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Introduction

Consider partial differential equation of the form
uy = Lu+ N(u,t)

where L is a higher-order linear term and N is low-order
nonlinear term.
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Introduction

Consider partial differential equation of the form
uy = Lu+ N(u,t)

where L is a higher-order linear term and N is low-order
nonlinear term.
After discretization in space we obtain a systems of ODEs

uw = Lu+ N(u,t)
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Basic methods

LI = Linearly Implicit Use an explicit multi-step formula to advance the
nonlinear part and implicit scheme to advance the linear part (Ascher, Ruuth and
Wetton ’'95).
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Basic methods

LI = Linearly Implicit Use an explicit multi-step formula to advance the
nonlinear part and implicit scheme to advance the linear part (Ascher, Ruuth and
Wetton ’'95).

SS = Split Step Write the solution in the form
u(t) ~ exp(citL)F (ditN)exp(catL)F (d2tN) - - - exp(ciptL)F(d1kN)u(0),

where ¢; andd; are constants (Sanz-Serna and Calvo '94, Boyd '01).
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Basic methods

LI = Linearly Implicit Use an explicit multi-step formula to advance the
nonlinear part and implicit scheme to advance the linear part (Ascher, Ruuth and
Wetton ’'95).

SS = Split Step Write the solution in the form
u(t) ~ exp(citL)F (ditN)exp(catL)F (d2tN) - - - exp(ciptL)F(d1kN)u(0),

where ¢; andd; are constants (Sanz-Serna and Calvo '94, Boyd '01).

SL = Sliders Extention of LI, split the linear part into three regions (low,
medium and high), (Fornberg and Driscoll ’99)
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Basic methods

IF = Integrating Factor Make a change of variable then solve exactly for the
linear part and use the numerical scheme for the transformed nonlinear equation

(Mayday, Patera, Ronquist ‘90, Milewski and Tabak ’99, Trefethen 00, Krogstad
'03).
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Basic methods

IF = Integrating Factor Make a change of variable then solve exactly for the
linear part and use the numerical scheme for the transformed nonlinear equation
(Mayday, Patera, Ronquist ‘90, Milewski and Tabak ’99, Trefethen 00, Krogstad

'03).
v = exp(—Lt)u
exp(—Lt)uy —Lu = exp(—Lt)N(u)
vt
vi = exp(—Lt)N(exp(Lt)v)
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Basic methods

IF = Integrating Factor Make a change of variable then solve exactly for the
linear part and use the numerical scheme for the transformed nonlinear equation
(Mayday, Patera, Ronquist ‘90, Milewski and Tabak ’99, Trefethen 00, Krogstad

'03).
v = exp(—Lt)u
exp(—Lt)uy —Lu = exp(—Lt)N(u)
vt
vi = exp(—Lt)N(exp(Lt)v)

ETD = FExponential Time Dif ferencing
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Exponential Time Differencing

(1)

Use the same integrating factor like in I F

%(ea:p(—Lt)u) = exp(—Lt)N(u(t))
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Exponential Time Differencing

(1)

Use the same integrating factor like in I F

%(ea}p(—Lt)u) = exp(—Lt)N(u(t))

Integrate over a single time step of length A

h

Un+1 = exp(Lh)uyn + exp(Lh) / exp(—L7)N(u(ty, + 7),tn + 7)d7
0
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ETD (1/2)

N(u(t),t) = constant

ETD1: upt1 = exp(Lh)u, + L~ 'N, (exp(Lh) — I), where N,, = N(un,tn)
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ETD (1/2)

N(u(t),t) = constant
ETD1: upt1 = exp(Lh)u, + L~ N, (exp(Lh) —I), where N,, = N(up,tn)
N(u(r),7) = Np + +(Np —Np—1)

unt1 = exp(Lh)un +h 1L72N,, (exp(Lh)(I + Lh) — 2LAh — 1)
ETD2:

+h~'L72N,,_1(—exp(Lh) + Lh + 1)
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ETD (1/2)

N(u(t),t) = constant
ETD1: upt1 = exp(Lh)u, + L~ N, (exp(Lh) —I), where N,, = N(up,tn)
N(u(r),7) = Np + +(Np —Np—1)
unt1 = exp(Lh)un +h 1L72N,, (exp(Lh)(I + Lh) — 2LAh — 1)
ETD2:
+h~'L72N,,_1(—exp(Lh) + Lh + 1)

