Step 1 For each $R_{\beta_{i}}(n \alpha), n \in \mathbb{N}$, generate the corresponding modified projection

$$
R_{\beta_{i}}^{\prime}(n \alpha)=R_{\beta}(n \alpha) \cdot D \cdot \cos n \alpha
$$

Weighted Backprojection Algorithm

Equiangular Rays

Let $\quad \alpha \quad$ is the sampling interval of the projection
$\beta_{i} \quad$ are the angles at which projections are taken
Step 1 For each $R_{\beta_{i}}(n \alpha), n \in \mathbb{N}$, generate the corresponding modified projection

$$
R_{\beta_{i}}^{\prime}(n \alpha)=R_{\beta}(n \alpha) \cdot D \cdot \cos n \alpha
$$

Step 2 Convolve $R_{\beta_{i}}^{\prime}(n \alpha)$ with $g(n \alpha)=\frac{1}{2}\left(\frac{n \alpha}{\sin n \alpha}\right)^{2} h(n \alpha)$ to generate the corresponding filtered projection (FFT)

$$
Q_{\beta_{i}}(n \alpha)=R_{\beta_{i}}^{\prime}(n \alpha) * g(n \alpha)
$$

Weighted Backprojection Algorithm

Equiangular Rays

Let $\quad \alpha \quad$ is the sampling interval of the projection
$\beta_{i} \quad$ are the angles at which projections are taken
Step 1 For each $R_{\beta_{i}}(n \alpha), n \in \mathbb{N}$, generate the corresponding modified projection

$$
R_{\beta_{i}}^{\prime}(n \alpha)=R_{\beta}(n \alpha) \cdot D \cdot \cos n \alpha
$$

Step 2 Convolve $R_{\beta_{i}}^{\prime}(n \alpha)$ with $g(n \alpha)=\frac{1}{2}\left(\frac{n \alpha}{\sin n \alpha}\right)^{2} h(n \alpha)$ to generate the corresponding filtered projection (FFT)

$$
Q_{\beta_{i}}(n \alpha)=R_{\beta_{i}}^{\prime}(n \alpha) * g(n \alpha) * k(n \alpha),
$$

where $k(n \alpha)$ is a smoothing filter.

Weighted Backprojection Algorithm

Equiangular Rays

Let $\quad a$
$\beta_{i} \quad$ are the angles at which projections are taken
Step 1 For each $R_{\beta_{i}}(n \alpha), n \in \mathbb{N}$, generate the corresponding modified projection

$$
R_{\beta_{i}}^{\prime}(n \alpha)=R_{\beta}(n \alpha) \cdot D \cdot \cos n \alpha
$$

Step 2 Convolve $R_{\beta_{i}}^{\prime}(n \alpha)$ with $g(n \alpha)=\frac{1}{2}\left(\frac{n \alpha}{\sin n \alpha}\right)^{2} h(n \alpha)$ to generate the corresponding filtered projection (FFT)

$$
Q_{\beta_{i}}(n \alpha)=R_{\beta_{i}}^{\prime}(n \alpha) * g(n \alpha) * k(n \alpha),
$$

where $k(n \alpha)$ is a smoothing filter.
Step 3 Perform a weighted backprojection

$$
f(x, y) \approx \Delta \beta \sum_{i=1} K \frac{1}{L^{2}\left(x, y, \beta_{1}\right)} Q_{\beta_{i}}\left(\gamma^{\prime}\right),
$$

where γ^{\prime} is the angle of a ray that passes through the point (x, y) and $\Delta \beta=2 \pi / K$.

