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Abstract

A new effective method and its two modifications for solving Hermitian pentadi-
agonal block circulant systems of linear equations are proposed. New algorithms
based on the proposed method are constructed. Our algorithms are then compared
with some classical techniques as far as implementation time is concerned, number
of operations and storage. Numerical experiments corroborating the effectiveness of
the proposed algorithms are also reported.
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1 Introduction

Linear systems of equations having circulant coefficient matrices appear in
many applications. For example, in finite difference approximations to elliptic
equations subject to periodic boundary conditions [2,8] and in approximations
of periodic functions using splines [1,9]. In case when multidimensional prob-
lems are concerned the coefficient matrices of the resulting linear systems are
with block circulant structure [7].
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In this paper we propose a new method and its two modifications for solv-
ing Hermitian pentadiagonal block circulant systems of linear equations. It is
known that these systems have the form

W x = f, (1)

where
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(2)

is Hermitian pentadiagonal block circulant matrix with block size n. M , N

and S are m×m matrices, x = {xi}i=1,...,n, f = {fi}i=1,...,n, are column vectors
with block size n, xi and fi, are blocks with size m× 1.

Our goal is to construct a new effective method for solving (1) and then to
compare it with some classical techniques.

The paper is organized as follows: in Section 2 we present the new method and
discuss its two modifications based on different applications of the Woodbury’s
formula [4]; in Section 3 we report some numerical experiments corroborating
the effectiveness of the proposed algorithms.

2 A Modification of LU factorizations

Adapting the ideas suggested in [6], we construct a new method for solving
linear systems with coefficient matrices of the form (2). Our approach is based
on the solution of a special nonlinear matrix equation. One can fine the solution
of (1) using the following steps:

Step 1. Solve the parametric linear system

T y = f, (3)

where
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is pentadiagonal matrix with block size n. It has a block Teoplitz structure
except for the north-western corner, y = {yi}i=1,...,n, and f = {fi}i=1,...,n are
column vectors with blocks size n, yi and fi are blocks with size m× 1.

The matrix T admits the following LU factorization

T = LU =
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where Im is the identity matrix with size m×m.
The above decomposition exists when the parameters X = X∗, Y and Z = Z∗

satisfy the relations
∣

∣

∣

∣

∣

∣

∣

Z = Y ∗X−1Y +X

N = Y ∗X−1S + Y

M = S∗X−1S + Z

. (4)

Let us introduce the following notations

F =

(

X Y

Y ∗ Z

)

, Q =

(

S 0
N S

)

, R =

(

M N

N∗ M

)

. (5)

If F is a positive definite solution of the matrix equation

F +Q∗F−1Q = R (6)

and X = X∗ > 0, Z = Z∗ > 0 then the blocks X, Y and Z satisfy the
system (4).

Thus, solving the linear system (3) is equivalent to solve two simpler systems

L z = f, z = {zi}i=1,...,n

U y = z, y = {yi}i=1,...,n.

Step 2. Solve the pentadiagonal block Teoplitz linear system

P u = f, (7)
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where

P =


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(8)

is Hermitian pentadiagonal block Teoplitz matrix with block size n, u =
{ui}i=1,...,n and f = {fi}i=1,...,n are column vectors with block size n , ui and
fi are blocks with size m× 1.
The matrices T and P satisfy the relation P = T + J2V̂ , where

J2 =

(

Im 0 0 . . . 0
0 Im 0 . . . 0

)T

, V̂ =

(

M −X N − Y 0 . . . 0
N∗ − Y ∗ M − Z 0 . . . 0

)

are matrices with block size n× 2 and 2× n respectively.
Using the Woodbury’s formula we have

P−1 = T−1 − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ T−1, (9)

where I2m is the identity matrix with size 2m× 2m. Therefore, the solution u

of (7) is given by

u = P−1f = y − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ y.

One can find the matrix T−1J2 by solving 2m linear systems of type (3) with
right-hand sides the corresponding two different columns of J2. This approach
does not take into account the very sparse nonzero structure of J2. For real
M , N and S it costs O(20nm3) flops and needs to store 2nm2 real numbers.
In order to decrease the number of operations needed to compute T−1J2, we
consider a new approach which is motivated by the ideas suggested in [5].
Let us denote the block columns vectors of J2 with E1 and E2 respectively i.e.

E1 =
(

Im 0 0 . . . 0
)T

, E2 =
(

0 Im 0 . . . 0
)T

.

Put A = Y ∗X−1 and B = S∗X−1.

The matrix T admits the following decomposition

T = LDL∗, where L =
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is a square matrix of block size n and D = diag(X, . . . , X).

