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Definition

Tomography: technique for imaging cross-sections
or slices from a set of external measurements of a
spatially varying function.
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Fields of applications

�

X-ray CT
- medical imaging
- industrial nondestructive evaluation
- airport screening
- microtomography

Magnetic Resonance Imaging (MRI)
- electromagnetic waves

Transmission electron microscopy
- an electron beem

CT principles are also applied in:
- oceanography
- astronomy
- geophysics
- optics
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Some hisrory

�

Radon 1917
- reconstruction of a function from its projections

Hounsfield 1972
- patented the first CT scanner

Cormack 1963 - 1964
- contributionto mathematics of X-ray CT

Hounsfield and Cormack shared the 1979 Nobel Prize for medicine

since then the field is steadily evolving and givis rise to never ceasing flow of new
algorithms
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Principles of X-ray CT
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Principles of X-ray CT

�

X-ray traverses an
object along stight line�

attenuated signals from
various directions are
recorded�

reconstruction algorithms
are used to convert the
projections
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Projections

Let� ��� � � � represents the density of a two-dimensional object	�
 � applied intensity form the X-ray source	� � � the attenuated intensity of a ray as it propagates throught the object

along the line

� � � �� � � �

The line integral can be written as
Radon Transform

where

is the Dirac delta function and

(the equation of the X-ray)
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Projections
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The line integral can be written as
Radon Transform
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�
 � � ��� � � �! ��" �� � � � � � �� � � � �

where!

is the Dirac delta function and

" �� � � � � � � #$% � & �% ' � � � �

(the equation of the X-ray)
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Fourier Slice Theorem

Consider the two-dimensional FT of the object function

( ��) � * � � �
 �

�
 � � ��� � � ��+  ,- . / �0 132 4 5 � � � �

and the one-dimensional FT of the projection

� � � � �

6 � ��7 � � �
 � �� � � ��+  ,- . 8 �9� �
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Simplest case, when * � :

(

� � :
)

( ��) � : � � �
 �

�
 � � �� � � ��+  ,- . �0 � � � � � �
 �
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 � � �� � � � � � < +  ,- . �0 � �
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Fourier Slice Theorem

In general for any anglr

�
6 � ��7 � � ( ��7 � � � � ( � 7 #$% � � 7 % ' � � �@?
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Fourier reconstruction algorithm

�

Take projection of an object function at angles

� A � � - � ? ? ? � � B�

Fourier transform each projection to obtain the values of
( �) � * ��

Recover the object function

� �� � � � by using the inverse FT

� �� � � � � �
 �

�
 � ( �) � * ��+ ,- . / �0 12 4 5 � ) � *

Discretising on the square

where is even integer.

The values of F(u,v) on a square grid are obtained from the available values along the

radial lines by interpolation.
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N =  L M-
L M-

� =  L M-
( O PD � Q D R + ,- . / / N MS 5 0 1 / � MS 5 4 5 �

where

T

is even integer.

The values of F(u,v) on a square grid are obtained from the available values along the

radial lines by interpolation.
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Reconstruction for Parallel Projections

� ��� � � � � �
 �

�
 � ( �) � * � + ,- . / �0 132 4 5 � ) � *

� - .
>

�
> ( � 7 � � ��+ ,- . 8

UV WX Y��� #$% � & �% ' � � � 7 � 7 � �
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The FBP algorithm

Step 1: Filtering m � � � � � �
 � 6 � ��7 �Z 7 Z + ,- . 8 �� 7

Superior results are obtained by deemphasizing the high frequencies with the
Hamming window function .

where is the inverse DFT of .

Step 2: Backprojection
Reconstruc by the formula

where is the number of the projection angles .
Note The values of in Step 2 can be approxiamted from the values obtained in Step 1
by interpolation (linear).

Computational cost: Backprojection summation —>

Fast backprojections (Nilsson’96) —>
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Reconstruction for Fan Projections
Equiangular Rays

Let

~f� ��� �

be a fan projection

�

is the angle between the source
and a reference axis.