In general

ETDs: un+1 = exp(Lh)un + han_:lo gm Yoo (—=1)k (7)Ny,—x, where g,
are given by

Lhgo = exp(Lh) —1
Lhgm+1+1 = gm + 59m—1+ sgm—2+ -+ T, m2>0.
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ETD (2/2)

Another way of producing the same formulas (Krogstad ’03)

Lemma1 LetN; = Cglt—i ’ N(u(t),t) then the solution u(t) of (1) is
t = 1o

u(to + h) = exp(Lh)ug + Z tF T L (tL)Ny,
k=0

where

bo(z) = » , Pr+1(2) = ¢k(z);¢k(0), E=1,2,...
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Lie-group Methods

¢ Crouch and Grossman Methods
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Lie-group Methods

¢ Crouch and Grossman Methods

¢ Munthe — Kaas Methods
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Lie-group Methods

C'rouch and Grossman M ethods

Munthe — Kaas Methods
Commutator — free Lie — Group Methods

Algorithm (CF)

forr=1:sdo

Yr = Eap(3), o ;F) - Exp(3y, o 1 Fi) (p)
Fr = hFy, = h) , fi(Yr)E;

end

y1 = Exp(>, BYFy) - Exp(3,, BY Fr)p
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ETD1 and Lie-group Integrators

We can rewrite the equation (1) in the form

@ = (L,N(u,t)).u = Fy +(u)
u(0) = uo

where . represents the Lie algebra action

(A,a)u = Au+a
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ETD1 and Lie-group Integrators

We can rewrite the equation (1) in the form

@ = (L,N(u,t)).u = Fy +(u)
u(0) = uo

where . represents the Lie algebra action
(A,a)u = Au+a
Let £, ;(u) be the Frozen Vector Field at the point (4, t)

Fy i(u) = (L,N(a,1)).u = Lu+ N(a,1)
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ETD1 and Lie-group Integrators

We can rewrite the equation (1) in the form

@ = (L,N(u,t)).u = Fy +(u)
u(0) = uo

where . represents the Lie algebra action

_|_

(A,a)u = Au+a
Let F, ;(u) be the Frozen Vector Field at the point (4, t)

F. :(u) = (L,N(a,t)).u = Lu+ N(4,t)

The flow of such vector field is the solution of & = F; ;(u), u(0) = ug

Exp(tFy ;)uo = exp(tL)uo + tpo (tL)N (1, t)

° ° ° ° ° ° ° ° °
Exponential Time Differencing and Lie-Group Methods for Stiff Problems — p.10/29



ETD2 and Lie-group Integrators (1/3)

We can rewrite the equation (1) in the form

J = (Aug,a)y = Fui(y)
y(0) = yo

where
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ETD2 and Lie-group Integrators (2/3)

Let Fﬁ,f(y) be the Frozen Vector Field at the point (1, t)
Fa,f(u) — (Aﬁ,£7 a).y = A, iy+a,

where
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ETD2 and Lie-group Integrators (2/3)

Let F, (y) be the Frozen Vector Field at the point (i, )
Fa,f(u) — (Aa,fv a).y = A, iy+a,

where

A = , N = N(q,t)

The flow of such vector field is the solution of y = Fa,f(y), y(0) = yo

exp(tL)uo + téo (tL)No + 1261 (L) M=o )

Exp(tﬁ’ﬁ,f).yo = ( ,
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ETD2 and Lie-group Integrators (3/3)

The commutator between two vector fields is

[(A,a).u,(B,b).u] = (C,c).u,

where C' =[A,B], c¢= (Ab— Ba)
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3t" order RK schemes

0]
1 1
2 2
@ Classical third-order RK method:
1]-1 2
1 2 1
6 3 6
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3t" order RK schemes

0]
1 1
2 2
Classical third-order RK method:
1 - 1 2
1 2 1
6 3 6
0]
1 1
7 5®0
ETDRKS: (Cox & Matthews)
1 - ¢o 2¢0
492 — 3P1 +Po  —8p2 +4P1 4o — @1
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3" order CF schemes

0
1 1
3 3
CF3: (Celledoni, Martinsen, Owren) % 0] %
1
3
_ 1 3
12 4
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3" order CF schemes

0
1 1
3 3
CF3: (Celledoni, Martinsen, Owren) % 0] %
1
3
_ 1 3
12 4
0]
" o
ETDCF3: 2 0 2 %o
=0
1
—13%0 290
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3t" order schemes and ETD2