Reconstruction for Fan Projections

Equally Spaced Detectors

Let $R_{\beta}(s)$ be a fan projection
β is the angle between the source and a reference axis.
s is the distance along the detector
$D=|\mathrm{SO}|$ source to origin dist.
U - the dist. source to projection of a pixel on the central ray
In polar coordinates $[(r, \phi)]$

$$
U=\frac{D+r \sin (\beta-\phi)}{D}
$$

Reconstruction for Fan Projections

Equally Spaced Detectors

$$
\begin{aligned}
f(x, y) & =\int_{0}^{\pi} \int_{-\infty}^{\infty} P_{\theta}(t) h(x \cos \theta+y \sin \theta-t) d t d \theta \\
f(r, \phi) & =\frac{1}{2} \int_{0}^{2 \pi} \int_{-\infty}^{\infty} P_{\theta}(t) h(r \cos (\theta-\phi)-t) d t d \theta \\
& =\ldots \\
& =\int_{0}^{2 \pi} \frac{1}{U^{2}} Q_{\beta}\left(s^{\prime}\right) d \beta
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{\beta}(s) & =R_{\beta}^{\prime}(s) * g(s) \\
R_{\beta}^{\prime}(s) & =R_{\beta}(s) \cdot \frac{D}{\sqrt{D^{2}+s^{2}}} \\
g(s) & =\frac{1}{2} h(s)
\end{aligned}
$$

Algebraic reconstruction techniques

Advantages

- easy to handle different rays geometry
- more adaptable to missing data - better image quality
- metal artifacts are reduced
- less radiation dose

Algebraic reconstruction techniques

Advantages

- easy to handle different rays geometry
- more adaptable to missing data - better image quality
- metal artifacts are reduced
- less radiation dose

Disadvantage

Higher computational cost!

Image and Projection Representation

The idea: Assume that the cross section consists of array of unknowns

Image and Projection Representation

The idea: Assume that the cross section consists of array of unknowns
N - total number of cells
$f_{j}=$ const is the value of $f(x, y)$ in the $j^{\text {-th }}$ cell
p_{i} - the $i^{\text {th }}$ line integral ray-sum

Image and Projection Representation

The idea: Assume that the cross section consists of array of unknowns
N - total number of cells
$f_{j}=$ const is the value of $f(x, y)$ in the $j^{\text {-th }}$ cell
p_{i} - the $i^{\text {th }}$ line integral ray-sum
$\sum_{j=1}^{N} w_{i j} f_{j}=p_{i}, \quad i=1,2, \ldots, M$
where
M is the total number of rays
$w_{i j}$ represents the contribution

of the $j^{- \text {th }}$ cell to the $i^{\text {th }}$ ray integral

Projection methods

Therefore we have to solve the following linear system of equations

$$
\begin{aligned}
& w_{11} f_{1}+w_{12} f_{2}+\cdots+w_{1 N} f_{N}=p_{1} \\
& w_{21} f_{1}+w_{22} f_{2}+\cdots+w_{2 N} f_{N}=p_{2} \\
& \vdots \\
& w_{M 1} f_{1}+w_{M 2} f_{2}+\cdots+w_{M N} f_{N}=p_{M}
\end{aligned}
$$

for large values of M and N.

Projection methods

Therefore we have to solve the following linear system of equations

$$
\begin{aligned}
& w_{11} f_{1}+w_{12} f_{2}+\cdots+w_{1 N} f_{N}=p_{1} \\
& w_{21} f_{1}+w_{22} f_{2}+\cdots+w_{2 N} f_{N}=p_{2} \\
& \vdots \\
& w_{M 1} f_{1}+w_{M 2} f_{2}+\cdots+w_{M N} f_{N}=p_{M}
\end{aligned}
$$

for large values of M and N.
Use iterative methods - projestions (Kaczmarz'37, Tanabe'71)
Let $f^{(0)}=\left(f_{1}^{(0)}, f_{2}^{(0)}, \ldots f_{N}^{(0)}\right)$ is the initial guess

$$
f^{(i)}=f^{(i-1)}-\frac{\left(f^{(i-1)} \cdot w_{i}-p_{i}\right)}{w_{i} \cdot w_{i}} w_{i} \quad i=1,2, \ldots,
$$

where $w_{i}=\left(w_{i 1}, w_{i, 2}, \ldots w_{i N}\right)$

Projection methods

Theorem (Tanabe'71)

