
Exponential Integrators for Semilinear Problems

Borislav V. Minchev

Thesis submitted for the degree of
Philosophiae Doctor (PhD) at

Department of Informatics
University of Bergen

August 2004

.

EXPONENTIAL INTEGRATORS

FOR SEMILINEAR PROBLEMS

By

Borislav V. Minchev

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

PHILOSOPHIAE DOCTOR

AT

UNIVERSITY OF BERGEN

THORMHLENSGATE 55, 5020 BERGEN

AUGUST 2004

c© Copyright by Borislav V. Minchev, 2004

UNIVERSITY OF BERGEN

Date: August 2004

Author: Borislav V. Minchev

Title: Exponential Integrators for Semilinear Problems

Department: Informatics

Degree: Ph.D. Convocation: October Year: 2004

Permission is herewith granted to University of Bergen to circulate and to have

copied for non-commercial purposes, at its discretion, the above title upon the request

of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER
THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR
OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE
USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER
THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN
SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

ii

To My Family.

iii

.

iv

Table of Contents

Table of Contents v

List of Tables vii

List of Figures viii

Abstract ix

Acknowledgements x

Introduction and motivation 1

1 Exponential Integrators 3

1.1 Exponential linear multistep methods . 3

1.1.1 Integrating Factor methods . 4

1.1.2 Exponential Time Differencing methods 5

1.2 Exponential Runge–Kutta methods . 8

1.2.1 Formulation of the methods . 9

1.2.2 Nonstiff order conditions . 11

1.2.3 IF RK and ETD RK as special cases 21

1.2.4 More examples of ETD RK methods 26

1.2.5 Exponential RK methods for parabolic PDEs 28

1.3 General linear methods and exponential integrators 36

1.3.1 Formulation of the methods . 36

1.3.2 Construction of practical GLMs . 40

1.3.3 Exponential general linear methods 42

2 Exponential Integrators and

Lie Group Methods 44

2.1 Background theory . 44

2.2 Lie group integrators . 48

v

2.3 The choice of action . 52

2.4 Lie group integrators for semilinear problems 55

2.4.1 Crouch–Grossman based methods 56

2.4.2 RKMK based methods . 56

2.4.3 Methods based on commutator free Lie group methods 64

3 Implementation Issues and

Numerical Experiments 67

3.1 Decomposition methods . 67

3.1.1 Block Schur–Parlett algorithm . 68

3.1.2 Tridiagonal reduction . 70

3.2 Krylov subspace approximations . 73

3.3 Cauchy integral approach . 75

3.4 Numerical experiments . 78

Conclusions 83

Summary . 83

Contributions . 83

Future work . 84

Bibliography 86

Article 1:

Lie group integrators with nonautonomous frozen vector fields. 91

Submitted to J. Appl. Num. Math. 91

Article 2:

Some algorithms for solving special tridiagonal block Teoplitz linear sys-

tems. 107

J. Comp. and Appl. Math., vol.156(1) (2003), 179-200. 107

Article 3:

A method for solving Hermitian pentadiagonal block circulant cystems of

linear equations. 133

With I. Ivanov. Springer Lect. Notes Comput. Sci., 2907 (2004), 481-488. 133

vi

List of Tables

1.1 Coefficients of ETD Adams–Bashforth methods. 8

1.2 Coefficients of ETD Adams–Moulton methods. 8

1.3 General formulation of an IF Runge–Kutta method. 9

1.4 The number of rooted trees in 2T∗ for all orders up to ten. 12

1.5 Standard decomposition for all trees up to order 3 and their correspond-

ing differential equations. 16

1.6 Relation between elementary differentials and elementary weights. 21

1.7 Coloured trees as linear combinations of black trees for the IF RK methods. 25

1.8 A fourth order ETD Runge–Kutta method. 26

1.9 Third order method of Cox–Matthews. 27

1.10 Fourth order method of Cox–Matthews. 27

1.11 Fourth order method of Krogstad. 27

1.12 Third order ETD2RK3 method. 28

1.13 Third order ETD2CF3 method. 28

1.14 Stiff order conditions for explicit exponential Runge–Kutta methods for α = 0. 34

1.15 Fourth order method of Hochbruck–Ostermann with five stages. 35

2.1 Actions and homeomorphisms on the manifold. 49

2.2 Third order Crouch–Grossman method. 56

2.3 Fourth order RKMK method with exact Exp. 58

2.4 Fourth order GIF1/RK method . 59

2.5 Fourth order GIF2/RK method . 61

2.6 Fourth order CF method. 65

vii

List of Figures

1.1 Domain of validity for condition (1.2.18) (shaded). 30

1.2 The contour Γ from Definition 1.2.7. 31

3.1 Step size versus relative error for ETD RK (left) and GIF/RK (right) meth-

ods for the Kuramoto-Sivashinsky equation 80

3.2 Step size versus relative error for ETD RK (left) and GIF/RK (right) meth-

ods for the Allen-Cahn equation . 81

3.3 Step size versus relative error for ETD RK (left) and GIF/RK (right) meth-

ods for the Korteweg de Vries equation . 81

viii

Abstract

In the present work, exponential integrators for time integration of semilinear problems are

studied. These integrators, as there name suggests, use the exponential and often functions

which are closely related to the exponential function inside the numerical method. Three

main classes of exponential integrators, exponential linear multistep (multivalue), exponen-

tial Runge–Kutta (multistage) and exponential general linear methods, are discussed. A

general formulation of exponential integrators, which includes, as special cases, all known

methods, is proposed. The nonstiff order theory for exponential multistage methods, along

with a non-recursive rule for generating each order condition from its corresponding rooted

tree, is derived.

The natural connection between exponential integrators and Lie group methods with

affine algebra action is also studied. A new approach for deriving Generalized Integrating

Factor Runge–Kutta methods, which allows the nonlinear part of the problem to be approx-

imated by trigonometric polynomials, is proposed. The crucial role of the algebra action

in the overall performance of any Lie group method is discussed. A new algebra action

arising from the solutions of differential equations with nonautonomous frozen vector fields

is proposed. The corresponding exponential integrators based on this action are derived.

Different methods for numerically stable computation of the most commonly used func-

tions which appear in the format of an exponential integrator are considered. A general-

ization of the method based on the tridiagonal reduction is proposed. The new approach

allows to compute all functions included in the format of an exponential integrator in the

case when the arguments are symmetric (Hermitian) matrices. Some practical issues regard-

ing variable step size implementations as well as the main advantages and disadvantages of

the considered numerical techniques are discussed. New effective methods and their modi-

fications for solving special three and five diagonal block systems of linear equations, based

on a modified LU factorization are proposed. For illustrating the theoretical results, several

numerical experiments are presented.

ix

Acknowledgements

I would like to thank Prof. Hans Munthe-Kaas, my supervisor, for his constant support

during this research. I am also thankful to Ass. Prof. Ivan Ivanov for his guidance through

the early years of my work.

Dr. William Wright has expressed his interest to my work at a crucial stage. The time

spend together discussing many of the ideas presented in this thesis, have provided me with

better understanding and with the precious second point of view. I am also grateful for his

valuable comments and suggestions made while reading the manuscript of this thesis.

During my participation in the Special Year in Geometric Integration, Oslo, 2002- 2003, I

had the opportunity to meet many outstanding people from the international GI community.

I am also grateful to all the members of the Bergen–Cambridge–Trondheim research groups.

They all have played an important role in my professional live.

I would like to thank the Norwegian Research Council, Meltzer Høyskolefond and the

Department of Informatics, University of Bergen for their financial support during the

last three years. Without it my research stays at Center for Advanced Studies, Norwe-

gian Academy of Sciences and Section de mathématiques, Université de Genève will not be

possible.

Finally, but actually on the first place, I would like to thank to my family, my parents,

and specially to my wife Stela, for their love and for always believing in me.

Bergen, Norway Borislav V. Minchev

August, 2004

x

Introduction and motivation

Many practical problems arising in the real life applications can be modeled by time de-

pendent partial differential equations (PDEs). In most cases it is extremely difficult, if not

impossible, to obtain exact solutions of these problems, therefore numerical methods are

used to provide accurate approximations. An often used technique in the construction of

numerical integrators for PDEs, is first to semidiscretize the equation in space. There exists

many efficient and accurate methods for spatial discretization. If the original vector field

can be represented like a sum of two part, linear and nonlinear, the spatial discretization

leads to the following semilinear initial value problem

u′ = Lu+N(u, t), u(t0) = u0,

where u : R→ Rd, L ∈ Rd×d, N : Rd → Rd and d is a discretization parameter equal to the

number of spatial grid points. Many interesting equations can be brought exactly in this

form. Examples are Allen-Cahn, Burgers, Cahn-Hilliard, Kuramoto-Sivashinsky, Navier-

Stokes, Swift-Hohenberg, nonlinear Scrödinger, convection-diffusion equations. Typically,

after the spatial discretization, the linear part of the problem will be stiff and the nonlinear

part will be nonstiff. Whenever equations model several processes with vastly different

rates of evolution, that is the processes proceed at significantly different time scales, one

should also expect stiffness. Implicit methods, which overcome the problem of stiffness

are regarded as to expensive for implementation. On other hand explicit methods require

such small time steps that they become inefficient. Therefore, it is a very important and

challenging task to construct effective numerical integrators for solving stiff problems.

The first exponential integrators were introduced in 1960 as an alternative approach to

overcome the phenomenon of stiffness. The main idea behind these methods is to integrate

exactly the linear part of the problem, which is primarily responsible for the stiffness,

and then to use an appropriate approximation of the nonlinear part. Thus the exponential

function, and often functions which are closely related to the exponential function, appear in

the format of the methods. This was exactly the reason why, until recently, these methods

have not been regarded as practical. The latest achievements in the field of computing

approximations to the product of a matrix exponential function and some related functions

1

with a vector, have provided a new interest in the construction and implementation of

exponential integrators.

The aim of this thesis is to study different classes of exponential integrators for time in-

tegration of semilinear problems and to propose an unified framework in which this methods

can be analyzed.

The thesis is organized as follows: In Chapter 1 we present the philosophy behind ex-

ponential integrators applied to semilinear problems and discuss the three main classes

of exponential integrators: exponential linear multistep (multivalue), exponential Runge–

Kutta (multistage) and exponential general linear methods. Next, in Chapter 2 we study

the connection between exponential integrators and Lie group methods based on the affine

algebra action. Finally, in Chapter 3 we discuss different techniques for a fast and numer-

ically stable computation of the most commonly used functions which enter in the format

of the methods, and present some numerical experiments.

2

Chapter 1

Exponential Integrators

In the first chapter of this thesis we present the philosophy behind exponential integrators

applied to semilinear problems and discuss how the three main classes of numerical integra-

tors, linear multistep (multivalue), Runge–Kutta (multistage) and general linear methods,

are extended to the exponential setting. In the presentation we assume the reader has basic

knowledge of numerical methods for ordinary differential equations and functional analysis

as can be found in the monographs [8, 24, 25, 70]. All numerical schemes presented in this

chapter are in accordance with the notations introduced in Section 1.3.

The chapter is organized as follows: First, in Section 1.1 we consider exponential linear

multistep methods based on Integrating Factor (IF) and Exponential Time Differencing

(ETD) approach. Next, in Section 1.2 we present the theory of exponential Runge–Kutta

methods for both nonstiff and stiff cases. Finally, in Section 1.3 we explain how the idea of

general linear methods can also be extended to the exponential setting.

1.1 Exponential linear multistep methods

Our field of interest is the following semi-discretized semilinear initial value problem

u′ = Lu+N(u, t), u(t0) = u0, (1.1.1)

where u : R → Rd, L ∈ Rd×d, N : Rd → Rd and d is a discretization parameter equal to

the number of spatial grid points. Several interesting problems can be brought to this form

by discretizing in space. Examples are Allen-Cahn, Burgers, Cahn-Hilliard, Kuramoto-

Sivashinsky, Navier-Stokes, Swift-Hohenberg, nonlinear Scrödinger equations. Typically

the linear part of the problem will be stiff and the nonlinear part will be nonstiff. There

exist two principal approaches in the derivation of exponential linear multistep methods for

solving (1.1.1). These will be introduced in the next two subsections.

3

1.1.1 Integrating Factor methods

The idea behind Integrating Factor (IF) methods is an old one and goes back to the work of

Lawson [37]. He proposes to ameliorate the effect of the stiff linear part of equation (1.1.1)

by using change of variables (also known as Lawson transformation),

v(t) = e−tLu(t).

The initial value problem (1.1.1) written in the new variable is

v′(t) = e−tLN(etLv(t), t) = g(v, t), v(t0) = v0, (1.1.2)

where v0 = e−t0Lu0. The same result can be obtained by premultiplying the original

problem (1.1.1) by the so called integrating factor, e−tL, that is

e−tLu′ = e−tLLu+ e−tLN(u, t),

(e−tLu)′ = e−tLN(u, t). (1.1.3)

To see way the formulation (1.1.2) is preferable to the original formulation, we calculate the

Jacobian of the new problem. Since

∂g

∂v
= e−tL

∂N

∂u
etL,

and e−tL = (etL)−1, it follows that the eigenvalues of ∂g/∂v are those of ∂N/∂u. Therefore

we should expect that numerical methods applied to (1.1.2) will not suffer from the same

stability restrictions like if they are used directly on the problem (1.1.1). The idea now

is to apply any numerical integrator (in the case of Lawson, a Runge–Kutta method) on

the transformed equation and then to transform back the result into the original variable.

Using Euler method, we obtain the following numerical scheme

un = ehLun−1 + ehLhNn−1,

where h represents the stepsize of the method and Nn−1 = N(un−1, tn−1). This is known

as IF Euler method. The integrating factor implicit Euler method is

un = ehLun−1 + ehLhNn.

This approach can be easily extended to the class of linear multistep Adams methods. In

general, k-step IF Adams methods are defined as

un = ehLun−1 +
k∑

i=0

βie
ihLhNn−i,

where βi are the coefficients of the Adams method and Nn−i = N(un−i, tn−i) for i =

0, 1, 2, . . . , k. Similarly IF methods based on backward differentiation formulae (BDF) meth-

ods are defined as

un =

k∑

i=1

αie
ihLun−i + β0hNn,

4

where β0 and αi are the coefficients of the underlying BDF method. As an example, the

second order IF Adams–Bashforth method considered in [14] is

un = ehLun−1 +
3

2
ehLhNn−1 −

1

2
e2hLhNn−2.

1.1.2 Exponential Time Differencing methods

According to our knowledge, the first paper on Exponential Time Differencing (ETD) meth-

ods is the paper of Certaine [13], where an order two and order three methods, reducing to

second and third order Adams–Moulton methods, are proposed. Arbitrarily high order A-

stable ETD methods, reducing to the Adams–Bashforth methods when L = 0, are derived

in [53]. Since then, this methods has been rediscovered several times in different fields and

under different names.

The main idea behind the ETD method is to construct, via the variation of constants

formulae, integrators of multistep type. To derive the variation of constants formulae we

integrate the equation (1.1.3) between tn−1 and tn = tn−1 + h. We obtain

u(tn−1 + h) = ehLun−1 + etnL
∫ tn−1+h

tn−1

e−τLN(u(τ), τ)dτ

= ehLun−1 +

∫ h

0
e(h−τ)LN(u(tn−1 + τ), tn−1 + τ)dτ. (1.1.4)

Note that only exact calculations are used in the derivation of (1.1.4). Therefore (1.1.4) is

the exact solution of (1.1.1) with initial condition u(tn−1) = un−1. The approach now is

to replace the nonlinear term N by a Newton interpolation polynomial and then solve the

resulting integral exactly. The simplest case is when we approximate N(u(tn−1 + τ), tn−1+

τ) by a constant Nn−1. This gives

un = ehLun−1 +

∫ h

0
e(h−τ)LNn−1dτ

= ehLun−1 + φ[1](hL)hNn−1,

where φ[1](z) is

φ[1](z) =
ez − 1

z
.

The above method is known as the exponential time differencing Euler method as it reduces

to the classical Euler method when L = 0. The exponential time differencing implicit Euler

method is defined as

un = ehLun−1 + φ[1](hL)hNn.

In general, we obtain the following explicit form of ETD Adams-Bashforth methods by

approximating the nonlinear term in (1.1.4) by higher order polynomial using information

5

from the past (see [14, 53])

un = ehLun−1 + h
k−1∑

i=0

gi(hL)∇iNn−1, (1.1.5)

where ∇iNn−1 denotes the i-th backward difference,

∇0Nn−1 = Nn−1, ∇i+1Nn−1 = ∇iNn−1 −∇iNn−2, for i = 0, 1, 2, . . . ,

and the function gi(z) is given by the recurrence relations

zg0(z) = ez − 1,

zgi+1(z) + 1 = gi(z) +
1
2gi−1(z) +

1
3gi−2(z) + · · ·+ 1

i+1g0(z).

Similarly, it is also possible to construct ETD Adams–Moulton methods. Next we give an

other derivation of both explicit and implicit exponential Adams methods, as proposed in

[4]. It is based on the following particular representation of the exact solution.

Lemma 1.1.1. The exact solution of the initial value problem

u′ = Lu+N(u, t), u(tn−1) = un−1,

can be expressed in the form

u(tn−1 + h) = ehLun−1 +

∞∑

i=0

hi+1φ[i+1](hL)N
(i)
n−1,

where

N
(i)
n−1 =

di

dti

∣∣∣∣
t=tn−1

N(u(t), t),

and φ[i](z) are recursively defined as

φ[0](z) = ez, φ[i+1](z) =
φ[i](z)− 1

i!

z
, for i = 0, 1, 2, (1.1.6)

Proof. Expand u(tn−1 + h) in Taylor series around the point tn−1 to obtain

u(tn−1 + h) = un−1 +
∞∑

k=1

hk

k!
u
(k)
n−1, (1.1.7)

where

u
(k)
n−1 =

dk

dtk

∣∣∣∣
t=tn−1

u(t).

Because of the given differential equation, we have the following relation

u
(k)
n−1 = Lkun−1 +

k−1∑

i=0

Lk−1−iN
(i)
n−1, for k = 1, 2,

6

Substituting u
(k)
n−1 into (1.1.7), we obtain

u(tn−1 + h) =
∞∑

k=0

hk

k!
Lkun−1 +

∞∑

k=1

k−1∑

i=0

hk

k!
Lk−1−iN

(i)
n−1

= ehLun−1 +
∞∑

k=0

k∑

i=0

hk+1

(k + 1)!
Lk−iN

(i)
n−1.

Changing the order of the summation in the second term we obtain

∞∑

k=0

k∑

i=0

hk+1

(k + 1)!
Lk−iN

(i)
n−1 =

∞∑

i=0

(
∞∑

k=i

hk+1

(k + 1)!
Lk−i

)
N

(i)
n−1

=
∞∑

i=0

hi+1

(
(hL)−(i+1)

∞∑

k=i+1

(hL)k

k!

)
N

(i)
n−1

=
∞∑

i=0

hi+1φ[i+1](hL)N
(i)
n−1. (1.1.8)

Lemma 1.1.1 gives an alternative formulation of the exact solution and motivates the

following ansatz for its numerical approximation

un = ehLun−1 + h
k∑

l=0

βlNn−l,

where β0, β1, . . . , βk are coefficients to be computed in order to obtain the desired order.

This is done by expanding the nonlinear terms in Taylor series around tn−1. Since

h
k∑

l=0

βlNn−l =
∞∑

i=0

hi+1

i!

(
k∑

l=0

βl(1− l)i
)
N

(i)
n−1, (1.1.9)

the order conditions for the ETD Adams methods are obtained by comparing (1.1.8)

and (1.1.9), resulting in

1
i!

k∑

l=j

βl(1− l)i = φ[i+1](hL), for i = 0, 1, 2, . . . , k − j.