� gives the location of a ray

� �|SO| source to origin dist.

�

- source to point

�� � � � dist.
In polar coordinates

� �" � u ��

� � � & �" % ' � � � - & �" #$% � � - ,
where � � � � u

.

where

Computer Tomography: Computational theory and methods – p.12/28



Reconstruction for Fan Projections
Equiangular Rays

� ��� � � � � .
>

�
 � �f� � � �k ��� #$% � & �% ' � � � � � � �� �

� �" � u � � KF - .
>

�
 � ��� � � � k �" #$% � � � u � � � �� �� �

where
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where

m � � � � � ~ �� ��� � l� ��� �

~ �� � � � � ~� ��� ��� �� #$% �

� � � � � KF n �% ' � �
p - k � � �
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Weighted Backprojection Algorithm
Equiangular Rays

Let

� is the sampling interval of the projection� 
 are the angles at which projections are taken

Step 1 For each

~f� y � Q � � � Q � �

, generate the corresponding modified projection~ �� y � Q � � � ~� � Q � �� �� #$% Q �

Step 2 Convolve with to generate the
corresponding filtered projection (FFT)

where is a smoothing filter.

Step 3 Perform a weighted backprojection

where is the angle of a ray that passes through the point and .
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Reconstruction for Fan Projections
Equally Spaced Detectors

Let

~f� � � � be a fan projection

�

is the angle between the source
and a reference axis.

� is the distance along the detector

� �|SO| source to origin dist.

�

- the dist. source to projection
of a pixel on the central ray

In polar coordinates

� �" � u ��

� � � & " % ' � � � � u ��

where
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Reconstruction for Fan Projections
Equally Spaced Detectors

� ��� � � � � .
>

�
 � ��� � � �k ��� #$% � & �% ' � � � � � � �� �

� �" � u � � KF - .
>

�
 � �f� � � � k �" #$% � � � u � � � �� �� �

� ? ? ?
� - .
>

K�- m � � � � � � � �

where

m � � � � � ~ �� � � � l � � � �

~ �� � � � � ~� � � �� �� �- & �-

� � � � � KF k � � �
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Algebraic reconstruction techniques

Advantages

- easy to handle different rays geometry
- more adaptable to missing data - better image quality
- metal artifacts are reduced
- less radiation dose

Disadvantage

Higher computational cost!
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Image and Projection Representation

The idea: Assume that the cross section consists of array of unknowns

- total number of cells
is the value of

in the -th cell
- the -th line integral ray-sum

where
is the total number of rays

represents the contribution

of the -th cell to the -th ray integral
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Projection methods

Therefore we have to solve the following linear system of equations

7 A A � A & 7 A- �- &� � � & 7 A L � L � ¶ A

7 - A � A & 7 - - �- &� � � & 7 - L � L � ¶-
...7 · A � A & 7 ·- �- &� � � & 7 · L � L � ¶ ·

for large values of

¸

and

T

.

Use iterative methods - projestions (Kaczmarz’37, Tanabe’71)

Let is the initial guess

where
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for large values of

¸
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T

.

Use iterative methods - projestions (Kaczmarz’37, Tanabe’71)

Let

� / > 5 � O � / > 5A � � / > 5- � ? ? ? � / > 5L R
is the initial guess

� / 
 5 � � / 
  A 5 � ¹�º »y¯¼ ½ ¾À¿ 8y  Áy Â
8y ¿ 8y 7 
 Ã � K � F � ? ? ? �

where 7 
 � � 7 
 A � 7 
ÅÄ - � ? ? ? 7 
 L �
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Projection methods

Theorem (Tanabe’71)
If there exists a unique solution

� /ÇÆ 5

to the system of equations, then

� 'IÈBÉ � � / B · 5 � � /ÇÆ 5

The rate of convergence depends of the angles between the hyperplanes

- Full orthogonalization is computationally not feasible

- Pairwise orthogonalization scheme (Ramakrishnan’79)

- Carefully choose the order of the hyperplanes (Hounsfield’72)

When the process oscillate in the neighborhood of the intersections of the
hyperplanes

When the process converges to a solution , such that
is minimized.