Let (L−1)ij be the blocks of the matrix L−1. We have

(

L−1
)

ij
=

{

0 i < j

Zi−j+1 i ≥ j,
where

Z1 = Im, Z2 = −A, Z3 = A2 −B,

Zj = −AZj−1 −BZj−2 for j = 4 . . . n.

Obviously D−1 = diag(X−1, . . . , X−1).
We propose to compute T−1J2 by consecutive calculations of T

−1E1 and T−1E2

using the following algorithm:

Algorithm RP Recursive computations for Pentadiagonal system

• Find the cells Ki = X−1Zi for i = 1, . . . , n by the formulas

K1 = X−1

K2 = −X−1A

Ki = −Ki−1A−Ki−2B for i = 3, . . . n.

• Compute the blocks (T−1E1)i and (T
−1E2)i by the formulas

(T−1E1)n=Kn

(T−1E1)n−1=Kn−1 − A∗(T−1E1)n
(T−1E1)i=Ki − A∗(T−1E1)i+1 −B∗(T−1E1)i+2 for i = n− 2, . . . , 2

(T−1E1)1=X−1 − A∗(T−1E1)2 −B∗(T−1E1)3

(T−1E2)n=Kn−1

(T−1E2)n−1=Kn−2 − A∗(T−1E2)n
(T−1E2)i=Ki−1 − A∗(T−1E2)i+1 −B∗(T−1E2)i+2 for i = n− 2, . . . , 2

(T−1E2)1=−A∗(T−1E2)2 −B∗(T−1E2)3.

If the blocksM , N and S are real the algorithm RP costs O(12nm3) flops and
needs to store (3n+2)m2 real numbers. According to the above algorithm, in
the next step, we consider two different approaches for solving (1).

Step 3. Solve the system (1)

3.1 The matrix W satisfies the relation

W = P + Ũ Ṽ ,

where

Ũ =
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
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are matrices with block size n× 4 and 4× n respectively.
Using the Woodbury’s formula we have

W−1 = P−1 − P−1Ũ
[

I4m + Ṽ P−1Ũ
]−1

Ṽ P−1,

where I4m is the identity matrix of size 4m× 4m.
The solution x of (1) is obtained from the vector u by the formula

x = W−1f = u− P−1Ũ
[

I4m + Ṽ P−1Ũ
]−1

Ṽ u.

Denote the block columns vectors of Ũ by E1, E2, En−1 and En respectively.
Thus, the computation of P−1Ũ can be done by consecutive calculations of
P−1E1, P−1E2, P−1En−1 and P−1En using the formula (9). For i = 1, 2,
n− 1, n we have

P−1Ei = T−1Ei − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ T−1Ei. (10)

Note that the numerical implementation of formulas (10) is very “cheap”, since

we already know from Step 2 the elements T−1J2 and
[

I2m + V̂ T−1J2

]−1
. We

recommend formulas (10) instead of solving 4m linear system of the form (7)
with right hand side the corresponding column vectors of Ũ . It is easy to
observe that the blocks of T−1En−1 and T−1En satisfy the relations

(T−1En−1)n = K∗
2 ,

(T−1En−1)i = K∗
n−i −K∗

n−i+1A for i = n− 1, . . . , 1,

(T−1En)i = K∗
n+1−i for i = n, . . . , 1,

where Ki for i = 1, . . . , n are the blocks from algorithm RP.

3.2 In order to decrease the size of the inverse matrix in the Woodbury’s
formula, we propose the following decomposition of the matrix W

W =

(

P V

V ∗ R

)

,

where P is from (8), with block size n− 2× n− 2, R is from (5) and

V ∗ =

(

S 0 . . . S∗ N∗

N S . . . 0 S∗

)

is a matrix with block size 2× n− 2.
Put

x̂ =
(

x1, . . . , xn−2

)T

, x̃ =
(

xn−1 xn

)T

, x =

(

x̂

x̃

)

,

f̂ =
(

f1, . . . , fn−2

)T

, f̃ =
(

fn−1 fn

)T

, f =

(

f̂

f̃

)

.
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In this notations system (1) can be written in the form

(

P V

V ∗ R

)(

x̂

x̃

)

=

(

f̂

f̃

)

,

which is equivalent to
∣

∣

∣

∣

∣

Gx̂ = r

x̃ = R−1
(

f̃ − V ∗x̂
)

,

where G = P − V R−1V ∗, r = f̂ − V R−1f̃ .

By Woodbury’s formula we have

G−1 = P−1 + P−1V
[

R− V ∗P−1V
]−1

V ∗P−1.

Therefore,

x̂ = G−1r = z + P−1V [R− V ∗P−1V ]
−1

V ∗z,

where z = P−1r can be computed by means of Step 2.
Denote the block columns vectors of V with H1 and H2 respectively. The
computation of P−1V can also be done by consecutive calculations of P−1H1

and P−1H2 using the formula (9). For i = 1,2

P−1Hi = T−1Hi − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ T−1Hi.