For j = 0 we obtain the ETD Adams–Moulton methods, whereas for j = 1 we recover the

ETD Adams–Bashforth methods (1.1.5). In Tables 1.1 and 1.2 we give the the first few

coefficients for the ETD Adams–Bashforth and ETD Adams–Moulton methods respectively.

Finally, we mention that it is not possible to construct ETD BDF methods (see [46]).

Next, we explain how the IF and ETD approach can be further extended to the class of

exponential multistage methods.

7

k β1 β2 β3 β4

1 φ[1] 0 0 0

2 φ[1] + φ[2] −φ[2] 0 0

3 φ[1] + 3
2φ

[2] + φ[3] −2(φ[2] + φ[3]) 1
2φ

[2] + φ[3] 0

4 φ[1] + 11
6 φ

[2] + 2φ[3] + φ[4] −3φ[2] − 5φ[3] − 3φ[4] 3
2φ

[2] + 4φ[3] + 3φ[4] X

where X = −1
3φ

[2] − φ[3] − φ[4]

Table 1.1: Coefficients of ETD Adams–Bashforth methods.

k β0 β1 β2 β3

0 φ[1] 0 0 0

1 φ[2] φ[1] − φ[2] 0 0

2 1
2φ

[2] + φ[3] φ[1] − 2φ[3] −1
2φ

[2] + φ[3] 0

3 1
3φ

[2] + φ[3] + φ[4] φ[1] + 1
2φ

[2] − 2φ[3] − 3φ[4] −φ[2] + φ[3] + 3φ[4] 1
6φ

[2] − φ[4]

Table 1.2: Coefficients of ETD Adams–Moulton methods.

1.2 Exponential Runge–Kutta methods

As already mentioned in the previous section, the first exponential Runge–Kutta method

was constructed by Lawson in [37]. In fact, once we have transformed the original problem

(1.1.1) into the form (1.1.2), it is easy to derive an Integrating Factor Runge–Kutta (IF

RK) method. In analogy to the multistep case, the idea now is to apply an arbitrary s-stage

Runge–Kutta method to the transformed equation (1.1.2) and then to transform the result

back into the original variable. If A = (αij), b = (βi) and c = (ci) are the coefficients of the

underlying multistage method then the general formulation of an s-stage IF Runge–Kutta

method, written in accordance with the notations introduced in Section 1.3, is given in

Table 1.3. This approach requires that the c vector has nondecreasing coefficients, which is

usually the case for the most commonly used numerical schemes.

Probably the first successful attempt to construct Exponential Time Differencing Runge–

Kutta (ETD RK) methods is due to the work of Friedli [20]. Later Strehmel and Weiner

[61] constructed the adaptive Runge–Kutta methods and studied their B-convergence [62].

This later class of methods is an extension of the W-method of Streihaug and Wolfbrandt

[60], but is also very closely related to the methods of Friedli. The only difference between

these methods and the ETD Runge–Kutta methods, presented in Section 1.2.3, is that the

later methods compute the ETD φ[i] functions (1.1.6) exactly, while the W-methods and

the adaptive Runge–Kutta methods generally use Padé approximations to these functions.

8




0 0 · · · 0 0 ec1hL

α21e
c2hL 0 · · · 0 0 ec2hL

α31e
c3hL α32e

(c3−c2)hL · · · 0 0 ec3hL

...
...

...
...

αs1e
cshL αs2e

(cs−c2)hL · · · αss−1e
(cs−cs−1)hL 0 ecshL

β1e
hL β2e

(1−c2)hL · · · βs−1e
(1−cs−1)hL βse

(1−cs)hL ehL




Table 1.3: General formulation of an IF Runge–Kutta method.

The fist modern exponential Runge–Kutta methods proposed in the literature are the

methods of Hochbruck and Lubich [27]. In that paper, the authors constructed Rosenbrock-

like exponential integrators which use the first ETD function φ[1]. Another class of methods

known as Runge–Kutta Munthe-Kaas (RKMK) methods was first proposed in [48]. These

transform the original differential equation to a new differential equation which evolves on

a Lie algebra, and then take advantage of the fact that the Lie algebra is a linear space.

In [50], in order to construct integrators for the differential equation (1.1.1), Munthe-Kaas

proposed to combine the use of RKMK methods with the affine action (see Section 2.3).

The affine action was also used in [12] to construct integrators based on the Commutator

Free (CF) Lie group methods. As we shall see in Chapter 2, all of these methods can be

regarded as “pure” exponential integrators which use other than the traditional IF and ETD

φ[i] functions (see Section 1.2.3). Motivated by this observation, in the next section we give

a slightly more general formulation of the exponential Runge–Kutta methods proposed by

Friedli, which allows us to include as special cases all multistage methods mentioned above.

1.2.1 Formulation of the methods

For simplicity of the presentation, we choose to represent the initial value problem (1.1.1)

in autonomous form

u′ = Lu+N(u(t)), u(t0) = u0. (1.2.1)

The aim is to construct a class of exponential integrators which overcome the stiffness in the

differential equation (1.2.1) by using a set of precomputed functions along with evaluations

of the nonlinear part of the differential equation. The precomputed functions, denoted

by φ[l], can however be a large overhead depending on the dimensionality of the problem,

the spatial discretization of the differential equation and the structure of the matrix L.

Thus, such methods are likely to be competitive, when the φ[l] functions can be evaluated

efficiently.

Let for l ∈ N and for all λ ∈ R the operators φ[l](λ) : Rd×d → Rd×d be analytic, map the

spectrum of L into a bounded region in C and can be computed exactly or up to arbitrary

9

high order cheaply, then

φ[l](λ)(hL) =
∑

j≥0

φ
[l]
j (λ)(hL)

j . (1.2.2)

The most common choices of φ[l] are those associated with the IF RK and ETD RK meth-

ods. The exact representation of φ[l] for these special cases can be found in Section 1.2.3.

However, we mention that other choices are also possible (see Chapter 2). The exact struc-

ture of φ[l], which leads to methods is still unclear. If h represents the stepsize and Ui
denotes the internal stage approximation of the exact solution for i = 1, 2, . . . , s then the

computations performed in step number n are related by the equations

Ui =
s∑

j=1

m∑

l=1

α
[l]
ij φ

[l](ci)(hL) hN(Uj) + ecihLun−1,

un =

s∑

j=1

m∑

l=1

β
[l]
j φ[l](1)(hL) hN(Uj) + ehLun−1,

(1.2.3)

where m puts a limit on the number of φ[l] functions which can be computed. For the

method to be explicit α
[l]
ij = 0 for all j ≥ i. To keep the number of computations of the φ[l]

functions down we choose α
[l]
ij = 0 for all l ≥ i, this ensures that m ≤ s, and the number of

φ[l] functions used to compute the internal stage approximations increases as the number

of stages increase. There is a certain balance between the initial computational cost of

evaluating the φ[l] functions and the benefit they provide from there availability. The best

combination is likely to be problem dependent. However, we believe that initially this is a

reasonable choice for locating competitive methods. It is also recognized that the term

m∑

l=1

α
[l]
ij φ

[l](λ)(hL),

could be simplified due to the general nature of the φ[l] functions. However, this simplifica-

tion is not made, since it may be more difficult to evaluate the resulting φ[l] functions. The

fourth order commutator free Lie group method (see Subsection 2.4.3) is an example.

It is also possible to represent the computations of the method in a matrix notation.

Introduce the set of constant strictly lower triangular s × s matrices α[l], with coefficients

α
[l]
ij , the first l rows of α

[l] are chosen to be zero, this is equivalent to the requirements placed

on α
[l]
ij already. The strictly block lower triangular ds × ds matrix A which describes the

internal stage computations, is

A =

m∑

l=1

Φ[l](c)(hL) (α[l] ⊗ Id),

where ⊗ is the Kronecker product, Id is the d × d identity matrix and the block diagonal

ds× ds matrix Φ[l], is given by

Φ[l](c)(hL) = diag
(
φ[l](c1)(hL), . . . , φ

[l](cs)(hL)
)
.

10

The d×ds matrix bT is defined in a similar fashion to A, except there are now no restrictions

on the vectors β[l]
T
as there was on the matrices α[l], therefore

bT =

m∑

i=1

φ[l](λ)(hL)(β[l]
T ⊗ Id).

We are now in a position to formulate the method. For ease of notation, we introduce the

vectors U , N(U) and echL, as

U =




U1

U2

...

Us



, N(U) =




N(U1)

N(U2)
...

N(Us)



, echL =




ec1hL

ec2hL

...

ecshL



.

If h represents the stepsize then the computation performed in step number n are related

by the equations

U = AhN(U) + echLun−1,

un = bThN(U) + ehLun−1.
(1.2.4)

Alternatively the computations performed in step number n can be represented in a more

Runge–Kutta type formulation as follows

c α[1] α[2] · · · α[m]

β[1]
T

β[2]
T · · · β[m]T

,

where each element in row number i of α[l] is multiplied by φ[l](ci)(hL) and where each

element in β[l]
T
is multiplied by φ[l](1)(hL). The resulting matrices are then added in a

component by component sense to give the matrices A and bT .

We next derive the nonstiff order theory for the exponential Runge–Kutta methods

(1.2.4). It turns out that the order conditions for this methods are the same as the order

conditions for the adaptive Runge–Kutta methods developed in [5]. An advantage of our

approach is that it provides a non-recursive rule for generating each order condition from

its corresponding rooted tree. In addition it is easy to generalize the same approach in the

case of exponential general linear methods.

1.2.2 Nonstiff order conditions

As for many numerical methods the tools used here to develop the nonstiff order conditions

are the rooted trees and the B-series. For those not familiar with these concepts we suggest

the monographs [8, 23] for a complete treatment. Let 2T∗ denote the set of all bi-coloured

11

(black and white) rooted trees with the requirement that the valency of the white nodes is

always one. This means that any white node will have at most one upward branch leaving

that node, which leads to a node which can be coloured either white or black. The fact

that the white node has valency one is because the first term on the right hand side of

(1.2.1) is linear. All the bi-coloured tees in the set 2T∗ we call 2T∗-trees. As is the case

for many numerical methods the number of conditions necessary to obtain a certain order

is exactly equivalent to the number of certain rooted trees up to the required order. It is

therefore, necessary to have a formula for the number of trees of each order in the set 2T∗.

Let θn be the number of rooted trees in 2T∗ with n vertices. Using Algorithm 1.2.1 from

Subsection 1.2.2.1, it is possible count the number of rooted trees in 2T∗ for each n ∈ N.

In Table 1.4 we list the number of rooted trees for each order up to ten.

n 1 2 3 4 5 6 7 8 9 10

θn 2 4 11 34 117 421 1589 6162 24507 99268

Θ =
∑n

i θn 2 6 17 51 168 589 2178 8340 32847 132115

Table 1.4: The number of rooted trees in 2T∗ for all orders up to ten.

We now define several operations on trees which are required for constructing the order

conditions. Let τ represent an arbitrary rooted tree in 2T∗. The order of the tree τ , denoted

by |τ |, is defined as the number of vertices in the tree τ . Each tree τ can be decomposed

as τ = [tp(τ); τ1, . . . , τ`], where tp(τ) = { , } represents the colour of the root node and

τ1, . . . , τ` is the forest remaining after the root node has been removed. Let ∅ represent

the empty set which remains if the root of or is removed. Clearly = [tp(); ∅] and
= [tp(); ∅]. The symmetry σ is defined in the same way as for Runge–Kutta methods,

σ() = σ() = 1 and

σ(τ) = σ(τ1) . . . σ(τ`)µ1!µ2! . . . ,

where the integers µ1, µ2, . . . count the equal trees among τ1 . . . τ` ∈ 2T∗. This implies that

σ
()

6= σ
()

because the colouring of the nodes are different. The density γ of the tree

is the same as for the single coloured trees and it is defined as the product over all vertices

of the order of the subtree rooted at that vertex. A one to one correspondence between

the rooted bi-coloured trees and the elementary differentials means that the later can be

defined recursively as a function of the former, as follows

F (τ)(u) =





Lu, if τ = ,

N(u), if τ = ,

LF (τ1)(u), if tp(τ) = ,

N (`)(u)(F (τ1)(u), . . . , F (τ`))(u)), if tp(τ) = .

(1.2.5)

12

Before we continue with expressing the exact and the numerical solution in therms of

the above defined elementary differentials we need to insure that they can be regarded as

independent. In order to do this, it is convenient to introduce an order relation in the set

2T∗. In the next subsection we present a constructive way how to generate and order the

elements in 2T∗.

1.2.2.1 Construction of 2T∗-trees

When using applications like Maple or Matlab, to implement any formulas involving trees,

it is crucial to have a compact way of generating all the trees up to some order in a recursive

manner. It is also important to be able to identify all the elements in 2T∗ with the set of

positive integers. This require an order relation in 2T∗. The idea is to represent each 2T∗-

tree as a pair of two 2T∗-trees of lower order. Here we follow the approach based on the

standard decomposition of N -trees proposed in [52]. First we need to define the product

between two 2T∗-trees. Let τ = [tp(τ); τ1, . . . , τk] and π are two 2T∗-trees.

Definition 1.2.1. [52, Definition 5] The product τ · π ∈ 2T∗ is defined as follows:

[tp(τ); ∅] · π = [tp(τ);π], [tp(τ); τ1, . . . , τk] · π = [tp(τ); τ1, . . . , τk, π].

Obviously tp(τ · π) = tp(τ) and (τ · π1) · π2 = (τ · π2) · π1 for τ, π1, π2 ∈ 2T∗. Now we

define an order relation in the set 2T∗ in therms of the standard decomposition of trees.

Definition 1.2.2. [52, Definition 6] Given τ1, τ2 ∈ 2T∗, then τ1 < τ2 if one of the four

conditions is fulfilled:

• τ1 = and τ2 = ,

• |τ1| < |τ2|,

• |τ1| = |τ2| and dec1(τ1) < dec1(τ2),

• |τ1| = |τ2|, dec1(τ1) = dec1(τ2) and dec2(τ1) < dec2(τ2).

The standard decomposition is given by

Definition 1.2.3. [52, Definition 6] The standard decomposition dec(τ) of a 2T∗-tree τ of

order ≥ 2 is the pair dec(τ) = (dec1(τ), dec2(τ)) ∈ 2T∗ × 2T∗ such that

τ = dec1(τ) · dec2(τ)

and dec2(τ) is maximal.

Clearly the following two relations hold

|τ | = |dec1(τ)|+ |dec2(τ)|, tp(τ) = tp(dec1(τ)).

13

The above definitions give us one to one correspondence between the rooted bi-coloured

2T∗-trees and the set of all positive integers, together with a convenient way of representing

each tree in a unique way as a pointer of two positive integers. All 2T∗-trees have an

additional restriction to the form of the first trees dec1(τ) in the standard decomposition.

The fact that the valency of the white nodes is always one implies that the only tree with

white root in dec1(τ) could be . With this in mind together with the fact that it is

sufficient to store for each p the first rooted tree first(p) of order p we propose the following

algorithm, based on the algorithm given in [52], for computing the standard decomposition

dec(τ) = (dec1(τ), dec2(τ)) for all 2T
∗-trees of order up to certain order pmax.

Algotithm 1.2.1.

dec1(1) = 1; dec1(2) = 2; tp(1) = 1; r(1) = 1;

dec2(1) = 0; dec2(2) = 0; tp(2) = 2; r(2) = 1;

τ = 2;

for p = 2, . . . , pmax do

% Index of the 1st tree of order p

first(p) = τ + 1;

% Construct all the 2T ∗-trees τ (dec(τ) = (τ1, τ2)) of order p

for q = 1, . . . , p− 1 do

% All τ1 of order q

for τ1 = first(q), . . . , first(q + 1)− 1 do

l = max(first(p− q), dec2(τ1));
% All the τ2 ≥ dec2(τ1) of order p− q
for τ2 = l, . . . , first(p− q + 1)− 1 do

if [tp(τ1) = 1] or [(tp(τ1) = 2) and (r(τ1) = 1)] then

τ = τ + 1; r(τ) = p; tp(τ) = tp(τ1);

dec1(τ) = τ1; dec2(τ) = τ2;

end

end

end

end

end

Note that r(τ) = |τ | and that the last value of τ in Algorithm 1.2.1 is exactly equal to

Θ (see Table 1.4). Thus Algorithm 1.2.1 provides us a way for computing the number of

2T∗-trees up to an arbitrary order pmax. The values of dec(τ) = (dec1(τ), dec2(τ)) for all

2T∗-trees of order up to three are given in Table 1.5. Now we are in a position to discuss

the independence of the elementary differentials given by (1.2.5).

14

1.2.2.2 Independence of the elementary differentials

The independence of the elementary differentials insures tha the exact and the numerical

solution can be uniquely expand in B-series. In this subsection we introduce a set of

differential equations, similar to the set proposed in [8, Chapter 3], for which any finite

number of elementary differentials evaluate to independent vectors.

Let U is the set of all 2T∗-trees up to order p and Θ is the number of the elements in

U . Assume that an order relation in U is introduced and that all the pure white trees are

numbered with δ1, . . . , δp. If the standard decomposition, described in Subsection 1.2.2.1,

is used the first three δς are 2, 6 and 14. Let any tree τi ∈ U be decomposed as

τi = [tp(τi); τ
m1
i1
, τm2i2

, . . . , τmk

ik
] for i = 1, 2, . . . ,Θ, (1.2.6)

where all the equal trees are collected together and the power notation to indicate the

number of repetitions is used. This implies that all the trees τij for j = 1, 2, . . . , k are

distinct. Now for every tree τi ∈ U we consider the following differential equations

u′i = νuf(i1) + (1− ν)
k∏

j=1

1

mj !
u
mj

g(ij)
, for i = 1, 2, . . . ,Θ, (1.2.7)

where

uf(i1) =





uδp , if τi1 = ∅,
ui1 , else,

, ug(ij) =





1, if τij = ∅,
uδς+1 , if ij = δς ,

uij , else,

and

ν =





0, if tp(τi) = ,

1, if tp(τi) = .

The initial values are supposed to be ui(t0) = 0 for i = 1, . . . ,Θ; i 6= δ1 and uδ1(t0) = 1.

If e1, e2, . . . , eΘ denote the natural basis in RΘ then the resulting Θ dimensional system of

differential equations obey the following property:

Theorem 1.2.1. The values of the elementary differentials for the differential equations

(1.2.7), evaluated at the initial value are given by

F (τi)(u(t0)) =





eδ1 , if i = δp,

eδς+1 , if i = δς ,

ei, else,

for i = 1, 2, . . . ,Θ.

Proof. The Proof follows by induction on the number of the elements Θ in the set U and

from the definition of the differential equations (1.2.7).

15

i τi dec1(τi) dec2(τi) u′ = Lu+N

1 1 0 [; ∅] u′1 = 0 + 1,

2 2 0 [; ∅] u′2 = u14 + 0,

3 1 1 [;] u′3 = 0 + u1,

4 1 2 [;] u′4 = 0 + u6,

5 2 1 [;] u′5 = u1 + 0,

6 2 2 [;] u′6 = u2 + 0,

7 1 3
[

;
]

u′7 = 0 + u3,

8 1 4
[

;
]

u′8 = 0 + u4,

9 1 5
[

;
]

u′9 = 0 + u5,

10 1 6
[

;
]

u′10 = 0 + u14,

11 2 3
[

;
]

u′11 = u3 + 0,

12 2 4
[

;
]

u′12 = u4 + 0,

13 2 5
[

;
]

u′13 = u5 + 0,

14 2 6
[

;
]

u′14 = u6 + 0,

15 3 1
[
; 2
]

u′15 = 0 + 1
2u

2
1,

16 3 2 [; ,] u′16 = 0 + u1u6,

17 4 2
[
; 2
]

u′17 = 0 + 1
2u

2
6.