If there exists a unique solution $f^{(s)}$ to the system of equations, then

$$
\lim _{k \rightarrow \infty} f^{(k M)}=f^{(s)}
$$

Projection methods

Theorem (Tanabe'71)

If there exists a unique solution $f^{(s)}$ to the system of equations, then

$$
\lim _{k \rightarrow \infty} f^{(k M)}=f^{(s)}
$$

The rate of convergence depends of the angles between the hyperplanes

- Full orthogonalization is computationally not feasible
- Pairwise orthogonalization scheme (Ramakrishnan'79)
- Carefully choose the order of the hyperplanes (Hounsfield'72)

Projection methods

Theorem (Tanabe'71)

If there exists a unique solution $f^{(s)}$ to the system of equations, then

$$
\lim _{k \rightarrow \infty} f^{(k M)}=f^{(s)}
$$

The rate of convergence depends of the angles between the hyperplanes

- Full orthogonalization is computationally not feasible
- Pairwise orthogonalization scheme (Ramakrishnan'79)
- Carefully choose the order of the hyperplanes (Hounsfieldi${ }^{172}$)
- When $M>N$ the process oscillate in the neighborhood of the intersections of the hyperplanes
- When $M<N$ the process converges to a solution $f^{\prime(s)}$, such that $\left|f^{(0)}-f^{\prime(s)}\right|$ is minimized.

Projection methods

Consider again

$$
f^{(i)}=f^{(i-1)}-\frac{\left(f^{(i-1)} \cdot w_{i}-p_{i}\right)}{w_{i} \cdot w_{i}} w_{i} \quad i=1,2, \ldots,
$$

It can also be written as

$$
f_{j}^{(i)}=f_{j}^{(i-1)}+\frac{p_{i}-q_{i}}{\sum_{k=1}^{N} w_{i k}^{2}} w_{i j} \quad j=1,2, \ldots, N, \quad i=1,2, \ldots,
$$

where

$$
q_{i}=f^{(i-1)} \cdot w_{i}=\sum_{k=1}^{N} f_{k}^{(i-1)} w_{i k} .
$$

Therefore

$$
f_{j}^{(i)}=f_{j}^{(i-1)}+\Delta f_{j}^{(i)},
$$

where

$$
\Delta f_{j}^{(i)}=\frac{p_{i}-q_{i}}{\sum_{k=1}^{N} w_{i k}^{2}} w_{i j} .
$$

Projection methods

Consider again

$$
f^{(i)}=f^{(i-1)}-\frac{\left(f^{(i-1)} \cdot w_{i}-p_{i}\right)}{w_{i} \cdot w_{i}} w_{i} \quad i=1,2, \ldots,
$$

It can also be written as

$$
f_{j}^{(i)}=f_{j}^{(i-1)}+\frac{p_{i}-q_{i}}{\sum_{k=1}^{N} w_{i k}^{2}} w_{i j} \quad j=1,2, \ldots, N, \quad i=1,2, \ldots,
$$

where

$$
q_{i}=f^{(i-1)} \cdot w_{i}=\sum_{k=1}^{N} f_{k}^{(i-1)} w_{i k} .
$$

Therefore

$$
f_{j}^{(i)}=f_{j}^{(i-1)}+\Delta f_{j}^{(i)},
$$

where

$$
\Delta f_{j}^{(i)}=\frac{p_{i}-q_{i}}{\sum_{k=1}^{N} w_{i k}^{2}} w_{i j} .
$$

The main computational diffuculty is in the calculation, storage and retrieval of the weight coefficients $w_{i j}$.

Algebraic Reconstruction Tech.(ART)

- Replace $w_{i j}$ by 0 or 1 , depending wether the center of the $j^{- \text {th }}$ cell is within the $i^{\text {th }}$ ray. Thus we can use

$$
\Delta f_{j}^{(i)}=\frac{p_{i}-q_{i}}{N_{i}}
$$

for all cells whos centers are within the $i^{\text {th }}$ ray. $N_{i}=\sum_{k=1}^{N} w_{i k}^{2}$ is the number of cells whose centers are within the $i^{\text {th }}$ ray.