0
> 390
¢ ETD2RKS3:
L o — 41 41
dpo2 — 3p1 +Po  —8p2 +4p1 4P — @1
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3t" order schemes and ETD2

ETD2RKS:

ETD2CF3:

0]
% %Cbo
1 o — 4¢1 401
dpo2 — 3p1 +Po  —8p2 +4p1 4P — @1
0]
% %450
2 260 — 201 S1

9p2 — 51 + ¢o

—18¢2 + 641 9p2 — 3¢
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4" order schemes (1/4)

0
1 1
2 2
1 1
2| 0 2
. 1 1
CF4: | 3 0 O
(Celledoni, Martinsen, Owren) 1 1
s |3 0 1
1 .
4 6 6 12
L1 1 1
12 6 6 4
° ° ° ° ° ° ° g ®
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4" order schemes (2/4)

0)
5 5 b0
ETDRK4: 2 ° 290
(Krogstad) > < b0 0 0
3 3%0 0 oy
dpo —3p1 + do  —4p2 +2¢1  —4d2 +2¢1  4p2 — P1
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4" order schemes (3/4)

ETDRK4B:
(Krogstad)

0]
% %ﬁbo
= Tdo — ¢1 b0
1 b0 — 2¢1 0 2¢1
Adpo — 31 + po  —4pa + 21  —4Apa + 21 4o — 1
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4" order schemes (3/4)

0]

% %Cbo

% 0 %450

1 1

= = 0 0

ETDCF4: 2 | 290

T 360 0 o
%0 Fd0  gdo - 1590
11_2qu %cbo %cbo icbo
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Stability

We consider the model equation

U = cu+ \u

u(0) =1

where ¢ and )\ are scalars
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Stability

We consider the model equation

U = cu+ \u

u(0) =1

where ¢ and )\ are scalars

For computing the ¢; functions we use the approach suggested by Kassam and
Trefethen

$; (L) = %/Pgbi(t)(tI—L)_ldt,

where I' is a contour well separated from 0
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Stability regions for 3" order schemes

Stability region for ETDRK3 Stability region for ETD2RK3
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Stability regions for 4" order schemes

Stability region for ETDRK4B
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Numerical experiments

Example 1: Test equation

4 = —15u+2t2—t+u
u(0) =2

L=—-15and N =2t2 —t+u
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Numerical experiments

Example 2: Kuramoto-Sivashinsky equation

u(z,0) = cos(75)(1 + sin(15))
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Exponential Time Differencing and Lie-Group Methods for Stiff Problems — p.26/29



Numerical experiments

Example 2: Kuramoto-Sivashinsky equation

u(z,0) = cos(75)(1 + sin(15))
We discretise the spatial part using Fourier spectral method. The transformed equation

in the Fourier space is

&
= — —a% 1 (k2 — K,
a

(La)(k) = (k2 — k*)a(k) and N(at) = — E(F(F~1(a))2))
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Kuramoto-Sivashinsky equation

Kuramoto-Sivashinsky equation Kuramoto-Sivashinsky equation

65
65

o
£
%
g
[
]
2
ks
o]
o

Relative error at time

107" 107
Stepsize h Stepsize h
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Conclusion

We present a constructive way of generating exponential time differencing
Runge-Kutta (ETDRK) methods from Lie group methods. In particular we show

how to choose the algebra action in order to recover the classical ETD and ETDRK
methods.
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Conclusion

We present a constructive way of generating exponential time differencing
Runge-Kutta (ETDRK) methods from Lie group methods. In particular we show
how to choose the algebra action in order to recover the classical ETD and ETDRK
methods.

We discuss how to choose the frozen vector field in order to receive better
approximation of the nonlinear part.
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Conclusion

We present a constructive way of generating exponential time differencing
Runge-Kutta (ETDRK) methods from Lie group methods. In particular we show

how to choose the algebra action in order to recover the classical ETD and ETDRK
methods.

We discuss how to choose the frozen vector field in order to receive better
approximation of the nonlinear part.

Better stability properties
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Conclusion

We present a constructive way of generating exponential time differencing
Runge-Kutta (ETDRK) methods from Lie group methods. In particular we show
how to choose the algebra action in order to recover the classical ETD and ETDRK
methods.

We discuss how to choose the frozen vector field in order to receive better
approximation of the nonlinear part.

Better stability properties

The above approach can be successfully applied when the nonlinear part of the
system is periodic.
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