Table 1.5: Standard decomposition for all trees up to order 3 and their corresponding dif-

ferential equations.

The independence of the elementary differentials follows from the independence of the

natural basis e1, e2, . . . , eΘ. In the case when p = 3 (Θ = 17) and the order relation defined

in Subsection 1.2.2.1 is introduced, the standard decomposition for all 2T∗-trees, together

with their recursive definitions (1.2.6) and the corresponding differential equations (1.2.7)

16

are given in Table 1.5.

1.2.2.3 Expansions of the exact and the numerical solutions

To compare the exact solution and the numerical solution as Taylor series expansions it is

convenient to use B-series. For an elementary weight function a : 2T∗ → R the B-series is

defined as

B(a(τ), u) = a(∅)u+
∑

τ∈2T∗

h|τ |
a(τ)

σ(τ)
F (τ)(u).

The exact solution of (1.2.1) can be represented by the following B-series

u(t+ h) = B(γ(τ)−1, u).

Note that this is exactly the same as for Runge–Kutta methods. This is due to the

definition of γ. We are now interested in finding the elementary weight function which

describes the operations of the numerical method.

Before we do this, it is convenient to substitute the expansions for the functions φ[l]

defined in (1.2.2) into the computations of the method (1.2.3) and simplify, which gives

Ui =
s∑

j=1

∑

l≥0

a
[l]
ij (hL)

l hN(Uj) + ecihLun−1,

un =
s∑

j=1

∑

l≥0

b
[l]
j (hL)l hN(Uj) + ehLun−1,

where the coefficients of the method are now

a
[l]
ij =

m∑

k=1

α
[k]
ij φ

[k]
l (ci),

b
[l]
j =

m∑

k=1

β
[k]
j φ

[k]
l (1).

(1.2.8)

To obtain B-series expansions of the numerical solution we need the following three results.

The first result shows that the substitution of a B-series into the nonlinear part of the

differential equation is again a B-series. The second result shows that a B-series operated

on by powers of hL, is again a B-series. The final result shows that a B-series operated on

by a power series of hL, is again a B-series.

Lemma 1.2.2. Let a : 2T∗ → R be a mapping satisfying a(∅) = 1, then

hN(B(a(τ), u)) = B(a′(τ), u),

17

where the derivative of the elementary weight function satisfies, a′(∅) = 0 and

a′(τ) =

{
0, if τ = [; τ1],

a(τ1) . . . a(τ`), if τ = [; τ1, . . . , τ`].

Proof. We refer to [8, 23] for very similar proofs. However, we mention that the elementary

weight function depends on the colour of the trees root because the B-series is substituted

into N which is represented by a black node. Therefore the elementary weight will be

non-zero only for trees which have a black root node.

Lemma 1.2.3. Let a : 2T∗ → R be a mapping, then

(hL)lB(a(τ), u) = B((Lla)(τ), u),

where the elementary weight function satisfies, (Lla)(∅) = 0, and

(Lla)(τ) =
{

(Ll−1a)(τ1), if τ = [; τ1],

0, if τ = [; τ1, . . . , τ`].

Proof. Consider first the case when l = 1, which gives

hLB(a(τ), u) = hLu+
∑

τ∈2T∗

h|τ |+1 a(τ)

σ(τ)
LF (τ)(u)

=
∑

τ∈2T∗

h|τ |
(La)(τ)
σ(τ)

F (τ)(u),

where the elementary weight function must be zero for all trees with a black root node. The

general l follows by recursively applying the result for l = 1.

Corollary 1.2.4. Let ψx(z) be a power series

ψx(z) =
∑

l≥0

x[l]zl,

and let a : 2T∗ → R be a mapping, then

ψx(hL)B(a(τ), u) = B((ψx(L)a)(τ), u)

where the elementary weight function satisfies, (ψx(L)a)(∅) = x[0]a(∅), and

(ψx(L)a)(τ) =
∑

l≥0

x[l](Lla)(τ).

18

Proof. This corollary is proved by repeated uses of Lemma 1.2.3, as follows

ψx(hL)B(a(τ), u) =
∑

l≥0

x[l](hL)lB(a(τ), u)

=
∑

l≥0

x[l]B(Lla(τ), u)

= B


∑

l≥0

x[l]Lla(τ), u


 .

We now have everything we need to represent the numerical method using B-series.

Using Corollary 1.2.4, it follows that

ehLun−1 = B((eL1)(τ), un−1),

since un−1 = B(1(τ), un−1), where the elementary weight function 1(τ) is non-zero only for

the empty set. Also from Lemma 1.2.2 and Corollary 1.2.4, we see that

∑

l≥0

a
[l]
ij (hL)

lhN(Uj) = ψaij
(hL)B(ξ′j(τ), un−1)

= B((ψaij
(L)ξ′j)(τ), un−1).

Putting this all together and translating in terms of trees gives the generating functions

ξi(τ) =

s∑

j=1

(ψaij
(L)ξ′j)(τ) + (eciL1)(τ),

α(τ) =

s∑

j=1

(ψbj (L)ξ′j)(τ) + (eL1)(τ).

To represent these elementary weight functions in matrix form we introduce certain ma-

trices. Let for l = 0, 1, 2, . . . and k = 1, . . . ,m, φ
[k]
l , be the s × s diagonal matrix defined

by

φ
[k]
l (c) = diag

(
φ
[k]
l (c1), . . . , φ

[k]
l (cs)

)
.

Also for l = 0, 1, 2, . . . the matrices A[l] and the vectors b[l]
T
to be defined by

A[l] =
m∑

k=1

φ
[k]
l (c)α[k],

b[l]
T

=
m∑

k=1

φ
[k]
l (1)β[k]

T

.

(1.2.9)

19

Note that (1.2.9) are the matrix versions of (1.2.8). The matrix representation of the

elementary weight functions interpreted in the natural way are therefore

ξ(τ) = (ψA(L)ξ′)(τ) + (ecL1)(τ),

α(τ) = (ψbT (L)ξ′)(τ) + (eL1)(τ).

Given that we have B-series expansions for both the exact and the numerical solutions, we

can now define order in the same way as for Runge–Kutta methods.

Definition 1.2.4. An exponential Runge–Kutta method with elementary weight function

a : 2T∗ → R, has order p, if for all τ ∈ 2T∗ such that |τ | ≤ p,

a(τ) =
1

γ(τ)
.

This shows that it is not possible in general to obtain order by simply using a Runge–

Kutta method for the nonlinear part N of the problem. There are coupling conditions

between the nonlinear and linear parts of the problem despite the fact that the linear part

has been solved exactly. Note that if L = 0, then A[l] = 0 and b[l]
T
= 0 for all l = 1, 2,

Thus, all order conditions simply reduce to the order conditions corresponding to the black

trees. In this case A = A[0] ⊗ Id and bT = b[0]
T ⊗ Id. Therefore, the method (1.2.4) is

equivalent to a Runge–Kutta method for the nonlinear part N . This method is known as

the underlying Runge–Kutta method.

It is clear that Definition 1.2.4 is automatically satisfied for all purely white trees. We

now define the matrices

C [j] =
1

(j + 1)!
Cj+1,

where C = diag(c1, . . . , cs). This strange choice of index is so that the non-recursive rule

is straight forward. Now for all remaining trees the elementary weight function a of the

numerical solution can equivalently be computed using the following rule:

• Attach b[j]
T
to the root black node.

• Attach A[j] to all remaining nonterminal black nodes.

• Attach A[j]e to all terminal black nodes.

• Attach C [j]e to all terminal white nodes.

• Attach I to all remaining white nodes.

The value j is the number of white nodes directly below the corresponding node. Now for

each tree multiply from the root to the leaf as in the case for Runge–Kutta methods, then

multiply these expressions in a component by component sense.

Table 1.6 gives the elementary differentials for all non-pure white trees of order three

and less and the corresponding order, density and elementary weight function of the tree.

20

τ |τ | γ(τ) F (τ) α(τ) α(τ)

1 1 N
∑

i b
[0]
i b[0]

T
e

2 2 N ′N
∑

ij b
[0]
i a

[0]
ij b[0]

T
A[0]e

2 2 N ′L
∑

i b
[0]
i ci b[0]

T
C [0]e

2 2 LN
∑

i b
[1]
i b[1]

T
e

3 6 N ′N ′N
∑

ijk b
[0]
i a

[0]
ij a

[0]
jk b[0]

T
A[0]A[0]e

3 6 N ′N ′L
∑

ij b
[0]
i a

[0]
ij cj b[0]

T
A[0]C [0]e

3 6 N ′LN
∑

ij b
[0]
i a

[1]
ij b[0]

T
A[1]e

3 6 N ′LL 1
2

∑
i b

[0]
i c

2
i b[0]

T
C [1]e

3 6 LN ′N
∑

ij b
[1]
i a

[0]
ij b[1]

T
A[0]e

3 6 LN ′L
∑

ij b
[1]
i ci b[1]

T
C [0]e

3 6 LLN
∑

i b
[2]
i b[2]

T
e

3 3 N ′′(N,N)
∑

ijk b
[0]
i a

[0]
ij a

[0]
ik b[0]

T
(A[0]e)(A[0]e)

3 3 N ′′(N,L)
∑

ij b
[0]
i a

[0]
ij ci b[0]

T
(A[0]e)(C [0]e)

3 3 N ′′(L,L)
∑

i b
[0]
i c

2
i b[0]

T
(C [0]e)(C [0]e)

Table 1.6: Relation between elementary differentials and elementary weights.

1.2.3 IF RK and ETD RK as special cases

In this subsection we show that the IF RK and ETD RK methods, introduced in the

beginning of Section 1.2, are special cases of the exponential Runge–Kutta methods (1.2.4).

Therefore, the presented nonstiff order theory governs these special cases. For each of

these special cases we first need to identify the structure of the φ[l] functions. One possible

approach is to use the variation of constants formulae (1.1.4). It is preferable to replace the

nonlinear part N with an approximation, which will make it possible to solve the integral

21

in (1.1.4) exactly.

Consider approximations of the nonlinear term N which leads to the IF RK methods.

Let N(u(tn−1+τ), tn−1+τ) ≈ δieL(tn−1+τ), where δi is a constant chosen in such a way that

the approximation matches N(u(tn−1+τ), tn−1+τ) for τ = cih. In this case for l = 1, . . . , s

we get

φ[l](λ)(hL) = e(λ−cl)hL. (1.2.10)

Every IF Runge–Kutta method (see Table 1.3) can be represented in the form (1.2.4) with

φ[l] functions given by (1.2.10) and with a special choice of the coefficient matrices α[l] and

the coefficient vectors β[l]
T
. This choice reduces the set of all order conditions to a set which

consists only of the order conditions corresponding to the black trees. In the proof of this

fact we will need the following lemma.

Lemma 1.2.5. Let t ∈ R\{0,−1,−2, ...}, then for j = 0, 1, 2, . . .

j∑

k=0

(−1)k
k!(j − k)!

1

(k + t)
=

1

t(t+ 1) · · · (t+ j)
.

Proof. We prove this statement by induction on j. For j = 0 the equality is obviously true

since 1
t
= 1

t
. Assume now that the statement is true for some j. Consider

(t+ j + 1)

j+1∑

k=0

(−1)k
k!(j + 1− k)!

1

(k + t)
=

j+1∑

k=0

(−1)k
k!(j + 1− k)!

(t+ k) + (j + 1− k)
(t+ k)

=

j+1∑

k=0

(−1)k
k!(j + 1− k)! +

j+1∑

k=0

(−1)k
k!(j + 1− k)!

(j + 1− k)
(k + t)

=

j∑

k=0

(−1)k
k!(j − k)!

1

(k + t)
=

1

t(t+ 1) · · · (t+ j)
.

The following theorem defines the structure of the matrices α[l] and the vectors β[l]
T

for the IF RK methods. With this structure of the coefficients, to achieve certain order, it

is sufficient to satisfy only the black trees. This implies that the transformed differential

equation (1.1.2) is solved using a Runge–Kutta method.

Theorem 1.2.6. Let all the non-zero coefficients of an exponential Runge–Kutta method

(1.2.4), with φ[l] functions given by (1.2.10) be located in column number l of the matrix

α[l] and in position number l of the vector β [l]
T
for l = 1, 2, . . . , s. The method has order p

iff all order conditions corresponding to the black trees are satisfied.

Proof. From Definition 1.2.4, it follows directly that if the exponential Runge–Kutta method

has order p then all order conditions corresponding to the black trees are satisfied. Let us

assume that all the order conditions corresponding to the black trees are satisfied. We need

22

to prove that all the remaining order conditions are also satisfied. From the definition of

the φ[l] functions (1.2.10), it follows that for j = 0, 1, 2, . . . ,

φ
[l]
j (1) =

(1− cl)j
j!

, φ
[l]
j (c) =

1

j!
diag((c1 − cl)j , . . . , (cs − cl)j). (1.2.11)

Since all order conditions corresponding to the black trees involve only the coefficients A[0],

b[0]
T
and c, we need to express every other order condition in terms of these coefficients.

Having in mind the special structure of the matrices α[l] and the vectors β[l]
T
, after substi-

tuting (1.2.11) into (1.2.9), we obtain for j = 1, 2, . . .,

A[j] =

j∑

k=0

(−1)k
k!(j − k)!C

[0]j−k

A[0]C [0]k ,

b[j]
T

=

j∑

k=0

(−1)k
k!(j − k)!b

[0]TC [0]k .

(1.2.12)

From the fact that all order conditions corresponding to the black trees are satisfied, it

follows that A[0], b[0]
T
and c form a Runge–Kutta method. Therefore,

C [0]e = A[0]e,

C [0]ζ = (A[0]e)(ζ),

C [0]kζ = (A[0]e) . . . (A[0]e)(ζ),

(1.2.13)

where ζ is an arbitrary vector and the multiplications in the second and third expressions

are in a component by component sense.

Now we are in a position to define a procedure which transforms every coloured tree τ

into a linear combination of black trees of order at most |τ |. Each tree τ can be decomposed

as τ = (τb, τj , τt), where τb is a coloured tree on the bottom with less number of white nodes

than τ ; τj is tall white tree with j ≥ 1 white nodes and τt is black tree on the top. First

applying formula (1.2.12) and then (1.2.13), for the order condition corresponding to a tree

τ , we obtain the following three representations in terms of black trees or trees with less

white vertices.

If τt = ∅ then τ reduces to

τ =
τb

=
1

j! τb
.

If τb = ∅ then τ reduces to

τ =

τt

= δ0
τt

+ · · ·+ δk
τt + · · ·+ δj

τt ,

where δk = (−1)k

k!(j−k)! for k = 0, 1, 2, . . . , j. In the general case when τ{t,b} 6= ∅, then τ can be

23

represented as

τ =

τt

τb

= δ0

τt

τb

+ · · ·+ δk

τt

τb

+ · · ·+ δj

τt

τb

. (1.2.14)

For each of the trees in the linear combination we apply the same procedure. Thus,

after a finite number of steps all the trees in the combination will be black. From (1.2.9) it

is clear that the order of every single black tree cannot exceed the order of coloured tree.

See Table 1.7 for the representations of all trees of order three and less. To complete the

proof we need to show that a(τ) = 1/γ(τ) for all coloured trees τ , where |τ | ≤ p. We

prove this by induction on the number of steps θ in the transformation process. Let θ = 1.

Every coloured tree τ has representation τ =
∑j

k=0 δkτk, where all τk are black trees. If

γ(τt) = x1|τt|x2 then a(τk) =
1

γ(τk)
= 1

x1(|τt|+k)x2
and by Lemma 1.2.5 for t = |τt| it follows

that

a(τ) =

j∑

k=0

(−1)k
k!(j − k)!a(τk)

=

j∑

k=0

(−1)k
k!(j − k)!

1

γ(τk)

=

j∑

k=0

(−1)k
k!(j − k)!

1

x1(|τt|+ k)x2

=
1

x1|τt|(|τt|+ 1) · · · (|τt|+ j)x2
=

1

γ(τ)
.

Assume that a(τ) = 1/γ(τ) for all coloured trees τ with θ steps in the transformation

process. Let τ be a tree with θ + 1 steps in the transformation process. From (1.2.14) it

follows that τ =
∑j

k=0 δkτk, where τk are coloured trees with θ steps in the transformation

process and hence a(τk) = 1/γ(τk). If γ(τt) = x1|τt|x2 then a(τk) =
1

γ(τk)
= 1

x1(|τt|+k)x2
and

by Lemma 1.2.5 for t = |τt| it again follows that a(τ) = 1/γ(τ).

The following result shows that the non-zero coefficients of an IF RK method are those

of the underlying Runge–Kutta method.

Corollary 1.2.7. Under the assumptions of Theorem 1.2.6 it follows that all non-zero co-

efficients of an exponential Runge–Kutta method (1.2.4) are exactly equal to the coefficients

of the underlying Runge–Kutta method.

Proof. Since φ
[l]
0 (1) = 1 and φ

[l]
0 (c) = I, it follows from (1.2.9), that

A[0] = α[1] + α[2] + · · ·+ α[s−1],

b[0]
T

= β[1]
T

+ β[2]
T

+ · · ·+ β[s]
T

.

The result now follows from the special structure of α[l] and β[l]
T
.

24

Table 1.7 gives all the trees up to order 3 with at least one white node in terms of linear

combinations of trees with only black nodes. This represents how the order conditions for

the IF RK methods are automatically satisfied by the order conditions of the underlying

Runge–Kutta method.

τ τ

= = −

= = −

= − = 1
2 − + 1

2

= 1
2 = −

= =

Table 1.7: Coloured trees as linear combinations of black trees for the IF RK methods.

We now consider approximations of the nonlinear term N which leads to the ETD RK

methods. Let N(u(tn−1+τ), tn−1+τ) ≈ pn−1(τ), where pn−1(τ) is interpolation polynomial

of degree s − 1 that matches N(u(tn−1 + τ), tn−1 + τ) at the points τ = c1h, c2h, . . . , csh.

This approximation leads exactly to the φ[i] functions (1.1.6) from Lemma 1.1.1. We call

this functions ETD φ[i] functions. The explicit form of the first few of them is

φ[1](λ)(hL) = φ[1](λhL) = 1Im +
λ

2!
hL+

λ2

3!
(hL)2 +

λ3

4!
(hL)3 + · · · ,

φ[2](λ)(hL) = φ[2](λhL) =
1

2!
Im +

λ

3!
(hL) +

λ2

4!
(hL)2 +

λ3

5!
(hL)3 + · · · ,

φ[3](λ)(hL) = φ[3](λhL) =
1

3!
Im +

λ

4!
(hL) +

λ2

5!
(hL)2 +

λ3

6!
(hL)3 + · · · .

(1.2.15)

As an example of an ETD Runge–Kutta method, in Table 1.8, we write out an expo-

nential integrator, which reduces to the classical fourth order Runge–Kutta method (1.3.5)

for L = 0. The coefficients of the method are chosen in such a way that all nonstiff order

conditions up to order four as well as half of the conditions of order five are satisfied.

As we mentioned before, other choices for the φ[l] functions (1.2.2), rather than the IF

(1.2.10) and the ETD (1.1.6) functions, are also possible. In Chapter 2 we give examples of

functions which originate from the framework of Lie group methods. The question how to

find the best set of functions (1.2.2) is open and needs further investigation. It seems that

the most commonly used functions in the literature are the ETD φ[i] functions. In the next

subsection we present some third and fourth order ETD RK methods, which recently have

been studied by several authors.