Algebraic Reconstruction Tech.(ART)

- Replace $w_{i j}$ by 0 or 1 , depending wether the center of the $j^{- \text {th }}$ cell is within the $i^{\text {th }}$ ray. Thus we can use

$$
\Delta f_{j}^{(i)}=\frac{p_{i}-q_{i}}{N_{i}}
$$

for all cells whos centers are within the $i^{\text {th }}$ ray. $N_{i}=\sum_{k=1}^{N} w_{i k}^{2}$ is the number of cells whose centers are within the $i^{\text {th }}$ ray.

- Superior approxiamtion is

$$
\Delta f_{j}^{(i)}=\frac{p_{i}}{L_{i}}-\frac{q_{i}}{N_{i}},
$$

where L_{i} is the lenght of the $i^{- \text {th }}$ ray trought the reconstruction region.

Algebraic Reconstruction Tech.(ART)

- Replace $w_{i j}$ by 0 or 1 , depending wether the center of the $j^{- \text {th }}$ cell is within the $i^{\text {th }}$ ray. Thus we can use

$$
\Delta f_{j}^{(i)}=\frac{p_{i}-q_{i}}{N_{i}}
$$

for all cells whos centers are within the $i^{\text {th }}$ ray. $N_{i}=\sum_{k=1}^{N} w_{i k}^{2}$ is the number of cells whose centers are within the $i^{\text {th }}$ ray.

- Superior approxiamtion is

$$
\Delta f_{j}^{(i)}=\frac{p_{i}}{L_{i}}-\frac{q_{i}}{N_{i}},
$$

where L_{i} is the lenght of the $i^{- \text {-h }}$ ray trought the reconstruction region.

- ART suffer from
, caused by the approximations used for $w_{i j}$.

Algebraic Reconstruction Tech.(ART)

- Replace $w_{i j}$ by 0 or 1 , depending wether the center of the $j^{\text {-th }}$ cell is within the $i^{\text {th }}$ ray. Thus we can use

$$
\Delta f_{j}^{(i)}=\frac{p_{i}-q_{i}}{N_{i}}
$$

for all cells whos centers are within the $i^{\text {th }}$ ray. $N_{i}=\sum_{k=1}^{N} w_{i k}^{2}$ is the number of cells whose centers are within the $i^{\text {tth }}$ ray.

- Superior approxiamtion is

$$
\Delta f_{j}^{(i)}=\frac{p_{i}}{L_{i}}-\frac{q_{i}}{N_{i}},
$$

where L_{i} is the lenght of the $i^{- \text {-h }}$ ray trought the reconstruction region.

- ART suffer from , caused by the approximations used for $w_{i j}$.
- It is possible to reduce the noce by
relaxation (i.e. update a pixel by $\lambda_{i} \Delta f_{j}^{(i)}, \lambda<1$)
SIRT - change the cell values after going through all of the equations

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals Insted of solving

$$
p_{i}=\sum_{j=1}^{N} w_{i j} f_{j}, \quad i=1,2, \ldots, M .
$$

We use again the Radon Transform

$$
p_{i}=R_{i} f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta\left(r_{i}(x, y)\right) d x d y
$$

where $r_{i}(x, y)=0$ is the equation of the $i^{\text {th }}$ ray and R_{i} is the projection operator.

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals Insted of solving

$$
p_{i}=\sum_{j=1}^{N} w_{i j} f_{j}, \quad i=1,2, \ldots, M .
$$

We use again the Radon Transform

$$
p_{i}=R_{i} f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta\left(r_{i}(x, y)\right) d x d y
$$

where $r_{i}(x, y)=0$ is the equation of the $i^{\text {th }}$ ray and R_{i} is the projection operator.
Let $\left\{b_{j}(x, y)\right\}_{j=1}^{N}$ be basis functions and let

$$
f(x, y) \approx \widetilde{f}(x, y)=\sum_{j=1}^{N} g_{j} b_{j}(x, y)
$$

then

$$
p_{i}=R_{i} f(x, y) \approx R_{i} \widetilde{f}(x, y)=\sum_{j=1}^{N} g_{j} a_{i j}
$$

wher $a_{i j}=R_{i} b_{j}(x, y)$.