Computer Tomography: Computational theory and methods – p.18/28



Projection methods

Theorem (Tanabe’71)
If there exists a unique solution

� /ÇÆ 5

to the system of equations, then

� 'IÈBÉ � � / B · 5 � � /ÇÆ 5
The rate of convergence depends of the angles between the hyperplanes

- Full orthogonalization is computationally not feasible

- Pairwise orthogonalization scheme (Ramakrishnan’79)

- Carefully choose the order of the hyperplanes (Hounsfield’72)

When the process oscillate in the neighborhood of the intersections of the
hyperplanes

When the process converges to a solution , such that
is minimized.

Computer Tomography: Computational theory and methods – p.18/28



Projection methods

Theorem (Tanabe’71)
If there exists a unique solution

� /ÇÆ 5

to the system of equations, then

� 'IÈBÉ � � / B · 5 � � /ÇÆ 5
The rate of convergence depends of the angles between the hyperplanes

- Full orthogonalization is computationally not feasible

- Pairwise orthogonalization scheme (Ramakrishnan’79)

- Carefully choose the order of the hyperplanes (Hounsfield’72)Ê When

¸Ë T

the process oscillate in the neighborhood of the intersections of the
hyperplanesÊ When

¸ G T

the process converges to a solution

� � /ÇÆ 5

, such thatZ � / > 5 � � � /ÇÆ 5 Z

is minimized.

Computer Tomography: Computational theory and methods – p.18/28



Projection methods

Consider again � / 
 5 � � / 
  A 5 � ¹�º »y¯¼ ½ ¾À¿ 8y  Áy Â
8y ¿ 8y 7 
 Ã � K � F � ? ? ? �

It can also be written as

� / 
 5, � � / 
  A 5, & ¶ 
 � Ì 
Í LB = A 7 - 
 B 7 
 , Î � K � F � ? ? ? � T � Ã � K � F � ? ? ? �

where Ì 
 � � / 
  A 5 � 7 
 � Í LB = A � / 
  A 5B 7 
 B ?

Therefore � / 
 5, � � / 
  A 5, & � � / 
 5, �

where � � / 
 5, � Áy  ÏyÐ ÑÓÒ9Ô ½ 8 Õy Ò7 
 , ?

The main computational diffuculty is in the calculation, storage and retrieval of

the weight coefficients .
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Algebraic Reconstruction Tech.(ART)

Ê Replace 7 
 , by 0 or 1, depending wether the center of the

Î -th cell is within the

Ã-th ray.
Thus we can use � � / 
 5, � ¶ 
 � Ì 
T

for all cells whos centers are within the

Ã -th ray.T
 � Í LB = A 7 - 
 B is the number of cells whose centers are within the

Ã -th ray.

Superior approxiamtion is

where is the lenght of the -th ray trought the reconstruction region.

- ART suffer from salt and pepper noise, caused by the approximations used for .

- It is possible to reduce the noce by
relaxation (i.e. update a pixel by )

SIRT - change the cell values after going through all of the equations
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SART (Simultaneous ART)

First reported by Anderson and Kak ’84Ê Reduce the error in the approximation of the ray integrals

bilinear elements insted of the traditional pixel basis

Correction terms are simultaneously applied to all the rays
as for the SIRT methods

Hamming window
emphasizes the corrections applied near the middle of a ray relative to those
applied near the ends.

The overall SART iterative scheme is

where is the -th row of and are relaxation coefficients.
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Ø , ��� � � � � ÜÞÝ
ß

K
inside the
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everywhere else

- Superior reconstructions are obtained by using bilinear elements
pyramid shaped basis
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SART (Simultaneous ART)

First reported by Anderson and Kak ’84Ê Reduce the error in the approximation of the ray integrals
bilinear elements insted of the traditional pixel basisÊ Correction terms are simultaneously applied to all the rays
as for the SIRT methodsÊ Hamming window
emphasizes the corrections applied near the middle of a ray relative to those
applied near the ends.