25




0 0 0 0 I
1
2φ

[1] 0 0 0 e
1
2
hL

21
50φ

[1] − 6
25φ

[2] 2
25φ

[1] + 6
25φ

[2] 0 0 e
1
2
hL

19
20φ

[1] − 9
10φ

[2] − 3φ[3] 21
5 φ

[2] − 108
5 φ

[3] 1
20φ

[1] − 33
10φ

[2] + 123
5 φ

[3] 0 ehL

b1(hL) b2(hL) b3(hL) b4(hL) ehL




,

where

b1(hL) =
31

30
φ[1] − 17

5
φ[2] + 6φ[3] − 4φ[4],

b2(hL) = − 1

10
φ[1] +

1

5
φ[2] − 4φ[3] + 12φ[4],

b3(hL) =
1

30
φ[1] +

23

5
φ[2] − 8φ[3] − 4φ[4],

b4(hL) =
1

30
φ[1] − 7

5
φ[2] + 6φ[3] − 4φ[4].

Table 1.8: A fourth order ETD Runge–Kutta method.

1.2.4 More examples of ETD RK methods

All methods presented in this subsection are based on in some sense “mysterious” observa-

tions, which do not explicitly involve the order theory from Subsection 1.2.2 or any other

order theory. We include this methods as examples of exponential integrators, which dur-

ing the last few years have been studied by several authors [14, 29, 30, 35, 36]. Thus these

methods have obtained an important place on their own. We try as much as reasonably

possible, for each method, to present the authors main motivation used in the derivation

process. In the presentation of each method we use the notations introduced in Section 1.3.

We mention also that all the methods satisfy the classical (nonstiff) order conditions form

Subsection 1.2.2 up to the order which their authors predict, but most of them suffer from

order reduction in the stiff case. We will comment more on this in Subsection 1.2.5.2.

In Tables 1.9 and 1.10 we give the two multistage methods proposed in [14]. When

the linear part L is equal to zero, they reduce to the classical third and fourth order

Runge–Kutta method respectively. Regarding the derivation of the fourth order method

(Table 1.10), in [14] is written: “The computer algebra package Maple was used to confirm

that this method is indeed fourth order”.

A surprising connection between the fourth order method of Cox–Matthews (Table 1.10)

and the fourth order commutator free Lie group method (Table 2.6), based on the affine

algebra action (see Section 2.3), was found in [36, Article 5]. Note that the internal stages

26




0 0 0 I
1
2φ

[1] 0 0 e
1
2
hL

−φ[1] 2φ[1] 0 ehL

φ[1] − 3φ[2] + 4φ[3] 4φ[2] − 8φ[3] −φ[2] + 4φ[3] ehL




Table 1.9: Third order method of Cox–Matthews.




0 0 0 0 I
1
2φ

[1] 0 0 0 e
1
2
hL

0 1
2φ

[1] 0 0 e
1
2
hL

1
2φ

[1]
(
hL
2

)(
e

hL
2 − I

)
0 φ[1]

(
hL
2

)
0 ehL

φ[1] − 3φ[2] + 4φ[3] 2φ[2] − 4φ[3] 2φ[2] − 4φ[3] −φ[2] + 4φ[3] ehL




Table 1.10: Fourth order method of Cox–Matthews.

of this two methods are the same. It is shown in [36, Article 5] that the main step of Cox–

Matthews method can be reproduced based on the techniques of continuous Runge–Kutta

methods [24, Chapter II.6]. Motivated from the same idea, but also applied to the internal

stages of the method, a new fourth order method is derived in [36, Article 5]. This method,

which is also based on the classical fourth order Runge–Kutta method (1.3.5), is given in

Table 1.11.




0 0 0 0 I
1
2φ

[1] 0 0 0 e
1
2
hL

1
2φ

[1] − φ[2] φ[2] 0 0 e
1
2
hL

φ[1] − 2φ[2] 0 2φ[2] 0 ehL

φ[1] − 3φ[2] + 4φ[3] 2φ[2] − 4φ[3] 2φ[2] − 4φ[3] −φ[2] + 4φ[3] ehL




Table 1.11: Fourth order method of Krogstad.

Similar techniques are used in the construction of ETD2RK3 (Table 1.12) and ETD2CF3

(Table 1.13) methods proposed in [45]. The first of this methods also reduces, for L = 0, to

27




0 0 0 I
1
2φ

[1] 0 0 e
1
2
hL

φ[1] − 4φ[2] 4φ[2] 0 ehL

φ[1] − 3φ[2] + 4φ[3] 4φ[2] − 8φ[3] −φ[2] + 4φ[3] ehL




Table 1.12: Third order ETD2RK3 method.




0 0 0 I
1
3φ

[1] 0 0 e
1
3
hL

2
3φ

[1] − 4
3φ

[2] 4
3φ

[2] 0 e
2
3
hL

φ[1] − 9
2φ

[2] + 9φ[3] 6φ[2] − 18φ[3] −3
2φ

[2] + 9φ[3] ehL




Table 1.13: Third order ETD2CF3 method.

the classical third order Runge–Kutta method. It is simply a modification of the third order

method of Cox–Matthews, which adapts the continuous idea for the internal stages as well.

The second method is based on the third order commutator free Lie group method proposed

in [12]. However, instead of using the affine algebra action (see Section 2.3), the internal

stages of ETD2CF3 are derived based on the algebra action proposed in [Article 1, p.91].

Splitting of the main step is again avoided by using the continuous technique suggested

in [36, Article 5].

1.2.5 Exponential RK methods for parabolic PDEs

The order theory presented in Section 1.2.2 highly relays on the assumption that L is

bounded linear operator on a d-dimensional Euclidian space Rd. In this case the meaning

of the exponential operator etL is given by the well known formula

etL =
∞∑

k=0

tkLk

k!
, t ∈ R.

The related ETD φ[i] functions are also defined in a similar way (see 1.2.15).

To analyze the order of an exponential integrator applied to a Partial Differential Equa-

tion (PDE), we need a framework, which allows us to define the exponential and the related

functions in the case when L is an unbounded linear operator. In the sequel, we follow the

presentation in [29, 30] and restrict our considerations to the framework of sectorial opera-

tors and analytic semigroups. It is well known that parabolic problems like reaction-diffusion

equations, incompressible Navier-Stokes equations in two and three space dimensions as well

28

as displacement of a shock fit into this framework (see [26, Chapter 3], [42, Section 7.3] and

[54, Lecture 5]).

The key idea, used in [29, 30], is to analyze exponential integrators of Runge–Kutta

type for parabolic PDEs based on the observation that any parabolic PDE can be viewed

as an abstract Ordinary Differential Equation (ODE). We illustrate this concept in the next

example.

Consider the following one dimensional reaction-diffusion equations

∂U

∂t
(x, t) =

∂

∂x

(
a(x)

∂U

∂x
(x, t)

)
+ ϕ(x, t, U(x, t)),

U(x, 0) = U0(x) 0 < x < 1,

U(0, t) = U(1, t) = 0 t > 0.

(1.2.16)

We define the functions

u(t) = [x→ U(x, t)] ∈ L2(0, 1),

u0 = [x→ U(x, 0)] ∈ L2(0, 1),

N(u, t) = [x→ ϕ(x, t, u(x))] ∈ L2(0, 1)

and the linear operator

Lu =

[
x→ ∂

∂x

(
a(x)

∂U

∂x
(x, t)

)]
.

Thus, the equation (1.2.16) is equivalent to the following abstract semilinear problem on

the Banach space L2(0, 1)

u′(t) = Lu+N(u, t), u(t0) = u0, (1.2.17)

where now the linear operator L is unbounded. An appropriate setting where the exponen-

tial and the related operators have a precise meaning, for unbounded linear operator L in a

Banach space X, is the framework of sectorial operators and analytic semigroups. We next

introduce the main concepts and some error bounds which are crucial for the convergence

analysis presented in the recent papers [29, 30].

1.2.5.1 The framework

Let (X, || · ||X) be a real or complex Banach space and let L be a linear operator in X with

dense domain D(L) = {x ∈ X : Lx ∈ X} equipped with the graph norm ||x||D(L) = ||Lx||X .

In order to define the exponential operator etL we need the notion of sectorial operators.

Definition 1.2.5. ([26, Definition 1.3.1], [42, Definition 2.0.1]) A densely defined and closed

linear operator L in X is called sectorial if there are constants a ∈ R, π/2 < ϕ < π and

M > 1 such that the following resolvent condition is satisfied

||(λI − L)−1||X←X ≤
M

|λ− a| (1.2.18)

29

Figure 1.1: Domain of validity for condition (1.2.18) (shaded).

on the sector {λ ∈ C : λ 6= a, |arg(λ− a)| < ϕ}.

The sector from Definition 1.2.5 is plotted on Figure 1.1. Next we give the definition of

an analytic semigroup.

Definition 1.2.6. ([26, Definition 1.3.3], [42, Section 2]) The family (S(t))t≥0 of linear

operators on X forms a semigroup if the relations S(0) = I and

S(s)S(t) = S(s+ t), s, t ≥ 0,

are satisfied. The semigroup is called analytic if the map t→ S(t) is analytic.

Assuming that the linear operator L is sectorial, we can define the exponential operator

etL by the means of the Cauchy integral formula.

Definition 1.2.7. ([26, Definition 1.3.4], [42, Definition 2.0.2]) Let L be a sectorial operator

inX, and, for some radius r > 0 and an angle π/2 < η < ϕ, let the counterclockwise oriented

contour Γ consists of the half lines γ+ and γ− given by

γ± = a+ {λ ∈ C : |λ| ≥ r, arg(λ) = ±η},

and the arc γr = a+{λ ∈ C : |λ| = r, arg(λ) ≤ η}, see Figure 1.2. Then, the family
(
etL
)
t≥0

defined through

etL =
1

2πi

∫

Γ
eλt(λI − L)−1dλ, t > 0, e0L = I, (1.2.19)

is an analytic semigroup generated by L in X.

The operator etL : X → X is linear and bounded in X for each t ≥ 0. This follows

directly from the resolvent bound (1.2.18). For the rest of the presentation in this section

30

Figure 1.2: The contour Γ from Definition 1.2.7.

we assume that the linear operator L is sectorial and thus the operator etL is well-defined

and bounded in X.

When the parameter a is negative, form Definition 1.2.5, follows that the operator −L
has a bounded inverse. Motivated by the definition of the gamma function, for any α > 0,

we can define fractional powers of −L through the following expression
∫ ∞

0
etLtα−1dt = (−L)−α

∫ ∞

0
e−xxα−1dx = (−L)−αΓ(α).

Therefore

(−L)−α =
1

Γ(α)

∫ ∞

0
etLtα−1dt.

The fractional powers of −L, for any α > 0, are now defined by

(−L)α : D
(
(−L)α

)
→ X : x→ (−L)αx :=

(
(−L)−α

)−1
x,

where D
(
(−L)α

)
= range ((−L)−α).

If a > 0, we consider the shifted operator L̃ = ωI −L, with ω > a. Fractional powers of

L̃ are defined in the similar way.

From the Cauchy’s integral formula (1.2.19) and the resolvent bound (1.2.18) the fol-

lowing uniform stability bounds are derived in [26, 42, 54]

||etL||X←X ≤ C0e
at, for 0 ≤ t ≤ T ,

||L̃αetL||X←X ≤ Cα,ωeωtt−α, for 0 < t ≤ T, ω > a . (1.2.20)

We next discuss the main assumptions which the nonlinearity N has to satisfy. As in

the ODE case, the minimal requirement on N is to be Lipschitz-continuous in X. However,

31

for abstract ODEs, the above condition is hardly satisfied in practice. For example, if

X = L2(0, 1) and N(u, t) = u2, it is not even guaranteed that u2 ∈ L2(0, 1). Therefore, we

need to consider N like an operator defined on a smaller space V , such that D(L) ⊂ V ⊂ X.

Thus, the main assumption imposed on the nonlinearity N : V × [0, T]→ X is to be locally

Lipschitz-continuous in a strip along the exact solution u. Therefore, there exist a real

number L(R, T), such that

||N(v, t)−N(w, t)||X ≤ L||v − w||V

for all t ∈ [0, T] and max(||v − u(t)||V , ||w − u(t)||V) ≤ R, where R is the radius of the

strip.

In [29, 30], the space V is chosen to be the fractional power space Xα = D(L̃α), 0 ≤
α < 1. Thus V is linear Banach space with norm ||v||V = ||L̃αv||X . The value of α depends

from the underlying space X and form the type and dimensionality of the problem. It can

be determined by the following Lemma, which relies on the classical Sobolev embedding

theorem (see[54]).

Lemma 1.2.8. Let 1 ≤ p < ∞ and Ω ⊂ Rd be an open and bounded set with smooth

boundary. Let L be sectorial in Lp(Ω) with domain D(L) ⊂ Wm,p(Ω) for some m ≥ 1.

Then for 0 ≤ α ≤ 1

V = Xα ⊂ Cν(Ω̄) ⊂ L∞, 0 ≤ ν < mα− d

p

with continuous embeddings.

From Lemma 1.2.8, it follows that for second-order parabolic problems on L2(Ω) i.e.

m = 2 and p = 2, V ⊂ L∞ for d/4 < α < 1. Thus it is clear that for three dimensional

problems, we have to work with stronger norms than in the one and two dimensional cases.

We next observe that the definition of the space V = Xα is related with the stability

bounds (1.2.20) for the exponential and the related operators. To illustrate this connection,

we represent the exact solution of (1.2.17) by the variation of constants formulae

u(t)︸︷︷︸
V

= etLu0 +

∫ t

0
e(t−τ)L︸ ︷︷ ︸
V←X

N(u(τ), τ)︸ ︷︷ ︸
X

dτ. (1.2.21)

Since u(t) ∈ V , it is clear that we need to consider etL like an operator from X to V . From

(1.2.20) and the definition of the operator norm, for 0 < t ≤ T , we have

||etL||V←X = sup
w∈X
w 6=0

||etLw||V
||w||X

= sup
w∈X
w 6=0

||L̃αetLw||X
||w||X

≤ sup
w∈X
w 6=0

||L̃αetL||X←X ||w||X
||w||X

≤ Ct−α.
(1.2.22)

32

Let us now define the operators φ[i] for i = 1, 2, . . . by the formula

φ[i](tL) = t−i
∫ t

0
e(t−τ)L

τ i−1

(i− 1)!
dτ. (1.2.23)

Note that φ[i] are bounded operators in X and that when L is a matrix, the above formulas

reproduce exactly the ETD φ[i] functions given in (1.1.6).

The stability estimate (1.2.22) can be easily extended to all operators φ[i]

||φ[i](tL)||V←X ≤ t−i
∫ t

0
||e(t−τ)L||V←X

τ i−1

(i− 1)!
dτ

≤ Ct−i
∫ t

0
(t− τ)−ατ i−1dτ ≤ Ct−α.

(1.2.24)

The last assumption which we impose on the problem (1.2.17) is that it possesses a

sufficiently smooth solution u : [0, T] → V with derivatives in V . In addition we suppose

that N : V × [0, T]→ X is sufficiently often Fréchet differentiable in a strip along the exact

solution. The above assumption, insures that the composition map

z : [0, T]→ X : t→ z(t) = N(u(t), t)

is a smooth map and therefore z admits Taylor series expansion.

In the next two subsections, we consider respectively explicit and implicit exponential

integrators for solving semilinear parabolic PDEs.

1.2.5.2 Explicit methods

Under the assumptions given in the previous subsection, the convergence properties of the

explicit exponential Runge–Kutta methods presented in Subsection 1.2.1 are studied in [29].

The main idea behind the analysis presented there is to derive bounds for the error recur-

sion between the exact solution represented by the variation of constants formulae (1.2.21)

and the numerical solution given by the scheme (1.2.4). Because of the α-dependence in

(1.2.22) and (1.2.24), the error bounds depend from the size of the parameter α. There-

fore, the number of order conditions for a method to be of a given order p also depends

form α. The simplest possible case is when α = 0 (V = X). In Table 1.14 we list the

stiff order conditions derived in [29], which guarantee that an s-stage explicit exponential

Runge–Kutta method (1.2.4) is of order p (for p ≤ 4), in the case when α = 0 and the

ETD φ[i] functions (1.2.23) are used. The operators J and K, which appear in conditions

number 5,7,8 and 9 are arbitrary bounded operators in X.

The order conditions from Table 1.14 allow us to analyze the stiff order of the explicit

exponential Runge–Kutta methods presented so far. It is shown in [29], that the third order

method of Cox–Matthews [14] as well as the method ETD2RK3 (see Subsection 1.2.4) suffer

from order reduction down to order two in the worst case. The method ETD2CF3 given in

Subsection 1.2.4 has a full stiff order three, in the case when α = 0. Similarly, the fourth

33

No. order order condition

1 1
s∑

i=1

bi(hL) = φ[1](hL)

2 2
s∑

i=2

bi(hL)ci = φ[2](hL)

3 2
i−1∑

j=1

aij(hL) = ciφ
[1](cihL)

4 3
s∑

i=2

bi(hL)c
2
i = 2φ[3](hL)

5 3
s∑

i=2

bi(hL)J
(
φ[2](cihL)c

2
i −

i−1∑

j=2

aij(hL)cj

)
= 0

6 4
s∑

i=2

bi(hL)c
3
i = 6φ[4](hL)

7 4
s∑

i=2

bi(hL)J
(
φ[3](cihL)c

3
i −

1

2

i−1∑

j=2

aij(hL)c
2
j

)
= 0

8 4
s∑

i=2

bi(hL)J
i−1∑

j=2

aij(hL)J
(
φ[2](cjhL)c

2
j −

j−1∑

k=2

ajk(hL)ck

)
= 0

9 4
s∑

i=2

bi(hL)ciK
(
φ[2](cihL)c

2
i −

i−1∑

j=2

aij(hL)cj

)
= 0

Table 1.14: Stiff order conditions for explicit exponential Runge–Kutta methods for α = 0.

order method of Cox–Matthews [14] has only stiff order two and the fourth order method

of Krogstad (see Subsection 1.2.4) has a stiff order three in the worst case. For each of the

above methods, higher order (up to the classical nonstiff order) is possible, if additional

smoothness conditions of the problem are satisfied. In general, it can be shown that it is

not possible to construct stiff fourth order exponential Runge–Kutta method with only four

stages [29]. In Table 1.15 we present the fourth order, five stages method of Hochbruck–

Ostermann [29], which satisfies all the order conditions from Table 1.14 except the condition

number 7. It is satisfied only in a weak form, that is with bi(0) instead of bi(hL).

All exponential integrators which we have considered so far were based on the explicit

idea. In some sense, it seems unnecessary to consider implicit exponential integrator, since

the hope is to overcome the stiffness by using the exponential and the related functions φ[i]

in the format of the method. However, we should keep in mind that for implicit exponential

34




0 0 0 0 0 I
1
2φ

[1] 0 0 0 0 e
1
2
hL

1
2φ

[1] − φ[2] φ[2] 0 0 0 e
1
2
hL

φ[1] − 2φ[2] φ[2] φ[2] 0 0 ehL

1
2φ

[1] − 1
4φ

[2] − a52
(
hL
2

)
a52
(
hL
2

)
a52
(
hL
2

)
1
4φ

[2] − a52
(
hL
2

)
0 e

1
2
hL

φ[1] − 3φ[2] + 4φ[3] 0 0 −φ[2] + 4φ[3] 4φ[2] − 8φ[3] ehL




,

where a52
(
hL
2

)
= 1

2φ
[2]
(
hL
2

)
− φ[3](hL) + 1

4φ
[2](hL)− 1

2φ
[3]
(
hL
2

)

Table 1.15: Fourth order method of Hochbruck–Ostermann with five stages.

integrators, we can solve the arising nonlinear equations by using fixed-point iteration.

What we gain by using implicit multistage integrators is the ability to increase the stage

order of the method. Motivated from this observation, a special class of implicit exponential

integrators of collocation type, for solving parabolic problems, is studied in [30]. Next, we

consider this class of methods.