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals Insted of solving

$$
p_{i}=\sum_{j=1}^{N} w_{i j} f_{j}, \quad i=1,2, \ldots, M .
$$

We solve

$$
p_{i}=\sum_{j=1}^{N} g_{j} a_{i j}, \quad i=1,2, \ldots, M
$$

- The two systems are the same for the pixel basis

$$
b_{j}(x, y)= \begin{cases}1 & \text { inside the } j^{\text {-th }} \text { pixel } \\ 0 & \text { everywhere else }\end{cases}
$$

- Superior reconstructions are obtained by using bilinear elements pyramid shaped basis

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals bilinear elements insted of the traditional pixel basis

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals bilinear elements insted of the traditional pixel basis
- Correction terms are simultaneously applied to all the rays as for the SIRT methods

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals bilinear elements insted of the traditional pixel basis
- Correction terms are simultaneously applied to all the rays as for the SIRT methods
- Hamming window
emphasizes the corrections applied near the middle of a ray relative to those applied near the ends.

SART (Simultaneous ART)

First reported by Anderson and Kak '84

- Reduce the error in the approximation of the ray integrals bilinear elements insted of the traditional pixel basis
- Correction terms are simultaneously applied to all the rays as for the SIRT methods
- Hamming window
emphasizes the corrections applied near the middle of a ray relative to those applied near the ends.

The overall SART iterative scheme is

$$
g_{j}^{(k+1)}=g_{j}^{(k)}+\frac{\lambda_{k}}{\sum_{i=1}^{M} a_{i j}} \sum_{i=1}^{M} a_{i j} \frac{p_{i}-a_{i} \cdot g^{(k)}}{\sum_{j=1}^{N} a_{i j}}, \quad j=1,2, \ldots, N,
$$

where a_{i} is the $i^{\text {th }}$ row of A and $\lambda_{k}>0$ are relaxation coefficients.

More iterative algorithms

Censor and Elfving'02

The idea: Use generalized projections and diagonal weighting matrices to reflect the sparsity of the A matrix.

Definition: A family $\left\{G_{i}\right\}_{i=1}^{M}$ of diagonal $N \times N$ matrices with diagonal elements $g_{i j}>0$ is called Sparsity Pattern Oriented (SPO) with respect to $M \times N$ matix A if:
$\begin{array}{ll}\text { 1) } \sum_{i=1}^{M} G_{i}=I & \text { 2) } g_{i j}=0 \text { iff } a_{i j}=0 \text { for every } i=1,2, \ldots, M \text {. }\end{array}$

More iterative algorithms

Censor and Elfving'02

The idea: Use generalized projections and diagonal weighting matrices to reflect the sparsity of the A matrix.

Definition: A family $\left\{G_{i}\right\}_{i=1}^{M}$ of diagonal $N \times N$ matrices with diagonal elements $g_{i j}>0$ is called Sparsity Pattern Oriented (SPO) with respect to $M \times N$ matix A if:

1) $\sum_{i=1}^{M} G_{i}=I$
2) $g_{i j}=0$ iff $a_{i j}=0$ for every $i=1,2, \ldots, M$.

Diagonal Weighting (DWE)

$$
g_{j}^{(k+1)}=g_{j}^{(k)}+\lambda_{k} \sum_{\substack{i=1 \\ g_{i j} \neq 0}}^{M} a_{i j} \frac{p_{i}-a_{i} \cdot g^{(k)}}{\sum_{\substack{l=1 \\ g_{i l} \neq 0}}^{N} \frac{a_{i l}^{2}}{g_{i l}}}, j=1,2, \ldots, N
$$

More iterative algorithms

Censor and Elfving'02

The idea: Use generalized projections and diagonal weighting matrices to reflect the sparsity of the A matrix.