The numerical implementation of the last formulas is again “cheap”, since we

already know from Step 2 the elements T−1J2 and
[

I2m + V̂ T−1J2

]−1
. The

blocks of T−1H1 and T−1H2 satisfy the relations

(T−1H1)i = (T
−1E1)iS

∗ +K∗
n−2−iS +K∗

n−i−1Q̃ for i = 1, . . . , n− 3

(T−1H1)n−2 = (T
−1E1)n−2S

∗ +K∗
1Q̃

(T−1H2)i = (T
−1E1)iN

∗ + (T−1E2)iS
∗ +K∗

n−1−iS for i = 1, . . . , n− 2,

where Q̃ = N−AS andKi for i = 1, . . . , n are the blocks from Algorithm RP.

3 Numerical experiments

In this section we compare our algorithms with some classical techniques for
solving (1), with W given as in (2), and the exact solution x = (1, 1, . . . , 1)T .

In our numerical experiments, W is Hermitian pentadiagonal block circulant
with several block sizes n. The algorithms are compared by means of execution
time and accuracy of the solution.
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Table 1
Execution time (in seconds) and errors for Example 1

m = 3
Algorithm n = 4000 n = 6000 n = 8000

Err. time Err. time Err. time

LU 1.4482e-015 2.95 1.4482e-015 6.04 1.4482e-015 10.15
CHOL 2.2888e-015 2.00 2.2888e-015 3.23 2.2888e-015 5.44
M_RP(4m) 4.2635e-014 1.95 4.1064e-014 3.14 4.7126e-014 5.02
M_RP(2m) 3.3956e-014 1.63 4.1081e-014 2.62 6.0280e-014 4.34

The codes are written in MATLAB language and the computations are done
on an AMD computer. The results of the experiments are given in different
tables for each example.

The following notations are used: LU stands for classical LU factorization;
CHOL stands for the classical Cholesky factorization; M_RP(4m) stands for
algorithm based on the proposed new method using Step 3.1; M_RP(2m)
stands for algorithm based on the proposed new method using Step 3.2;
Err. = ‖x− ˜̃x‖∞, where ˜̃x is the computed solution.

To solve the system (1) we need to compute a positive definite solution of the
matrix equation (6). The sufficient condition for the existence of a positive

definite solution is ‖R− 1

2 QR− 1

2‖ ≤ 1
2
, (see [3]). In the next two examples the

cells of the matrix W , which form the matrices R and Q, are chosen to satisfy
this condition.

Example 1 Let

M =







8 1− i 1.5
1 + i 9 1
1.5 1 8





 , N =







0 1 0
0 2 0
1− i 0 0





 ,

S =







1.2− 3i −0.3− i 0.1
−0.30 2.1 0.2
0.1 0.2 0.65 + 2i





 .

In Table 1, we present the execution time (in seconds) and the error for each
algorithm for different values of n.

Example 2 Let

M = circ(22,−8, 1, . . . , 1,−8), N = circ(−7.2, 1.8, . . . , 1.8)

are circulant matrices and S = I.

The results from the numerical experiments for this example are given in
Table 2.
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Table 2
Execution time (in seconds) and errors for Example 2

m = 7
Algorithm n = 4000 n = 6000 n = 8000

Err. time Err. time Err. time

LU 1.7764e-015 3.49 1.7764e-015 6.66 1.7764e-015 11.01
CHOL 1.9984e-015 2.39 1.9984e-015 3.90 1.9984e-015 5.98
M_RP(4m) 2.6182e-014 2.14 3.2072e-014 3.40 3.7038e-014 4.88
M_RP(2m) 2.5537e-014 1.87 3.1282e-014 2.83 3.6124e-014 4.47

4 Conclusions

The proposed new algorithms M_RP(2m) and M_RP(4m) are faster than the
classical LU and CHOL. From the theoretical discussions and the numerical
experiments, we can conclude that Algorithm M_RP(2m) is most suitable for
implementation. This is due to the size of the inverse matrix in the Wood-
bury’s formula. The inverse matrix in M_RP(2m) is two times smaller than
the inverse matrix in M_RP(4m). This leads to a considerable decrease in the
execution time.

The complexity of the proposed new algorithms is O(nm3). For compari-
son, algorithm based on the Fast Fourier Transform (FFT) has complexity
O(nm log(n)), but it can be implemented only when the block size of the ma-
trixW is power of two. Our method does not have these restrictions. The only
restriction on the applicability of our method is related with the existence of
a solution of the matrix equation (6).
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