1.2.5.3 Implicit collocation methods

The main idea behind the exponential collocation integrators [30], is to replace the function

N(u, t) in the variation of constants formulae (1.1.4)

u(tn−1 + h) = ehLun−1 +

∫ h

0
e(h−τ)LN(u(tn−1 + τ), tn−1 + τ)dτ

by polynomial approximation pn−1(τ) of collocation type.

Let c1, c2, . . . , cs be non-confluent collocation nodes in the interval [0, 1] and Ui ≈
u(tn−1 + cih). If pn−1(τ) is the unique collocation polynomial of degree s− 1, which satis-

fies the conditions pn−1(cih) = N(Ui, tn−1 + cih) for i = 1, 2, . . . s, then we can define the

numerical solution un of (1.2.17) at time tn = tn−1 + h by the formulas

un = ehLun−1 +

∫ h

0
e(h−τ)Lpn−1(τ)dτ,

Ui = ecihLun−1 +

∫ cih

0
e(cih−τ)Lpn−1(τ)dτ.

(1.2.25)

Since pn−1(τ) is a polynomial of τ with coefficients that are linear combinations of the

values N(Ui, tn−1 + cih), calculating exactly the integrals form (1.2.25), we obtain

∫ cih

0
e(cih−τ)Lpn−1(τ)dτ = h

s∑

j=1

aij(cihL)N(Uj , tn−1 + cjh),

35

∫ h

0
e(h−τ)Lpn−1(τ)dτ = h

s∑

i=1

bi(hL)N(Ui, tn−1 + cih),

where the coefficients aij and bi are linear combinations of the first s, φ[i] functions (1.2.23).

Thus, it is clear that the general format of an exponential integrator of collocation type is

just a special case of the exponential Runge–Kutta methods introduced in Subsection 1.2.1.

The advantage of the above approach is that it does not requires any order theory because

of the high stage order. Therefore the construction of new integrators is easy, since there

is no need to solve complicate order conditions. Of course all this comes on the price of

working with a very restrictive class of methods. The main advantage of the exponential

integrators of collocation type comes from the fact that they are implicit, which allows to

build up the stage order of the method, and at the same time the nonlinear equations which

arise in the format of the method can be simply solved using fixed-point iterations.

In [30], the convergence properties of the exponential integrators of collocation type,

applied to semilinear parabolic PDEs, are analyzed. It is shown there, that the methods

converge at least with their stage order. Higher and even fractional order of convergence

is possible if additional temporal and spatial regularity are required. For problems with

periodic boundary conditions classical (nonstiff) order can be obtained.

The above result suggests that the ideal integrators for solving stiff problems will be

explicit exponential integrators with higher stage order. Thus, we naturally arrive to the

idea of using general linear methods [8, 69] like underlying methods in the construction of

exponential integrators. In the next section we introduce the main concept behind general

linear methods and show how they can be extended to the exponential setting.

1.3 General linear methods and exponential integrators

In the previous two sections we have considered exponential integrators based on the two

main classes for solving ordinary differential equations: linear multivalued (Section 1.1) and

multistage (Section 1.2) methods. General linear methods (GLMs) were introduced in [7]

as a unifying framework for the traditional methods to study the properties of consistency,

stability and convergence. The extremely general nature of this methods allows new meth-

ods with clear advantages over the traditional methods to be constructed. We next present

the main idea behind general linear methods and introduce some notations, which are used

in the representation of every exponential integrator included in this thesis.

1.3.1 Formulation of the methods

For simplicity of the presentation, we again represent the original semilinear problem (1.1.1)

in the following autonomous form

u′ = Lu+N(u(t)) = f(u(t)), u(t0) = u0, f(u(t)) : Rd → Rd. (1.3.1)

36

Following [8, Chapter 5], for the numerical solution of (1.3.1), we consider a method in which

a collection of vectors forms the input at the beginning of a step, and a similar collection

is passed on as output from the current step and as input into the next step. Thus the

method is a multivalue method. In addition, as for Runge–Kutta methods, it is assumed

that during the computations that constitute the step of the method, s approximations to

the solution at points near the current time step are evaluated. Therefore the method is

also a multistage method. Methods which are both multistage and multivalued are known

as general linear methods.

Assume that at the beginning of step number n, r quantities

u
[n−1]
1 , u

[n−1]
2 , . . . , u[n−1]r ,

are available from approximations computed in the previous step number n − 1. The

corresponding quantities evaluated during the step number n are denoted by

u
[n]
1 , u

[n]
2 , . . . , u[n]r .

Let the internal stage values of step number n are denoted by

U1, U2, . . . , Us

and the derivatives evaluated at this step are denoted by

f(U1), f(U2), . . . , f(Us).

If h represents the stepsize, then the quantities imported into and evaluated in step number

n are related by the equations

Ui =
s∑

j=1

aijhf(Uj) +
r∑

j=1

diju
[n−1]
j , i = 1, 2, . . . s,

u
[n]
i =

s∑

j=1

bijhf(Uj) +
r∑

j=1

viju
[n−1]
j , i = 1, 2, . . . r,

(1.3.2)

where A = (aij), B = (bij), D = (dij), V = (vij) are coefficients of the method. Introducing

the vector notations

U =




U1

U2

...

Us



, f(U) =




f(U1)

f(U2)
...

f(Us)



, u[n−1] =




u
[n−1]
1

u
[n−1]
2
...

u
[n−1]
r



, u[n] =




u
[n]
1

u
[n]
2
...

u
[n]
r



,

allows us to rewrite the method (1.3.2) in the following more compact form

 U

u[n]


 =


 A⊗ Id D ⊗ Id
B ⊗ Id V ⊗ Id




 hf(U)

u[n−1]


 ,

37

where ⊗ is the Kronecker product and Id is the d× d identity matrix. Usually, in order to

simplify the notations, the Kronecker product with Id is omitted. Thus the coefficients of

every general linear method, given by the matrices A,B,D, V , can be written together as

the following partitioned (s+ r)× (s+ r) matrix

M =


 A D

B V


 . (1.3.3)

Note that the matrix A from (1.3.3) is similar to the A matrix in the Runge–Kutta methods

and determines the implementation cost of the method. The quantities u[n], which are

passed from step to step, can have a very general nature. Common choices in linear multistep

methods, are approximations to the solution and the derivatives at various previous points,

backward difference approximations or approximations to the Nordsieck vector. Like for

Runge–Kutta methods, the stage values U of GLMs are approximations to the solution at

points near the current time step. That is Ui ≈ u(tn + cih), where usually 0 ≤ ci ≤ 1, for

i = 1, 2, . . . , s. The vector

c = [c1, c2, · · · , cs]T ,

is called the vector of abscissae.

Examples of GLMs

Next, we give few examples showing how some well know traditional methods can be alter-

natively represented like general linear methods. Let us first consider k-step linear multistep

methods of Adams type

un = un−1 + h
k∑

i=0

βif(un−i). (1.3.4)

Natural way of rewriting (1.3.4) as GLM is to choose the number of the internal stages to

be only one, corresponding to approximation of u(tn), and the k+1 quantities passed from

step to step to be of the form

u[n−1] =




un−1

hf(un−1)

hf(un−2)
...

hf(un−k)




.

38

Thus, (1.3.4) can be represented in the following general linear form




U1

un

hf(U1)

hf(un−1)
...

hf(un−k−1)




=




β0 1 β1 · · · βk−1 βk

β0 1 β1 · · · βk−1 βk

1 0 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0







hf(U1)

un−1

hf(un−1)

hf(un−2)
...

hf(un−k)




.

Similarly, backward differentiation formulae (BDF) methods

un =

k∑

i=1

αiun−i + hβ0f(un),

are represented as




U1

un

un−1

un−2
...

un−k−1




=




β0 α1 α2 · · · αk−1 αk

β0 α1 α2 · · · αk−1 αk

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0







hf(U1)

un−1

un−2

un−3
...

un−k




.

As far as Runge–Kutta methods are concern, it is usually convenient to represent them

as general linear methods which pass only one quantity from step to step. That is an

approximation to u(tn−1). In this way, we can identify the matrices A and B form (1.3.3)

with the Amatrix and the row vector bT of the Runge–Kutta method respectively. Choosing

D = e and V = 1, we can easily see that the classical fourth order Runge–Kutta method

0

1
2

1
2

1
2 0 1

2

1 0 0 1

1
6

1
3

1
3

1
6

, (1.3.5)

39

can be written as 


U1

U2

U3

U4

un




=




0 0 0 0 1

1
2 0 0 0 1

0 1
2 0 0 1

0 0 1 0 1

1
6

1
3

1
3

1
6 1







hf(U1)

hf(U2)

hf(U3)

hf(U4)

un−1




.

We mention also that it is not always appropriate to represent a Runge–Kutta method like

a general liner method with r = 1. Example is the Lobatto IIIA method

0

1
2

5
24

1
3 − 1

24

1
2

1
6

2
3

1
6

1
6

2
3

1
6

.

It is a method which has the so called FSAL property. This means that the First stage of

the current step is the Same As the Last stage of the previous step. This special property

allows us to eliminate the first stage of the method by passing one more quantity from step

to step. Thus the method can be represented in the following general linear form




U1

U2

un

hf(U2)



=




1
3 − 1

24 1 5
24

2
3

1
6 1 1

6

2
3

1
6 1 1

6

0 1 0 0







hf(U1)

hf(U2)

un−1

hf(un−1)



.

1.3.2 Construction of practical GLMs

We first introduce the concepts of pre-consistency, consistency, stability and convergence of

general linear methods. The pre-consistency and consistency conditions for a GLM insure

that the method can solve exactly the trivial differential equations u′ = 0 and u′ = 1. If

the pre-consistency vector ū and the consistency vector v̄ are determined by

u[n−1] = ūu(tn−1) + v̄hu′(tn−1) +O(h2),
u[n] = ūu(tn) + v̄hu′(tn) +O(h2),

then the pre-consistency conditions are

Dū = e, V ū = ū,

and the consistency conditions are

Ae+Dv̄ = c, Be+ V v̄ = ū+ v̄,

40

where e = [1, 1, · · · , 1]T ∈ Rs. Stability of GLM concerns the boundedness of the numerical

solution when the method is applied to the trivial differential equation u′ = 0. Thus the

general linear method M , defined by (1.3.3), is stable if there exist a constant C such that

for all n = 1, 2, . . ., ||V n|| ≤ C. The methodM is convergent if there exist a non-zero vector

ū ∈ Rr such that if u[0] = ūu(t0) + O(h), then u[n] = ūu(t0 + nh) + O(h) for all n, given

that nh is bounded. The fundamental result that consistency and stability are necessary

and sufficient conditions for convergence of a general linear method is proven in [7].

The order of accuracy of a general linear method is defined relative to a starting pro-

cedure S. It is used to produce the initial vector u[0] from the given initial value u0. In

general the starting procedure can be represented by

Ū = S11hf(Ū) + S12u0,

u[0] = S21hf(Ū) + S22u0,

where the vectors Ū and f(Ū) are

Ū =




Ū1

Ū2

...

Ūs̄



, f(Ū) =




f(Ū1)

f(Ū2)
...

f(Ūs̄)



,

and f(Ū1), f(Ū2), . . . , f(Ūs̄) are the derivatives at the internal stages Ū1, Ū2, . . . , Ūs̄. Note

that the number of stages s̄, required to compute the r components of u[0], can be different

from the number of the stages s used in the method. From the pre-consistency conditions

follows, that S12 = e and S22 = ū. Similarly to (1.3.3), the starting procedure can be also

represented by a partitioned (s̄+ r)× (s̄+ 1) matrix

S =


 S11 S12

S21 S22


 .

If E represents the shift operator, that shifts the exact solution from tn−1 to tn, then the

general linear method M has order of accuracy p if M ◦S −S ◦E = O(hp+1), where M ◦S
denotes the combined effect of applying the starting procedure S followed by a step of the

method M . The meaning of S ◦ E is defined in a similar way.

Until recently, very few general linear methods which are significantly different from the

traditional methods have been developed. This is mainly due to the very general structure

of these methods, which results in a complicated order theory. A reasonable way to advance

in the construction of new competitive methods is to introduce some initial assumptions on

the structure of the methods. In this way the originally large class of GLMs is limited to a

smaller subclass where practical methods are likely to exist.

Like we saw in Subsection 1.2.5.3, it is important to base the construction of exponential

integrators on methods which have higher stage order. Thus a desirable property of the

41

underlying method is to have stage order equal to the overall order p of the method. Impos-

ing this assumption simplifies the order construction of GLMs and provides asymptotically

correct error estimates, which are useful in variable stepsize, variable order implementa-

tions. To overcome difficulties with changing the stepsize, it is also convenient to require

the quantities passed from step to step to be approximations of the Nordsieck vector i.e.

u[n] ≈




u(tn)

hu′(tn)
...

hp

p! u
(p)(tn)



,

with r = p+1. Under the above assumptions the order conditions for general linear methods

become much simpler. It can be shown (see [8, Chapter 5], [69, Chapter 3]) that necessary

conditions for a method to have stage order and order p are

D = C −ACK,
V = E −BCK,

where the matrices C ∈ Rs×p+1, K ∈ Rp+1×p+1 and E = exp(K) are given by

C =

[
e c

c2

2!
· · · cp−1

(p− 1)!

cp

p!

]
, K =

[
0 e1 e2 · · · e(p−1) ep

]
.

Other important property which we would like a GLM to have is that its stability region

should be identical to the stability region of the corresponding Runge–Kutta methods.

Sufficient conditions for a general linear method to have Runge–Kutta stability are

BA ≡ XB,
BD ≡ XV − V X,

where ≡ means two matrices are equivalent except for their first rows, X is a doubly

companion matrix and the spectrum of V is {0, 1} (see [69, Chapter 3]). General linear

methods satisfying the above conditions are known to have a property called Inherent

Runge–Kutta Stability (IRKS). Recently practical general linear methods with IRKS have

been constructed in [9, 10, 69].

1.3.3 Exponential general linear methods

Let us now consider how general linear methods can also be extended to the exponential

setting. Motivated from (1.2.3) and (1.3.2), for the solution of the semilinear problem

42

(1.1.1), we consider the following unified format of exponential integrators

Ui =
s∑

j=1

m∑

l=1

α
[l]
ij φ

[l](ci)(hL) hN(Uj) +
r∑

j=1

m∑

l=1

δ
[l]
ij φ

[l](ci)(hL) u
[n−1]
j ,

u
[n]
i =

s∑

j=1

m∑

l=1

β
[l]
ij φ

[l](1)(hL) hN(Uj) +
r∑

j=1

m∑

l=1

ν
[l]
ij φ

[l](1)(hL) u
[n−1]
j .

(1.3.6)

Similarly, to the traditional GLMs, we can represent (1.3.6) in the following matrix form


 U

u[n]


 =


 A(φ) D(φ)

B(φ) V (φ)




 hN(U)

u[n−1]


 ,

where each of the coefficient matrices A(φ), B(φ), D(φ), V (φ) has entries which are linear

combinations of the φ[l] functions. Therefore, the matrix

M(φ) =


 A(φ) D(φ)

B(φ) V (φ)


 , (1.3.7)

has also entries which are linear combinations of the φ[l] functions. All exponential integra-

tors presented in this thesis are given exactly in the form (1.3.7). In addition the following

convention is used: The argument of φ[l] is always dropped when it is evaluated at the

corresponding abscissae value.

According to our knowledge, the first exponential integrators which fit in the format

(1.3.6), were constructed in [36, Article 5]. We discuss these methods in Subsection 2.4.2.

However, there are several interesting properties regarding the Generalized Integrating

Factor Runge–Kutta (GIF/RK) methods of Krogstad which we would like to point out

here. First of all they are exponential general linear methods which pass the quantities

un, hNn−1, hNn−2, . . . from step to step. Secondly they are examples of methods, where

other than the traditional IF and ETD φ[i] functions are used (see Table 2.4 and Table 2.5).

The improved accuracy of GIF/RK methods is due to their higher stage order (see [46]).

However, as it was pointed out in [36, Article 5], it seems that the accuracy comes at the

price of stability. Thus, extending the idea of general linear methods with IRKS property

to the exponential settings, might be a reasonable way to overcome this difficulty. Finally,

we mark that the generalized integrating factor Runge–Kutta methods are also Lie group

methods on the manifold. We consider the framework of Lie group methods and how it is

related with the construction of exponential integrators in the next chapter.

43

Chapter 2

Exponential Integrators and

Lie Group Methods

In this chapter we discuss special types of exponential integrators, which arise from the

framework of Lie group methods on manifolds. The main idea behind Lie group methods

and Geometric Integration in general, is to construct numerical integrators which preserve

certain qualitatively properties of the exact flow of a differential equation. A classical

example is a differential equation evolving on a sphere. In many cases it is important to

construct a numerical integrator which produces an approximation to the exact solution

which also belongs to the sphere.

When the differential equation evolves on a linear space, it is easy to construct an

integrator which stays on the linear space. The challenge now is how to define the basic

motions on the manifold in such a way that they provide a good approximation to the flow

of the original vector field. In this case the theory of the Lie group integrators provides us,

through the freedom in choice of a group action, a suitable framework to work with. All the

exponential integrators presented in this chapter are motivated from the above observation.

The chapter is organized as follows: we survey the basic theory involved in Section 2.1.

In Section 2.2 we present different Lie group integrators and comment on their numerical

implementation. Next, in Section 2.3 we discuss the importance of the Lie group action, and

present different ways how to define it (see also [Article 1, p.91]). Finally in Section 2.4,

based on the main Lie group methods given in Section 2.2, we derive the corresponding

exponential integrators for solving the semilinear problem (1.1.1).

2.1 Background theory

Most of the theory presented in this section follows the expositions in [32, 36, 50] and

gives the necessary basic background needed to construct Lie group methods which evolve

on a manifold. We refer to the monographs [1, 44] for further information concerning

manifolds, Lie groups and Lie algebras and to the monograph [23] for numerical treatment

44

and introduction to geometric integration in general.

We start with introducing the concept of a manifold acted upon by Lie group, which

provides us with abstract definition of the domain where the differential equation evolves.

Let

u′ = f(u(t)), u(t0) = u0, (2.1.1)

be a differential equation defined on d-dimensional topological space M which in a small

neighborhood of any point “looks like” Rd but globally, typically has a different geometry.

We will call such a spaceM a d-dimensional manifold. Any d-dimensional manifold can be

represented as a d-dimensional surface embedded in RN for some N ≥ d. In other words

M is defined as

M = {x ∈ RN : g(x) = 0},
where g : RN → RN−d is differentiable and g′(x) has a full rank for x ∈ M. We note that

this is a very concrete definition of a manifold, but is however sufficient for our purposes.

In fact all the exponential integrators presented in Section 2.4 simply evolve on a manifold

M≡ Rd. A more general definition of a manifold, based on coordinate charts, can also be

given (see [1, 36, 50]).

We now give a definition of a Lie group, its tangent space, and discuss different maps

related with them.

Definition 2.1.1. A Lie group is a differential manifold G equipped with a group product

? : G × G → G satisfying

g ? (k ? l) = (g ? k) ? l ∀ g, k, l ∈ G, (associativity)

∃ e ∈ G such that e ? g = g ? e = g, (identity element)

∀ g ∈ G ∃ g−1 ∈ G such that g−1g = e, (inverse)

the maps(g, k)→ g ? k and g → g−1 (smoothness)

are smooth functions.

Definition 2.1.2. A Lie algebra is a vector space g equipped with a bilinear bracket

[·, ·] : g× g→ g satisfying

[Θ1,Θ2] = −[Θ2,Θ1], (skew-symmetry)

[Θ1, [Θ2,Θ3]] + [Θ2, [Θ3,Θ1]] + [Θ3, [Θ1,Θ2]] = 0, (Jacobi identity)

for all Θ1,Θ2,Θ3 ∈ g.