Definition: A family $\left\{G_{i}\right\}_{i=1}^{M}$ of diagonal $N \times N$ matrices with diagonal elements $g_{i j}>0$ is called Sparsity Pattern Oriented (SPO) with respect to $M \times N$ matix A if:

1) $\sum_{i=1}^{M} G_{i}=I$
2) $g_{i j}=0$ iff $a_{i j}=0$ for every $i=1,2, \ldots, M$.

Special case

$$
g_{i j}= \begin{cases}\frac{1}{s_{j}} & \text { if } a_{i j} \neq 0 \\ 0 & \text { if } a_{i j}=0\end{cases}
$$

where s_{j} is the number of the nonzero elements in column j of A.
Component Averaging (CAV)

$$
g_{j}^{(k+1)}=g_{j}^{(k)}+\lambda_{k} \sum_{i=1}^{M} a_{i j} \frac{p_{i}-a_{i} \cdot g^{(k)}}{\sum_{l=1}^{N} s_{l} a_{i l}^{2}}, \quad j=1,2, \ldots, N .
$$

More iterative algorithms

Censor and Elfving'02

The idea: Use generalized projections and diagonal weighting matrices to reflect the sparsity of the A matrix.

Definition: A family $\left\{G_{i}\right\}_{i=1}^{M}$ of diagonal $N \times N$ matrices with diagonal elements $g_{i j}>0$ is called Sparsity Pattern Oriented (SPO) with respect to $M \times N$ matix A if:

1) $\sum_{i=1}^{M} G_{i}=I$
2) $g_{i j}=0$ iff $a_{i j}=0$ for every $i=1,2, \ldots, M$.

Special case

$$
g_{i j}= \begin{cases}\frac{1}{s_{j}} & \text { if } a_{i j} \neq 0 \\ 0 & \text { if } a_{i j}=0\end{cases}
$$

where s_{j} is the number of the nonzero elements in column j of A.
Component Averaging (CAV)

$$
g_{j}^{(k+1)}=g_{j}^{(k)}+\lambda_{k} \sum_{i=1}^{M} a_{i j} \frac{p_{i}-a_{i} \cdot g^{(k)}}{\sum_{l=1}^{N} s_{l} a_{i l}^{2}}, \quad j=1,2, \ldots, N .
$$

Jiang and Wang'03 ART, SART, CAV, DWE are special cases of the Landweber method

$$
g^{(k+1)}=g^{(k)}+\lambda_{k} V^{-1} A^{*} W\left(p-A g^{(k)}\right)
$$

3D Reconstructions

- Slice by Slice

Disadvantages

- low speed
- discrete nature
- higher radiation dose

3D Reconstructions

- Slice by Slice

Disadvantages

- low speed
- discrete nature
- higher radiation dose
- Cone-Beam Reconstructions
- Circular
- Helical

Circular Cone-Beam Reconstructions

Circular Cone-Beam Reconstructions

The Idea: Apply fan-beam FBP to each plane in the cone
Feldkamp, Davis, Kress '84 (FDK)

Circular Cone-Beam Reconstructions

The Idea: Apply fan-beam FBP to each plane in the cone Feldkamp, Davis, Kress '84 (FDK)

A ray from the cone is described by
$t=x \cos \theta+y \sin \theta$
$r=-(-x \sin \theta+y \cos \theta) \sin \gamma$

$$
+z \cos \gamma
$$

where
(t, θ) locate a ray in a fan
(r, γ) specify the location ot the fan
θ - projection angle
γ - fan angle
$(x, y, z) \longrightarrow(t, s, z)$ (rotation by θ degrees around the z-axes)

The FDK Algorithm

Based on the FBP Algorithm for equispatial rays

$$
f(t, s, z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{D^{2}}{(D-s)^{2}} \int_{-\infty}^{\infty} R_{\beta}(p, \xi) \frac{D}{\sqrt{D^{2}+\xi^{2}+p^{2}}} h\left(\frac{D t}{D-s}-p\right) d p d \beta
$$

where $D=|S O|$ and $\xi=\frac{D}{D-s} z$.