The overall SART iterative scheme is
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SART (Simultaneous ART)

First reported by Anderson and Kak ’84Ê Reduce the error in the approximation of the ray integrals
bilinear elements insted of the traditional pixel basisÊ Correction terms are simultaneously applied to all the rays
as for the SIRT methodsÊ Hamming window
emphasizes the corrections applied near the middle of a ray relative to those
applied near the ends.

The overall SART iterative scheme is

� / B 1 A 5, � � / B 5, & Ö BÍ ·
 = A Û 
 ,
·


 = A Û 
 , ¶ 
 � Û 
 � � / B 5
Í L, = A Û 
 , � Î � K � F � ? ? ? � T �

where Û 
 is the

Ã-th row of

D
and

Ö B Ë :

are relaxation coefficients.
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More iterative algorithms
Censor and Elfving’02
The idea: Use generalized projections and diagonal weighting matrices to reflect the
sparsity of the

D

matrix.

Definition: A family

×à 
 Ù ·
 = Aof diagonal

Tâá T

matrices with diagonal elements� 
 , Ë :

is called Sparsity Pattern Oriented (SPO) with respect to

¸ á T
matix

D
if:

1)

Í ·
 = A à 
 � 	

2)� 
 , � :

iff Û 
 , � :
for every

Ã � K � F � ? ? ? � ¸

.

Special case

if

if

where is the number of the nonzero elements in column of .
Component Averaging (CAV)

Jiang and Wang’03 ART, SART, CAV, DWE are special cases of the Landweber method
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� / B 1 A 5, � � / B 5, & Ö B ·
y Ô ½äãyå æÔ ç

Û 
 , ¶ 
 � Û 
 � � / B 5
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3D Reconstructions

� Slice by Slice
Disadvantages

- low speed
- discrete nature
- higher radiation dose

Cone-Beam Reconstructions
- Circular
- Helical
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Circular Cone-Beam Reconstructions

The Idea: Apply fan-beam FBP to
each plane in the cone

Feldkamp, Davis, Kress ’84 (FDK)

A ray from the cone is described by

where
locate a ray in a fan
specify the location ot the fan

- projection angle
- fan angle

—> (rotation by degrees around the -axes)
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- projection angle� - fan angle

�� � � � ñ �

—>

� � � � � ñ �
(rotation by

�
degrees around the ñ -axes)
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The FDK Algorithm

Based on the FBP Algorithm for equispatial rays� � � � � � ñ � � KF - .
>

�-� � � � � -
�

 � ~� � ¶ � ó � �ô �- & ó- & ¶- k n � �� � � � ¶ p � ¶� � �

where

� � Z 6õ Z

and

ó � öö  Æ ñ .

The Algorithm

Step 1 Compute the modified projection

Step 2 Convolve with

Step 3 Backproject over the 3D reconstruction grid
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The Algorithm

Step 1 Compute the modified projection~ �� � ¶ � ó � � �ô �- & ó- & ¶- ~� � ¶ � ó �

Step 2 Convolve

~ �� � ¶ � ó �

with

k � ¶ � EF
m � � ¶ � ó � � ~ �� � ¶ � ó � l KF k � ¶ �

Step 3 Backproject over the 3D reconstruction grid� � � � � � ñ � � - .
>

�-� � � � � - m � � � �� � � �
� ñ� � � �� �
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The Tuy–Smith sufficiency condition

Exact reconstruction is possible if all planes intersecting the
object also intersect the source trajectory at least once.

Circular trajectory does not satisfay this condition since a
plane parallel to the trajectory may also intersect the object.

Exact reconstruction form helical cone-beam data is
possible. Tam’95 Kudo, Noo, Defrise ’98
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Conclusions

The challenges:

� Three dimentional images

� Better quality

� Faster algorithms

÷ Restricted in time
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