If we fix the first argument in the bracket [·, ·] to be the point Θ̂ ∈ g then the map

ad
Θ̂
: g→ g given by ad

Θ̂
(Θ) = [Θ̂,Θ] is linear. Powers of ad

Θ̂
are defined recursively as

ad0
Θ̂
(Θ) = Θ,

ad1
Θ̂
(Θ) = [Θ̂,Θ],

adk
Θ̂
(Θ) = ad

Θ̂
(adk−1

Θ̂
Θ) = [Θ̂, [. . . , [Θ̂,Θ]]], for k > 1.

45

Let us denote the set of all right invariant vector fields on G by X(G). It can be shown that

X(G) has a structure of a Lie algebra with a bracket given by the (minus) Jacobi bracket

(see [36, 50]). Let TeG be the tangent space of G at the identity element e. We define the

product ¯ : TeG × G → TG by

Θ¯ g =
d

dt

∣∣∣∣
t=0

γ(t) ? g,

where γ(t) is a smooth curve in G such that γ(0) = e and γ ′(0) = Θ. If we fix the first

argument Θ ∈ TeG in the product Θ ¯ g, we get a vector field fΘ(·) = Θ ¯ (·) on G. In

this way the map Θ → fΘ is a homomorphism between TeG and X(G). This automatically

implies that the set TeG also has the structure of a Lie algebra. From now on we use the

symbol g to denote the Lie algebra TeG and say that g is a Lie algebra of a Lie group G.
The bracket in this case is defined by

[Θ1,Θ2] =
∂2

∂s∂t

∣∣∣∣
t=s=0

γ1(s) ? γ2(t) ? γ1(s)
−1,

where γ1(s) and γ2(t) are smooth curves in G such that γ1(0) = γ2(0) = e and γ′1(0) =

Θ1, γ
′
2(0) = Θ2. In the case of a matrix Lie algebra g, the bracket [Θ1,Θ2] is simply the

matrix commutator Θ1Θ2 −Θ2Θ1.

Now we define the exponential map which gives an important connection between a

Lie group and its Lie algebra. It is a local diffeomorphism (for finite dimensions) from a

neighborhood of 0 ∈ g onto a neighborhood of e ∈ G.

Definition 2.1.3. Let G be a Lie group and g its Lie algebra. The exponential map

Exp : g→ G is defined as Exp(Θ) = γ(1), where γ(t) ∈ G satisfies the differential equation

γ(t)′ = fΘ(γ(t)), γ(0) = e.

In the case of a matrix Lie algebra g, the exponential map is simply the matrix expo-

nential

eΘ =
∞∑

k=0

1

k!
Θk.

Definition 2.1.4. The differential of the exponential map is defined as the right trivialized

tangent of the exponential map, that is, a map dExp : g×g→ g defined through the relation

dExp(Θ̂,Θ) Exp(Θ̂) =
d

dt

∣∣∣∣
t=0

Exp(Θ̂ + tΘ).

If we fix the first argument Θ̂ ∈ g then the map dExp
Θ̂
: g → g given by dExp

Θ̂
(Θ) =

dExp(Θ̂,Θ) is linear and satisfies the following theorem.

46

Theorem 2.1.1. [50, Theorem 3] The differential of the exponential map and its inverse

are given by the following formulas

dExp
Θ̂

=
ez − 1

z

∣∣∣∣
z=ad

Θ̂

=
∞∑

k=0

1

(k + 1)!
adk

Θ̂
,

dExp−1
Θ̂

=
z

ez − 1

∣∣∣∣
z=ad

Θ̂

=
∞∑

k=0

Bk

k!
adk

Θ̂
,

where the coefficients Bk are the Bernoulli numbers {1,− 1
2 ,

1
6 , 0,− 1

30 , 0,
1
42 , . . .}.

A crucial point in the theory of Lie group integrator is to define the basic motions on

the manifold M. Typically they are given by the Lie group G and its action · on M. All

numerical schemes presented in Section 2.2, advance by following flows defined with respect

to the basic motions onM in such a way that, it is guaranteed that we stay on the manifold.

Definition 2.1.5. An action of a Lie group G on a manifoldM is a smooth map

· : G ×M→M satisfying

e · p = p ∀ p ∈M,

g · (k · p) = (g ? k) · p ∀ g, k ∈ G, p ∈M.

We say that the group action is transitive if for any two points p1, p2 ∈M, there exists

at least one element g ∈ G such that g · p1 = p2. This allows us to move from any point

p1 ∈ M to any other point p2 ∈ M, by letting the element g ∈ G, act on the first point

p1. A manifold M which is acted upon by a Lie group via a transitive action is called a

homogeneous space.

Via the exponential map, every group action naturally defines an algebra action

∗ : g×M→M, by the identity

Θ ∗ p = Exp(Θ) · p. (2.1.2)

Note that the algebra action is not uniquely determined by the group action. Every diffeo-

morphism

Ψ : g→ G, (2.1.3)

such that Ψ(0) = e and Ψ′(0) = I, where I is the identity of the algebra, defines an algebra

action by the formula Θ ∗ p = Ψ(Θ) · p.
Let X(M) denote the set of all vector fields onM. There is a one to one correspondence

between the elements in the Lie algebra g and the space X(M). This can be shown in the

same way as the correspondence between g and X(G). If we define the product ~ : g×M→
TM by

Θ ~ p =
d

dt

∣∣∣∣
t=0

γ(t) · p,

47

where γ(t) is a smooth curve in G such that γ(0) = e and γ ′(0) = Θ, then for a fix Θ ∈ g

the product Θ~ p gives a vector field FΘ(·) = Θ~ (·) onM. In this way, the map Θ→ FΘ

is an algebra homomorphism between g and X(M). The vector field FΘ is called a frozen

vector field. The following relation between the frozen vector field and the exponential map

holds.

Theorem 2.1.2. For every Θ ∈ g and every p ∈M

FΘ(p) = Θ ~ p =
d

dt

∣∣∣∣
t=0

Exp(tΘ) · p.

Proof. By definition

Θ ~ p =
d

dt

∣∣∣∣
t=0

γ(t) · p = d

dt

∣∣∣∣
t=0

(e+ tΘ+O(t2)) · p

=
d

dt

∣∣∣∣
t=0

tΘ ∗ p = d

dt

∣∣∣∣
t=0

Exp(tΘ) · p.

The last Theorem is still valid if we replace the exponential map with the diffeomorphism

Ψ : g→ G defined above. This shows that the algebra homomorphism between g and X(M)

is independent of the choice of Ψ. We will use this fact later in the construction of our

exponential integrators.

Finally, we give the following fundamental result, which is a starting point for every Lie

group integrator.

Theorem 2.1.3. [36] Every differential equation evolving on a homogeneous spaceM can

always be written as

u′(t) = F (u) ~ u, u(t0) = u0, (2.1.4)

where F :M→ g.

Before we continue with the presentation of the main Lie group integrators, we summa-

rize in Table 2.1 all the actions and homeomorphisms which has been defined so far. We

note that in the literature authors often use the symbol “·” to denote each of the operations

given in Table 2.1 and let its meaning to be determinate by the arguments. However, we

find this approach a bit confusing, so we have chosen different notations for each operation.

2.2 Lie group integrators

All algorithms presented in this section are stated in terms of actions and reduce to tradi-

tional Runge–Kutta methods when the manifoldM is the vector space Rd. The numerical

48

notation diagram name

? G × G → G group operation
· G ×M→M group action
∗ g×M→M algebra action
¯ g× G → TG homeomorphism between g and X(G)
~ g×M→ TM homeomorphism between g and X(M)

Table 2.1: Actions and homeomorphisms on the manifold.

schemes advance from the point un to the point un+1 with a time step, of size h. The same

results can also be formulated in terms of rigid frames (see [12, 15, 55]).

The first Lie group integrators we consider are the methods of Crouch and Grossman

[15]. The main idea behind these methods is to compose the flows of frozen vector fields

at every stage. An s- stage Crouch and Grossman method is formulated by the following

algorithm

Algotithm 2.2.1. (Crouch–Grossman method)

for i = 1, . . . , s do

Ui = Exp(hαisFs) · · ·Exp(hαi1F1) · un
Fi = F (Ui)

end

un+1 = Exp(hβsFs) · · ·Exp(hβ1F1) · un
The function F gives the generic presentation (2.1.4) of the differential equation. The

coefficients αij , βj are parameters of the method. If αij = 0 for i ≤ j the method is explicit

and is implicit otherwise. The order of the method is defined like for the traditional Runge–

Kutta methods. The parameters αij , βj are chosen to satisfy certain order conditions which,

because of the non-commutativity of the basic flows, are different from the order conditions

for Runge–Kutta methods. In general one can not hope that an order p Runge–Kutta

method will lead to an order p Crouch–Grossman method. A complete order theory for this

methods involving ordered rooted trees is developed in [55]. There the authors propose the

following explicit method of order three

0

3
4

3
4

17
24

119
216

17
108

13
51 −2

3
24
17

. (2.2.1)

By careful investigation of the order conditions, the authors in [55] found that it is

not possible to obtain explicit methods of order four with only four stages. Further, they

49

derive a family of fourth order methods with five stages. Higher order methods of Crouch–

Grossman type are derived in [33]. An exponential integrator based on the scheme (2.2.1),

for the semilinear problem (1.1.1), is given in Section 2.4.

We next consider a generalization of the methods first proposed in [48] and later named

as Runge–Kutta Munthe-Kaas (RKMK) methods. In their original formulation these meth-

ods achieve only second order on a general Lie group. To construct higher order RKMK

methods, a correction function was introduced in [49]. Here we follow the formulation of

the methods on homogeneous manifolds given in [50].

The main idea behind these methods is to transform the original equation evolving on

a manifold into a corresponding equation on a Lie algebra. Since the Lie algebra is a linear

space and every Runge–Kutta method in general preserves linear invariants, one can apply

any traditional Runge–Kutta method to the transformed equation. Thus, it is guaranteed

that the numerical approximation will again be in the Lie algebra. To obtain the desired

approximation on the manifold one just needs to apply the inverse transformation. An s-

stage RKMK method is formulated by the following algorithm

Algotithm 2.2.2. (Runge–Kutta Munthe-Kaas method)

for i = 1, . . . , s do

Θi = h
∑s

j=1 αijKj

Fi = F (Ψ(Θi) · un)
Ki = dΨ−1(Fi)

end

un+1 = Ψ(h
∑s

i=1 βiKi) · un
Here F gives the generic presentation (2.1.4), Ψ is a diffeomorphism (2.1.3) and dΨ

is defined as in Definition 2.1.4. The coefficients αij , βj are the classical Runge–Kutta

coefficients. Note that each of the quantities Θi, Fi,Ki ∈ g for i = 1, . . . , s. The values

of the internal stages, which lie on the manifold, can be computed by letting the elements

Θi ∈ g, act on the point un ∈ M. In other words Ui = Θi ∗ un, for i = 1, . . . , s. A

natural choice for the diffeomorphism Ψ is the Exp map, but other choices are also possible.

For example choosing Ψ to be an approximation to the Exp map can lead to a significant

reduction in the overall computational cost of the algorithm. In Section 2.4 we present

different choices of Ψ and relate them with some of the exponential integrators given in [36,

Articles 4 and 5].

The main challenge in the implementation of RKMK methods comes form the necessity

of computing the dΨ−1 map. This in general can be a very costly task, especially in the

case when Ψ ≡ Exp map. Thus, the approach proposed in [50] is to replace dExp−1 with

its truncated approximation of order higher than the order of the method. This results in

introducing commutators into the format of the method.

The last methods under consideration are the Commutator Free (CF) Lie group methods

proposed in [12]. They are based on the idea of operating on the elements in the algebra

50

g, like for RKMK methods, and then composing the corresponding resulting flows of frozen

vector fields, in a Crouch–Grossman like manner. In this way it is possible to construct an

integrator which does not involve any commutators and still uses less Exp evaluations than

in the method of Crouch–Grossman. A general format of an s-stage commutator free Lie

group methods is given in the following algorithm

Algotithm 2.2.3. (Commutator-free Lie group method)

for i = 1, . . . , s do

Ui = Exp(h
∑s

k=1 α
k
iJFk) · · ·Exp(h

∑s
k=1 α

k
i1Fk) · un

Fi = F (Ui)

end

un+1 = Exp(h
∑s

k=1 β
k
JFk) · · ·Exp(h

∑s
k=1 β

k
1Fk) · un

Here again F gives the generic presentation (2.1.4) and the coefficients αkij , β
k
j are param-

eters of the method. They are determined based on the order theory which can be adapted

from the order theory presented in [55]. In general the method is implicit unless αkij = 0 for

i ≤ k then it is explicit. The parameter J counts the number of Exp evaluations for each

stage. It is preferable to keep it as low as possible in order to obtain competitive methods.

Another way of reducing the computational cost is by reusing the flow calculation. The

following explicit fourth order method, based on the classical fourth order Runge–Kutta

method (1.3.5), which effectively uses only 5 Exp per step is given in [12]

0

1
2

1
2

1
2 0 1

2

1
2

1
2

1
2

-12

0

0

0

1





1
4

1
12

1
6

1
6

1
6

1
6

- 1
12

1
4





. (2.2.2)

We use the symbol } to denote all the substages included in a stage with J > 1.

We close this section with the observation that in order to implement Algorithm 2.2.1

and Algorithm 2.2.3 the only two things which we need to know are the generic presentation

(2.1.4) of the differential equation and the algebra action (2.1.2) on the manifold M. To

implement Algorithm 2.2.2, in addition, we need to know either the dΨ−1 map or how

the commutators between two elements in g are defined. This observation allows us to

construct Lie group integrators without even knowing what is the exact structure of the

Lie group G and how it acts onM. This provides us the freedom to define the Lie algebra

g independently from the Lie group G. For example, like a Lie algebra of vector fields on

51

M (see [51]). This approach is very useful for applications concerning PDEs, where the

Lie algebra is infinite dimensional and establishing the structure of a Lie group G = Exp(g)

is technically more demanding then in the finite dimensional case (see [32]). A way of

circumventing this problem is to semidiscretize the PDE in space and thus obtain a finite-

dimensional system. In the next section we utilize this approach and discuss the choice of

action as well as the structure of G, in the case whenM≡ Rd.

2.3 The choice of action

When the differential equation evolves on Rd constructing an integrator which stays in Rd

is a trivial task and does not require a special theory. However, using the framework of Lie

group methods, one can construct useful methods specially designed to solve the equation

(2.1.1). In this section we pay particular attention to the choice of group action · and how

it is related to the actual performance of the method.

We first consider the case when the Lie group G ≡ Rd and its action uponM is given

by the vector addition. In other words

g · p = g + p, for all g ∈ G and p ∈M. (2.3.1)

From Definition 2.1.1, it follows that the group operation ? is also given by vector addition

and that the identity element e is the zero vector in Rd. The Lie algebra g = TeG can be

identified with Rd and the algebra homeomorphism between g and X(G) defined by

Θ¯ g =
d

dt

∣∣∣∣
t=0

γ(t) ? g =
d

dt

∣∣∣∣
t=0

g + tΘ+O(t2) = Θ,

is simply the identity map. This implies that the exponential map and the homeomorphism

between g and X(M) are also given by the identity map. The generic presentation (2.1.4)

of the differential equation is

u′ = F (u) ~ u = F (u).

If b ∈ Rd is a fixed element in g then its corresponding frozen vector field Fb(p) = b for all

points p on the manifold. The Lie group integrators presented in Section 2.2 use the flow

of a frozen vector field, as the basic motions on M. This means that the solution of the

differential equation

u′ = b, u(t0) = u0,

which is given by translation u(t0 + h) = u0 + hb, defines an algebra action hb ∗ u0. Since

translations commute, we obtain the trivial bracket [a, b] = 0, for all a, b ∈ g. Note that

via the relation (2.1.2) the above algebra action reproduces the group action (2.3.1). This

choice simply reduces all the methods presented in Section 2.2 to the traditional Runge–

Kutta methods.

Like it was mentioned in the previous section, in order to construct Lie group integrators

it is enough to know the algebra action and the generic presentation of the differential

52

equation. In the subsequent, discussions which concern the structure of the Lie group and

its action onM are kept with the scope of completeness.

A more interesting choice for the algebra action, rather than translations, is to move

from the point u0 to another point by following the flow of a linear vector field

u′ = Au, u(t0) = u0,

where A ∈ Rd×d is a constant matrix. In this case the Lie group G is the general linear

group GL(d) = {G ∈ Rd×d : detG 6= 0}, its Lie algebra gl(d) is the set of all d× d matrices

and the bracket is given by the matrix commutator [A,B] = AB −BA. The only problem

here is that the action is not transitive. This is due to the fact that there is no way to

advance from the point u0 = 0. A way to avoid this inconvenience is to consider the action

arising from the solution of the following differential equation

u′ = Au+ b, u(t0) = u0, (2.3.2)

where A ∈ Rd×d and b ∈ Rd are constants. This idea was first introduced in [50] and

then further investigated for the heat equation in [12, 39, 63], for stiff PDEs in [36, Arti-

cles 4 and 5] and for the Schrödinger equation in [3]. The action arising from (2.3.2) is often

referred to as the affine action. The Lie group G in this case can be identified with the set

of all pairs (G, g) ∈ GL(d)×Rd which we denote by the semidirect product GL(d)o Rd (see

[67]). Its action on the manifold is defined by

(G, g) · p = Gp+ g for all (G, g) ∈ G and p ∈M.

From Definition 2.1.1, it follows that the group operation ? is given by

(G1, g1) ? (G2, g2) = (G1G2, G1g2 + g1)

and that the identity element e = (I, o), where I is the d × d identity matrix and o is the

zero vector in Rd. The Lie algebra g = TeG is the set of all pairs (A, b) ∈ gl(d) o Rd and

the bracket is defined as

[
(A1, b1), (A2, b2)

]
= (A1A2 −A2A1, A1b2 −A2b1). (2.3.3)

The algebra homeomorphism between g and X(G) is given by (A, b)→ f(A,b)
(
(·, ·)

)
, where

f(A,b)
(
(G, g)

)
= (A, b)¯ (G, g) =

d

dt

∣∣∣∣
t=0

γ(t) ? (G, g) = (AG,Ag + b).

If γ(t) is a smooth curve in G such that γ(0) = e and γ ′(0) = (A, b), then the solution of

the differential equation

γ′(t) = f(A,b)(γ(t)), γ(0) = e,

is given by γ(t) = (etA, φ[1](tA)tb), where the function φ[1] is the first ETD function from

(1.1.6). This implies that the exponential map is defined as

Exp(A, b) = (eA, φ[1](A)b). (2.3.4)

53

Therefore, the algebra action is

h(A, b) ∗ u0 = Exp
(
h(A, b)

)
· u0 = ehAu0 + φ[1](hA)hb, (2.3.5)

which is exactly the solution of the differential equation (2.3.2) at the time t0 + h. Finally,

the frozen vector field is given by

F(A,b)(u) = (A, b) ~ u = Au+ b.

An important observation concerning the affine action is that the generic presentation (2.1.4)

of a differential equation (2.1.1) is not uniquely defined. For example, if we choose F (u) =

(0, f(u)) then we will recover exactly the classical settings considered in the beginning of

this section. Another possible choice is F (u) = (J, f(u) − Ju), where J is the Jacobian of

f at the point u. In this case the RKMK method based on forward Euler is given by

un+1 = un + J−1(ehJ − I)f(u).

It is a second order method which is often referred to as the exponential fitted Euler method

[28].