The FDK Algorithm

Based on the FBP Algorithm for equispatial rays

$$
f(t, s, z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{D^{2}}{(D-s)^{2}} \int_{-\infty}^{\infty} R_{\beta}(p, \xi) \frac{D}{\sqrt{D^{2}+\xi^{2}+p^{2}}} h\left(\frac{D t}{D-s}-p\right) d p d \beta
$$

where $D=|S O|$ and $\xi=\frac{D}{D-s} z$.
The Algorithm
Step 1 Compute the modified projection

$$
R_{\beta}^{\prime}(p, \xi)=\frac{D}{\sqrt{D^{2}+\xi^{2}+p^{2}}} R_{\beta}(p, \xi)
$$

Step 2 Convolve $R_{\beta}^{\prime}(p, \xi)$ with $h(p) / 2$

$$
Q_{\beta}(p, \xi)=R_{\beta}^{\prime}(p, \xi) * \frac{1}{2} h(p)
$$

Step 3 Backproject over the 3D reconstruction grid

$$
f(t, s, z)=\int_{0}^{2 \pi} \frac{D^{2}}{(D-s)^{2}} Q_{\beta}\left(\frac{D t}{D-s}, \frac{D z}{D-s}\right) d \beta
$$

The Tuy-Smith sufficiency condition

Exact reconstruction is possible if all planes intersecting the object also intersect the source trajectory at least once.

The Tuy-Smith sufficiency condition

Exact reconstruction is possible if all planes intersecting the object also intersect the source trajectory at least once.

Circular trajectory does not satisfay this condition since a plane parallel to the trajectory may also intersect the object.

The Tuy-Smith sufficiency condition

Exact reconstruction is possible if all planes intersecting the object also intersect the source trajectory at least once.

Circular trajectory does not satisfay this condition since a plane parallel to the trajectory may also intersect the object.

Exact reconstruction form helical cone-beam data is possible. Tam'95 Kudo, Noo, Defrise '98

Conclusions

The challenges:

- Three dimentional images
- Better quality
- Faster algorithms

Restricted in time

References

- K. Tanabe, Projection Method for Solving a Singular Systems of Linear Equations and its Applications, Numer. Math., 17, 203-214 (1971).
- H. Tuy, An Inversion Formula for Cone-Beam Reconstruction, SIAM J. AppI. Math. 42 546-552 (1983).
- L. Feldkamp, L. Davis and J. Kress, Practical Cone-Beam Algorithm, Journal of the Optical Society of America 1, 612-619 (1984).
- K. Tam, Three-Dimensional Computerized Tomography Scanning Method and System for Large Objects with Smaller Area Detectors, US Patent 5,390,112, Feb 14.(1995).
- S. Nilsson, Fast Backprojection, Technical report LiTH-ISY-R-1865, Linköping University (1996).
- A. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press. (1998).
- H.Kudo, F. Noo and M. Defris, Cone-Beam Filtered Backprojection Algorithm for Truncated Helical Data, Physics in Medicine and Biology 43, 2885-2909 (1998).

References

- G.Wang and M. Vannier, Computerized Tomography, (1998) available at: http://dolphin.radiology.uiowa.edu/ge/Teaching/ct/ct.html
- Y. Saad, H. van der Vorst, Iterative Solution of Linear Systems in the 20th Century, J. Comput. Appl. Math. 123, 1-33 (2000).
- F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM, (2001).
- H. Turbell, Cone-Beam Reconstruction Using Filtered Backprojectio, Dissertation No.672, Linköping Sudies in Science and Technology (2001).
- Y. Censor and T. Elfving, Block-Iterative Algorithms with Diagonally Scaled Oblique Projections for the Linear Feasibility Problems, Siam J. Matrix Anal. Appl., 24, 40-58 (2002).
- M. Jiang and G. Wang, Convergence Studies on Iterative Algorithms for Image Reconstruction, IEEE Transactions on Medical Imaging , 22, 569-579 (2003).