When the vector field of the differential equation is given in nonautonomous form, like

in (1.1.1), we need to transform it to autonomous form by appending t to the dependent

variables. This increases the dimension of the manifold and allow us to include the time

variable to the arguments of the function F . Such an approach is very useful, especially if

we want to construct time dependent frozen vector fields (see [Article 1, p.91]). A natural

choice for F , which reflects the semilinear structure of (1.1.1), is

F (u, t) = (L,N(u, t)). (2.3.6)

Methods based on this generic presentation for the equation (1.1.1) are given in the next

section.

More complicated differential equations, which hopefully approximate the original vec-

tor field in a better way, can also be used to define the basic motions on M. The main

requirement is that we should be able to solve them exactly and thus define the algebra ac-

tion like the flow of some differential equation. A way how to construct Lie group integrators

based on the action arising from the solution of the following differential equation

u′ = Au+ b+ ct, u(t0) = u0, (2.3.7)

where A ∈ Rd×d, b ∈ Rd and c ∈ Rd are constants, is proposed in [Article 1, p.91]. There

the corresponding exponential integrator for solving the semilinear problem (1.1.1), based

on the fourth order commutator free Lie group method (2.2.2), is also derived. The main

idea is to rewrite the above equations in autonomous form and then apply the affine action

to the transformed equation. This approach can be further generalized by including second

and higher order terms of t in the frozen vector field. However, one should keep in mind

54

that there is a certain balance between the cost of finding the exponential of (2.3.7) and

the benefit provided form choosing a better approximation. We remark that in any case

the corresponding algebra homeomorphism ~ will always be the same as in the case of the

affine action. This means that for a given problem by choosing the right algebra action

(for example, the tangent to the real flow) one can improve the actual performance of the

method and even increase its order like in the case of the exponentially fitted Euler method.

More discussions about the role of the algebra action are also included in the next section.

2.4 Lie group integrators for semilinear problems

Here we present different exponential integrators for solving the semilinear problem (1.1.1),

which are based on the methods considered in Section 2.2 and used the affine algebra action

introduced in Section 2.3. Most of the methods included in this section are derived in [36,

Articles 4 and 5]. We give their equivalent formulations, which are in accordance with the

presentation followed in this thesis, and discuss the connection between the Generalized

Integrating Factor Runge–Kutta (GIF/RK) methods introduced in [36, Articles 5] and the

RKMK methods. In addition, we propose a new approach regarding the derivation of

GIF/RK methods which is applicable to problems where the nonlinear part of (1.1.1) is

better approximated by trigonometric polynomials.

Before we consider the first numerical schemes, we make the following assumptions. Let

h be a constant step size and u1, u2, . . . , un are approximations of the solution of (1.1.1) at

the moments tj = t0 + jh for j = 1, . . . , n. We are looking for an approximation to the

solution at time tn+1 = t0 + (n+ 1)h. In other words we consider the following problem

u′ = Lu+N(u, tn + t) = f(u, tn + t), u(tn) = un. (2.4.1)

Note that, in general, we allow our numerical schemes to have incoming data consisting not

only from the quantity un but also from some of the quantities available from the previous

steps. Thus, the resulting methods are exponential general linear methods introduced in

Section 1.3.

All methods presented in this section are based on the pure Runge–Kutta idea and use

only un as the incoming data at the beginning of step number n+ 1. The only exceptions

are the GIF/RK methods, which are exponential general linear methods. Other examples

of Lie group methods which are also exponential general linear methods are the methods

based on the action presented in [Article 1, p.91]. It is rather surprising that with the

framework of Lie group integrators, which we saw in Section 2.2 are entirely based on the

Runge–Kutta idea, one can get more general methods like general linear methods. This

can be explained by the crucial role of the algebra action in the overall performance of the

method.

In the subsequent work we have adopted the notations from Section 1.3. In addition,

we introduce the following convention: Unless it is not specified the arguments in the row

55

number i of the functions φ[j] (from Lemma 1.1.1) and φ̂[j] (to be defined below) are cihL,

for i = 1, 2, . . . , s and j = 1, 2,

2.4.1 Crouch–Grossman based methods

Keeping in mind (2.3.5) and (2.3.6) the derivation of an exponential integrator based on Al-

gorithm 2.2.1 is a straight forward process. Our first example is a method which corresponds

to the scheme (2.2.1).




0 0 0 I
3
4φ

[1] 0 0 e
3
4
hL

119
216e

17
108

hLφ[1](119216hL)
17
108φ

[1](17
108hL) 0 e

17
24
hL

13
51e

38
51
hLφ[1](1351hL) −2

3e
24
17
hLφ[1](−2

3hL)
24
17φ

[1](2417hL) ehL




Table 2.2: Third order Crouch–Grossman method.

2.4.2 RKMK based methods

Every method based on Algorithm 2.2.2 requires either the exact dΨ−1 map or its approxi-

mation which involves commutators between two elements in g. In the case of the semilinear

problem (2.4.1) the structure of the Lie algebra g is simpler than the general structure pre-

sented in Section 2.3. In fact, since the linear part L stays constant, the Lie algebra g can

be identified with all pairs (λL, b) , where λ ∈ R and b ∈ Rd. This allows us to compute the

dΨ−1 map exactly and relatively cheaply. The bracket (2.3.3) in this case is given by

[
(λ̂L, b̂), (λL, b)

]
= (O, L(λ̂b− λb̂)),

where O denotes the zero matrix in Rd×d.

RKMK methods with exact Exp map

Let us first consider the case when Ψ ≡ Exp map. From (2.3.4), it follows that the expo-

nential map in this case is

Exp(λL, b) = (eλL, φ[1](λL)b).

It is easy to check that

adk
(λ̂L,̂b)

(λL, b) = (O, λ̂k−1Lk(λ̂b− λb̂)), for k ≥ 1

56

and thus the expression for dExp−1 has the form

dExp−1
(λ̂L,̂b)

(λL, b) =
∞∑

k=0

Bk

k!
adk

(λ̂L,̂b)
(λL, b)

=

(
λL, φ[1]

−1

(λ̂L)
(
b− λ

λ̂
b̂
)
+
λ

λ̂
b̂

)
.

(2.4.2)

When λ̂ = 0 the dExp−1 is equal to the identity map in g.

We know that every RKMK method is equivalent to a traditional Runge–Kutta method

applied to the corresponding differential equation in the Lie algebra g, followed by the

inverse transformation of the approximate solution back to the manifold (see Section 2.2).

In order to find the differential equation in g we choose Θ(t) = (tL, z(t)) to be a curve in g

such that Θ(0) = (O, o) and the solution of (2.4.1) is given by

u(tn + t) = Exp(Θ(t)) · un = etLun + tφ[1](tL)z(t). (2.4.3)

By differentiating (2.4.3) and taking into account (2.4.2) and the generic presentation

(2.3.6), we obtain the following corresponding differential equation for z(t)

z′(t) = φ[1]
−1

(tL)
(
N(Exp(tL, z) · un, tn + t)− z/t

)
+ z/t, z(0) = o. (2.4.4)

Thus we see that a single step of a RKMK method for the equation (2.4.1) is equivalent

to one step of a traditional Runge–Kutta (RK) method for the equation (2.4.4), followed

by computing u(tn + t) from the approximation z(t) via (2.4.3). In Table 2.3, we give the

RKMK method based on the classical fourth order Runge–Kutta method (1.3.5) with exact

Exp map.

The above approach reminds us to the technique used in the construction of the Inte-

grating Factor Runge–Kutta (IF RK) methods presented in Section 1.2. As a matter of fact

there exists a connection between the IF RK and the RKMK methods in a sense that every

IF RK method is simply a RKMK method with a special choice for the diffeomorphism Ψ.

This fact was first observed in [36, Article 4]. Based on a similar idea a class of methods,

which can be reasonably named as Generalized Integrating Factor Runge–Kutta (GIF/RK)

methods, was derived in [36, Article 5]. Next we discuss this class of methods and show

that they also can be brought into the framework of RKMK methods.

RKMK methods with approximations to the Exp map

Let us chose the diffeomorphism Ψ to be the following approximation to the Exp map

Ψ(λL, b) = (eλL, eλLb). (2.4.5)

In this case, by direct computations, it is possible to find the following closed form for the

dΨ−1 map (see [36, Article 4])

dΨ−1
(λ̂L,̂b)

(λL, b) = (λL, e−λ̂Lb).

57




0 0 0 0 I
1
2φ

[1] 0 0 0 e
1
2
hL

1
2φ

[1] − 1
2I

1
2I 0 0 e

1
2
hL

φ̂[3]
2

(hL2) −φ̂[2]φ̂[3](hL2) φ̂[2] 0 ehL

b1(hL) b2(hL) b3(hL)
1
6I ehL




,

where

φ̂[2](z) = φ[1](z)φ[1]
−1
(z
2

)
=
e

z
2 + I

2
,

φ̂[3](z) = φ[1]
−1

(z)− I =
ez − z − I
I − ez ,

b1(hL) =
1

6
φ[1] − 1

3
φ[1]φ̂[3]

(hL
2

)
− 1

6
φ[1]

(
φ̂[3] − 2I

)
φ̂[3]

2
(hL

2

)
,

b2(hL) =
1

3
φ̂[2] +

1

6
φ̂[2]

(
φ̂[3] − 2I

)
φ̂[3]
(hL

2

)
,

b3(hL) =
1

3
φ̂[2] − 1

6
φ̂[2]φ̂[3].

Table 2.3: Fourth order RKMK method with exact Exp.

Thus, again, if Θ(t) = (tL, z(t)) is a curve in g such that Θ(0) = (O, o) and

u(tn + t) = Ψ(Θ(t)) · un = etL(un + z(t)), (2.4.6)

then the corresponding differential equation for z(t) is

z′(t) = e−tLN
(
Ψ(tL, z) · un, tn + t

)
, z(0) = o.

If we put v(t) = un + z(t) then (2.4.6) is simply the Lawson transformation (see Subsec-

tion 1.1.1) and the corresponding differential equation for v(t) has the familiar form

v′(t) = e−tLN(etLv, tn + t), v(0) = un.

In this way we see that IF RK methods are simply RKMK methods with Ψ given by (2.4.5).

General formulation of an IF RK method is given in Table 1.3.

Let us now define the diffeomorphism Ψ to be

Ψ(λL, b) = (eλL, eλL(b− λNn) + λφ[1](λL)Nn),

58

where Nn = N(un, tn). Note that at the beginning of step number n + 1 the value un is

already known and therefore we can easily compute Nn. In this case

dΨ−1
(λ̂L,̂b)

(λL, b) = (λL, e−λ̂L(b− λNn) + λNn),

and by setting

u(tn + t) = Ψ(Θ(t)) · un = etL(un + z(t)− tNn) + tφ[1](tL)Nn, (2.4.7)

we obtain the following differential equation for z(t)

z′(t) = e−tL
(
N(Ψ(tL, z) · un, tn + t)−Nn

)
+Nn, z(0) = o. (2.4.8)

If we substitute in this case v(t) = un + z(t)− tNn then (2.4.7) has the form

u(tn + t) = etLv(t) + tφ[1](tL)Nn, (2.4.9)

and the corresponding equation for v(t) is

v′(t) = e−tL
(
N(u(tn + t), tn + t)−Nn

)
, v(0) = un. (2.4.10)

Thus, applying any traditional Runge–Kutta method to the equation (2.4.8) or (2.4.10) and

then transforming back the result into the manifold by (2.4.7) or (2.4.9) respectively, is a

RKMK method which we denote by GIF1/RK. This in fact is the first of the generalized

integrating factor Runge–Kutta methods proposed in [36, Article 5]. In Table 2.4, we give

the general formulation of a fourth order GIF1/RK method which corresponds to a RK

method with coefficients A = (αij), b = (βi), c = (ci).




0 0 0 0 I

c2φ
[1] 0 0 0 ec2hL

c3φ
[1] − α32e(c3−c2)hL α32e

(c3−c2)hL 0 0 ec3hL

c4φ
[1] − α42e(c4−c2)hL − α43e(c4−c3)hL α42e

(c4−c2)hL α43e
(c4−c3)hL 0 ec4hL

b1(hL) β2e
(1−c2)hL β3e

(1−c3)hL β4e
(1−c4)hL ehL




,

where b1(hL) = φ[1] − β2e(1−c2)hL − β3e(1−c3)hL − β4e(1−c4)hL.

Table 2.4: Fourth order GIF1/RK method

If we allow our self to choose an approximation to the Exp map which at the beginning

of step number n+ 1 uses not only the value Nn, but also and the value of Nn−1 from the

59

end of the previous step with size h, we can recover the second of the generalized integrating

factor Runge–Kutta methods from [36, Article 5]. Indeed if

Ψ(λL, b) =
(
eλL, eλL(b− λNn −

λ2

2

Nn −Nn−1

h
) + λφ[1](λL)Nn + λ2φ[2](λL)

Nn −Nn−1

h

)
,

then

dΨ−1
(λ̂L,̂b)

(λL, b) =
(
λL, e−λ̂L

(
b− λ

(
Nn − λ̂

Nn −Nn−1

h

))
+ λ
(
Nn − λ̂

Nn −Nn−1

h

))
.

Substituting

u(tn + t) = Ψ(Θ(t)) · un = etLv(t) + tφ[1](tL)Nn + t2φ[2](tL)
Nn −Nn−1

h
, (2.4.11)

with v(t) = un + z(t)− tNn − t2

2
Nn−Nn−1

h
, we obtain the following equation for v(t)

v′(t) = e−tL
(
N(u(tn + t), tn + t)−Nn − t

Nn −Nn−1

h

)
, v(0) = un.

Its numerical solution by a traditional RK method, followed by the transformation (2.4.11),

gives the second of the GIF/RK methods which we denote by GIF2/RK. In Table 2.5, we

give the general formulation of a fourth order GIF2/RK method, which again corresponds

to a RK method with coefficients A = (αij), b = (βi), c = (ci). Note that GIF2/RK

methods are example of exponential general linear methods (see Section 1.3).

This process can be further continued and in general one can show that the GIF/RK

methods constructed in [36, Article 5] are also RKMK methods. The prove of this fact is a

straight forward extension of the above process.

We note that for the semilinear problem (2.4.1) all RKMK methods, based on the

affine group action, are simply RK methods applied to the transformed equation after some

change of the variables and then the approximate solution is transformed back into the

original variables. In this way, it is quite likely for any method based on this idea to be a

RKMK method with appropriate choice for the diffeomorphism Ψ.

The above presented choices for the diffeomorphism Ψ might looks some how strange

and unfounded, but all becomes clear when we observe that the Lawson transformation (see

Subsection 1.1.1) together with the transformations (2.4.9) and (2.4.11) fits into the form

u(tn + t) = φ
t,F̂

(v(t)), (2.4.12)

where φ
t,F̂

is the flow of the differential equation

u′ = F̂ (u, t), u(0) = un. (2.4.13)

The vector field F̂ (u, t) approximates the original vector field f(u, tn + t) of (2.4.1) around

the point un and F̂ (un, 0) = f(un, tn) = Lun + N(un, tn). The corresponding differential

equation for the v variable is easily obtained by differentiating (2.4.12) and it has the form

v′(t) =

(
∂u

∂v

)−1 (
f(u, tn + t)− F̂ (u, t),

)
, v(0) = un. (2.4.14)

60




0 0 0 0 I 0
a21(hL) 0 0 0 ec2hL d22(hL)

a31(hL) α32e
(c3−c2)hL 0 0 ec3hL d32(hL)

a41(hL) α42e
(c4−c2)hL α43e

(c4−c3)hL 0 ec4hL d42(hL)

b1(hL) β2e
(1−c2)hL β3e

(1−c3)hL β4e
(1−c4)hL ehL v12(hL)

I 0 0 0 0 0




,

where

a21(hL) = c2φ
[1] + c22φ

[2],

a31(hL) = c3φ
[1] + c23φ

[2] − α32 (1 + c2) e
(c3−c2)hL,

a41(hL) = c4φ
[1] + c24φ

[2] − α42 (1 + c2) e
(c4−c2)hL − α43 (1 + c3) e

(c4−c3)hL,

b1(hL) = φ[1] + φ[2] − β2(1 + c2)e
(1−c2)hL − β3(1 + c3)e

(1−c3)hL − β4(1 + c4)e
(1−c4)hL,

d22(hL) = −c22φ[2],
d32(hL) = −c23φ[2] + c2α32e

(c3−c2)hL,

d42(hL) = −c24φ[2] + c2α42e
(c4−c2)hL + c3α43e

(c4−c3)hL,

v12(hL) = −φ[2] + c2β2e
(1−c2)hL + c3β3e

(1−c3)hL + c4β4e
(1−c4)hL.

Table 2.5: Fourth order GIF2/RK method

Now a single step with any RK method applied to the equation (2.4.14), followed by the

transformation (2.4.12), will lead to a new method for the corresponding differential equa-

tion (2.4.1). This, in fact, is the original formulation of the generalized integrating factor

Runge–Kutta methods given in [36, Article 5]. Note that we do not really need to know

what is the differential equation in the z variable. It was introduced in the above presen-

tation with the sole purpose of showing the exact correspondence between GIF/RK and

RKMK methods.

An important requirement for the vector field F̂ , which follows from the formulation of

the method, is that it should not only approximate the original vector field, but it should

also have a flow φ
t,F̂

which is easy to compute exactly. Similar methods, based on the idea

of approximating the flow φ
t,F̂

by some numerical scheme, are derived in [43].

For the semilinear problem (2.4.1), the choice of F̂ proposed in [36, Article 5] is F̂ (u, t) =

Lu+ Lk(N, t), where Lk(N, t) is the Lagrange interpolating polynomial of degree k − 1 for

the function N(u(tn + t), tn + t) which passes through the k points Nn, Nn−1, . . . , Nn−k+1.

Thus, the choice F̂ (u, t) = Lu reproduces the IF RK methods and by letting F̂ (u, t) be the

k-th Lagrange interpolating polynomial, we obtain the k-th generalized integrating factor

61

Runge–Kutta method GIFk/RK. The first three polynomials Lk(N, t) for a constant step

size h, which lead to GIF1/RK, GIF2/RK and GIF3/RK, are respectively

L1(N, t) = Nn,

L2(N, t) = Nn + t

(
Nn −Nn−1

h

)
,

L3(N, t) = Nn + t

(
1
2Nn−2 − 2Nn−1 +

3
2Nn

h

)
+
t2

2

(
Nn−2 − 2Nn−1 +Nn

h2

)
.

The exact flow φ
t,F̂

in this case is given by Lemma 1.1.1 and by observing that
∂φ

t,F̂
(v)

∂v
= etL

the equation (2.4.14) becomes

v′(t) = e−tL
(
N(u(tn + t), tn + t)− Lk(N, t)

)
v(0) = un.

We pay attention to the fact that in order to implement any of the GIFk/RK methods

for k > 1, at the beginning of each step, we need to know the value of N and therefore of

u not only at the grid point tn but also at the k− 1 previous grid points. Thus, in general,

this methods require a starting procedure (see Subsection 1.3.2), which produces the needed

values of u and N , before the integration process begins. Such a procedure can be given

for example, by the first few steps of any of the other methods presented in this section.

Methods which pass more than one quantity from step to step and still use internal stages

approximations are examples of general linear methods (see Section 1.3). Thus, GIFk/RK

methods for k > 1, are examples of exponential general linear methods.

Another possible choice for the vector field F̂ , which also satisfies the main requirements

for constructing a GIF/RK methods is F̂ (u, t) = Lu+Tk(N, t), where Tk(N, t) is a trigono-

metric polynomial approximating the function N(u(tn+ t), tn+ t). This choice of F̂ , might

be preferable when the nonlinear part N of the original differential equation is periodic and

square-integrable. Next we briefly discuss methods based on this idea.

GIF/RK methods for semilinear problems with periodic nonlinear part

We start by giving the exact formula for the flow of a vector field F̂ (u, t) = Lu+Tk(N, t),

where

Tk(N, t) = b+
k∑

α=1

(cα sin(αt) + dα cos(αt)) ; k ∈ N, cα, dα ∈ R.

Lemma 2.4.1. The solution of the differential equation

u′ = F̂ (u, t) = Lu+ b+
k∑

α=1

(cα sin(αt) + dα cos(αt)) , u(tn) = un

at the moment tn + h is given by

u(tn + h) = ehLun + hbφ[1](hL) +
k∑

α=1

(
cαφ

[α]
sin(tn, h, L) + dαφ

[α]
cos(tn, h, L)

)
, (2.4.15)

62

where

φ
[α]
sin(tn, h, L) =

ehL
(
L sin(αtn) + α cos(αtn)

)
− L sin(α(tn + h))− α cos(α(tn + h))I

α2I + L2
,

φ[α]cos(tn, h, L) =
ehL
(
L cos(αtn)− α sin(αtn)

)
− L cos(α(tn + h)) + α sin(α(tn + h))I

α2I + L2
.

Here the meaning of the operator in the denominator is simply given by applying its

inverse to the numerator.

Proof. From the variation of constants formulae, it follows that

u(tn + h) = ehLun + e(tn+h)L
∫ tn+h

tn

e−τL

(
b+

k∑

α=1

(cα sin(ατ) + dα cos(ατ))

)
dτ.

The solution of the first integral gives the second term in (2.4.15). It is the same as in the

case when the approximation is based on Lagrange interpolating polynomial. Let us now

consider the following integral

X =

∫ tn+h

tn

e−τL sin(ατ)dτ.

Integrating by parts twice leads to an equation for X. Multiplying its solution with e(tn+h)L

gives the relation

e(tn+h)L
∫ tn+h

tn

e−τL sin(ατ)dτ = φ
[α]
sin(tn, h, L).

In the same way it can be shown that

e(tn+h)L
∫ tn+h

tn

e−τL cos(ατ)dτ = φ[α]cos(tn, h, L).

From the above Lemma, it follows that the flow φ
t,F̂

of (2.4.13) is simply given by

(2.4.15) with tn = 0 in the expressions for φ
[α]
sin and φ

[α]
cos. The corresponding differential

equation for v(t) is

v′(t) = e−tL
(
N(u(tn + t), tn + t)− Tk(N, t)

)
, v(0) = un. (2.4.16)

Now the construction of the method follows the same pattern as before. For example if

N(u(tn + t), tn + t) ≈ Nn +
Nn−Nn−1

sinh sin t, then we substitute

u(tn + t) = etLv(t) + tφ[1](tL)Nn + φ
[1]
sin(0, t, L)

Nn −Nn−1

sinh
,

63

where φ
[α]
sin(0, t, L) =

etL−L sin t−cos I
α2I+L2

. Applying a traditional RK method to (2.4.16) and then

transforming the resut into the u variable leads to a new method which is again given by

Table 2.5, but with the following new coefficients

a21(hL) = c2φ
[1] + φ̂

[1]
sin,

a31(hL) = c3φ
[1] + φ̂

[1]
sin − α32 (1 + ĉ2) e

(c3−c2)hL,

a41(hL) = c4φ
[1] + φ̂

[1]
sin − α42 (1 + ĉ2) e

(c4−c2)hL − α43 (1 + ĉ3) e
(c4−c3)hL,

b1(hL) = φ[1] + φ̂
[1]
sin − β2(1 + ĉ2)e

(1−c2)hL − β3(1 + ĉ3)e
(1−c3)hL − β4(1 + ĉ4)e

(1−c4)hL,

d22(hL) = −φ̂[1]sin,

d32(hL) = −φ̂[1]sin + ĉ2α32e
(c3−c2)hL,

d42(hL) = −φ̂[1]sin + ĉ2α42e
(c4−c2)hL + ĉ3α43e

(c4−c3)hL,

v12(hL) = −φ̂[1]sin + ĉ2β2e
(1−c2)hL + ĉ3β3e

(1−c3)hL + ĉ4β4e
(1−c4)hL,

where ĉj =
sin(cjh)
sinh , for j = 1, . . . , 4, and φ̂

[1]
sin(cjhL) = 1

h sinhφ
[α]
sin(0, cjh, L). Note that in

this case we have used again the convention from the beginning of this section.

In Lemma 2.4.1 we give a more general formulation of the functions φ
[α]
sin and φ

[α]
cos than

the one needed in the format of the method. The reason why is to show how the initial

grid point tn enters into the functions φ
[α]
sin and φ

[α]
cos. Thus, it is clear that if one wants to

construct methods based on the idea proposed in [Article 1, p.91] with algebra action arising

from the solution of the differential equation u′ = F̂ (u, t), then the values of φ
[α]
sin and φ

[α]
cos

should be recompute at the beginning of each step. This increases the computational cost

of such methods and they are likely to be competitive with the other methods presented in

this section, only if a variable step size strategy is used (see also Chapter 3).

Before we consider exponential integrators based on commutator free Lie group meth-

ods, we point out that the idea of generalized integrating factor methods can be further

exploit. Instead of applying a Runge–Kutta method to the transformed equation (2.4.14)

we can alternatively use a linear multistep method. Thus, it is possible to greatly increase

the class of exponential linear multistep methods by constructing Generalized Integrating

Factor Linear Multistep (GIF/LM) methods (see [46]). It is worth to mentioning that inte-

grating factor Adams methods, ETD Adams-Bashforth and ETD Adams-Moulton methods,

considered in Section 1.1, are all special cases of this general class of methods.

2.4.3 Methods based on commutator free Lie group methods

Finally, we consider methods based on Algorithm 2.2.3. Using the formula (2.3.5) for the

algebra action and the definition (2.3.6) of the generic presentation of the differential equa-

tion (2.4.1), it is easy to observe that the corresponding exponential integrator is obtained

form the underlying commutator free Lie group method by simply multiplying each of the

64

coefficients of the method with the function φ[1]. For example, the method based on the

scheme (2.2.2) is given by




0 0 0 0 I

1
2φ

[1] 0 0 0 e
hL
2

0 1
2φ

[1] 0 0 e
hL
2

1
2φ

[1]

-12φ
[1]

0

0

0

φ[1]

0

0

e
hL
2

e
hL
2





1
4φ

[1]

- 1
12φ

[1]

1
6φ

[1]

1
6φ

[1]

1
6φ

[1]

1
6φ

[1]

- 1
12φ

[1]

1
4φ

[1]

e
hL
2

e
hL
2








, (2.4.17)

where again we use the symbol } to denote all the substages included in a stage with J > 1.

It is possible to rewrite (2.4.17) in an equivalent form which does not involve a splitting

of the internal stages. In Table 2.6, we give such a presentation which is rather unpractical,

since it is more expensive to implement. Note that in (2.4.17) the first substage of the

fourth internal stage is the same as the second internal stage. This form of the method

makes it particularly suitable for numerical implementation. We have included the other

formulation as well in order to show that this method also fits into the framework of the

“pure” RK methods.




0 0 0 0 I
1
2φ

[1] 0 0 0 e
1
2
hL

0 1
2φ

[1] 0 0 e
1
2
hL

1
2φ

[1]
(
hL
2

)(
e

hL
2 − I

)
0 φ[1]

(
hL
2

)
0 ehL

1
2φ

[1] − 1
3φ

[1]
(
hL
2

)
1
3φ

[1] 1
3φ

[1] −1
6φ

[1] + 1
3φ

[1]
(
hL
2

)
ehL




Table 2.6: Fourth order CF method.

In conclusion, we briefly discuss accuracy, stability and minimizing the number of the

function evaluations, for all of the above presented methods.

For stiff semilinear problems (1.1.1) the RKMK methods with exact Exp suffer from a

step size restriction. This is due to the small convergence radius of the dExp−1 map. There-

fore this class of methods are unpractical for such problems. The GIF/RK methods have

several orders in magnitude improvement in accuracy over the standard IF RK methods

(see the numerical experiments Section 3.4), but also suffer from stability restrictions, es-

pecially for problems with eigenvalues of the linearization of the nonlinear part lying on the

65

imaginary axis (see [36, Article 5]). The most expensive methods are the Crouch–Grossman

methods. Thus, combining the lower computational cost with the relatively good stability

properties and accuracy for the commutator free Lie group methods, suggests that for stiff

problems they are the best exponential integrators arising from the framework of Lie group

methods.

When the equation (1.1.1) comes from the discretization of a highly-oscillatory problems,

for example the nonlinear Schrödinger equation, then the RKMK methods does not suffer

so dramatically from numerical instability like in the previous case. The best Lie group

method in this case seems to be the IF RK methods [3].

66

Chapter 3

Implementation Issues and

Numerical Experiments

In this chapter we address some practical issues regarding the implementation of the expo-

nential integrators considered in the previous two chapters. We also present results from

numerical experiments, with some of the discussed methods, for several numerical examples.

The main computational challenge in the implementation of every exponential integrator

comes from the necessity of computing the exponential and the related φ[l] functions (1.2.2)

by some fast and numerically stable algorithm. A great variety of methods for computing

the matrix exponential operator are available in the literature. We refer to [47] and the

references within for a comprehensive review of these methods. In this chapter we focus on

different numerical techniques for computing the most commonly used ETD φ[i] functions

(1.1.6). We also discuss the main advantages and disadvantages of the considered methods

as well as some practical issues concerning variable step size implementations.

The chapter is organized as follows: We first consider, in Section 3.1, methods based on

Schur decomposition followed by higher order rational Chebyshev or Padé approximations to

the function φ[i]. Next, in Section 3.2 we present a technique, which allows us to approximate

the action of each φ[i] function on a given vector by means of a projection process onto a

small Krylov subspace. In Section 3.3 we discuss methods based on the Cauchy integral

formula and comment its implementation in some special cases. Finally, in Section 3.4 we

compare different exponential integrators in several numerical examples.

3.1 Decomposition methods

Let us recall the explicit form of the ETD φ[i] functions, which appear in the formulation

of most of the exponential integrators presented so far

φ[1](z) =
ez − 1

z
, φ[i+1](z) =

φ[i](z)− 1
i!

z
, for i = 2, 3, (3.1.1)

67

Like we saw in the previous two chapters, other functions can also enter in the format of an

exponential integrator. Examples are integrating factor RK methods and methods based

on the the Lie group theory. However, in most of the known cases, the new functions are

closely related with functions from (3.1.1). Therefore, here we restrict our considerations

only to the ETD φ[i] functions.

A straightforward implementation of (3.1.1) suffers, for small z, from cancellation errors.

An illustration of this phenomena, for the first function φ[1], is given in [35, Table 2.1]. The

cancellation errors are even more severe for the second and the subsequent φ[i] functions. In

practice, the arguments of the functions in (3.1.1) are matrices of the form A = γhL, where

γ ∈ R, h is the step size and L is the discretized linear operator. The size d of the matrix

L depends of the spatial discretization and the dimensionality of the problem. Usually, d is

very large and thus we need fast, reliable and numerically stable algorithm for computing

the functions (3.1.1).

At the heart of all decomposition methods is the similarity transformation

A = SBS−1, (3.1.2)

where B is such that φ[i](B) is easy to compute. Then

φ[i](A) = Sφ[i](B)S−1. (3.1.3)

The choice of the matrices S and B in (3.1.2) usually involves two conflicting tasks: Make

B close to diagonal so that φ[i](B) is easy to compute and make S well conditioned so that

errors in evaluating φ[i](B) are not magnified. Thus, it is natural to consider methods based

on the Schur decomposition so that S is unitary and therefore well conditioned. Next we

present a general algorithm, first proposed in [16], which employs the block form of the

Parlett recurrence and does not impose any restrictions on the argument matrix A.

3.1.1 Block Schur–Parlett algorithm

The first step of the algorithm is to compute the Schur decomposition A = QTQ∗, where Q

is unitary and T is upper triangular. This can be achieved by the standard QR algorithm

[22]. We now need to calculate the matrices F [i] = φ[i](T). Assuming that the diagonal

elements f
[i]
kk of F [i] are already known, we can compute the whole F [i] using the scalar

Parlett recurrence [56]. This is exactly how the MATLAB 6.5 (R13) built in function funm

works. The problem with this approach is that it fails to produce correct results, in floating

point arithmetic, when the eigenvalues of T are equal or close to each other.

To avoid this problem, the authors in [16] propose to reorder T into a block upper tri-

angular matrix T̃ . The diagonal blocks T̃kk of T̃ are constructed in such a way that the

eigenvalues of each diagonal block are “close” to each other and the distinct diagonal blocks

are with “sufficiently distinct” eigenvalues. To define the meaning of “close” and “suffi-

ciently distinct”, the authors introduce a special parameter in the format of the method.

Since T̃ is block upper diagonal, so is F̃ [i] = φ[i](T̃) . From the commutativity relation

68

F̃ [i]T̃ = T̃ F̃ [i] (see the explicit form of the ETD functions (1.2.15)), it follows the following

block form of the Parlett recurrence

T̃kkF̃
[i]
kl − F̃

[i]
kl T̃ll = F̃

[i]
kkT̃kl − T̃klF̃

[i]
ll +

l−1∑

j=k+1

(
F̃

[i]
kj T̃jl − T̃kjF̃

[i]
jl

)
, (3.1.4)

where T̃ = (T̃kl) and F̃ [i] =
(
F̃

[i]
kl

)
. If the diagonal blocks F̃

[i]
kk are already evaluated, the

above relation allows us to compute the whole matrix F̃ [i] by solving the Sylvester equation

(3.1.4) with respect to F̃
[i]
kl . The imposed requirements for the eigenvalues of T̃kk guarantee

that the equation (3.1.4) is nonsingular and well conditioned [16]. Thus, what we still need

to specify is how to compute the diagonal blocks F̃
[i]
kk. In [16], the authors suggest to use

a suitable Taylor series truncation or Padé approximation. These are local approximations

which are very accurate near the origin, but may suffer in accuracy away form it. In

addition, the accuracy of such approaches depends of the norm of F̃
[i]
kk and usually, when

the norm is large, they require a scaling and squaring strategy [47]. For the first function φ[1]

an analogous formula, similar to the well-known fundamental property of the exponential

function, is proposed in [28]. It is based on the equalities φ[1](2z) = (ez + 1)φ[1](z)/2 and

e2z = ezez. In general, for i > 1, we do not have a simple generalization of the above

formulas and thus an alternative approach for computing F̃
[i]
kk can be to use higher order

Chebyshev (uniform) rational approximations [68]. We discuss this type of approximations

in detail in Subsection 3.1.2.

Next we summarize the overall block Schur–Parlett algorithm for computing φ[i](A) for

a general matrix A and i = 1, 2,

Algotithm 3.1.1. (Block Schur–Parlett algorithm)

• Compute the Schur decomposition A = QTQ∗.

• Reorder T into a block upper triangular matrix T̃ .

• Compute φ[i](T̃kk) for all diagonal blocks T̃kk.

• Find φ[i](T̃) by solving the Silvester equation (3.1.4).

• Compute φ[i](A) = Qφ[i](T̃)Q∗.

The cost of Algorithm 3.1.1 depends from the eigenvalue distribution of A, and it is

between 28d3 and d4/3 flops (see [16]) for each i, where d is the dimensionality of A.

The advantages of this method are that it is numerically stable and works without

any restrictions on the structure of the matrix A. The main disadvantage is its higher

computational cost, which makes it applicable only if integrators with fixed stepsize are used.

In this case all φ[i] functions can be computed only once, at the beginning of integration

process. Thus, the above method provides a benchmark for the computational cost of a

method.

69

In the case when A is real symmetric (or complex Hermitian) a cheaper method, also

based on the Schur decomposition, can be constructed. In the next subsection we generalize

the approach proposed in [40] for computing the matrix exponential operator and later

extended in [41] for computing the first function φ[1], to a general algorithm for computing

all the functions from (3.1.1).

3.1.2 Tridiagonal reduction

A common first step in the computation of the eigenvalues and the eigenvectors of a symmet-

ric matrix A is to use a tridiagonal reduction of the form A = QTQT , where Q is orthogonal

and T is symmetric tridiagonal. Such a representation of A can be obtained by using Hause-

holder reflections [22]. Thus, according to (3.1.3), the computation of φ[i](A) requires the

value φ[i](T). In [40, 41] efficient numerical algorithms for computing the exponential and

the φ[1] function, based on the above tridiagonal reduction followed by Chebyshev (uniform)

rational approximation, are developed. Here we utilize this approach and propose how it

can be generalized, so that each of the functions from (3.1.1) can be efficiently computed.

We first consider, how to find Chebyshev rational approximations to eT, for a given

tridiagonal matrix T. The key idea is to compute the largest eigenvalue λ1 of T (for example

by bisection method) and then make use of the following obvious equality eT = eλ1eT−λ1I ,

where I is d×d identity matrix. The eigenvalues of T−λ1I are always located in the interval

(−∞, 0]. This allows us to approximate eT−λ1I by a rational function Rp(z) = Np(z)/Dp(z)

(where Np and Dp are polynomials of z of degree p), which minimizes the maximum error

for approximating ez on (−∞, 0]. An approximation to eT is then obtained by

eT ≈ eλ1Rp(T− λ1I). (3.1.5)

What we gain in this way is that, regardless of the spectrum of T, we can always use a

rational Chebyshev approximation to eT−λ1I in the interval (−∞, 0], which has the same

coefficients. If we choose to represent Rp via its partial fraction expansion (see [21])

Rp(z) = α
(p)
0 +

p∑

j=1

α
(p)
j

z − θ(p)j

, (3.1.6)

the coefficients α
(p)
j and the poles θ

(p)
j of Rp can be computed once and for all. To achieve

standard double precision (64-bit floating point numbers), it is sufficient to choose p = 14.

Since the coefficients and the poles appears in complex conjugate pairs, for even p, it is

enough to add just the first p/2 terms in the sum in (3.1.6), and then double the real part

of the result. This in fact leads to significant computational savings, since it halves the

number of matrix inversions in the corresponding formula

Rp(T− λ1I) = α
(p)
0 I +

p∑

j=1

α
(p)
j

[
T− (λ1 + θ

(p)
j)I

]−1
. (3.1.7)

70

The values of α
(p)
j and θ

(p)
j , for p = 14 and 16, are listed in [41, Table 2].

Here we have chosen a diagonal rational approximation Rp, that is, the numerator Np

has the same degree as the denominator Dp. We note however, that alternative strategies

(e.g. using L-stable approximations) might also be considered without altering the principle

of the method.

Before we consider how the approximation (3.1.5) can be used to approximate any of the

functions φ[i] form (3.1.1), we mention that, once we have the largest eigenvalue λ1 of T, we

can always calculate a Chebyshev rational approximation to φ[i](z) on the interval (−∞, λ1]
and then used it to approximate φ[i](T). However, this approach is rather unpractical since

it highly depends on the value λ1. Therefore we need to recompute the coefficients of the

approximation for every different λ1, which is quite a costly task.

An alternative approach for computing φ[i](T), in the case where the largest eigenvalue

of T belongs to the interval (−∞, 0], is to replace eT in the definition of each of the functions

φ[i] by its Chebyshev rational approximation (3.1.5). Thus, for example, the first function

φ[1] can be approximated by

φ[1](T) ≈ T−1



(
eλ1α

(p)
0 − 1

)
I + eλ1

p∑

j=1

α
(p)
j

[
T− (λ1 + θ

(p)
j)I

]−1

 .

The above formula should not be used when λ1 is positive. The problem in this case is that

for each of the functions φ[i] we can not just shift the argument by λ1I, since the relation

between φ[i](T) and φ[i](T− λ1I) is not that simple as it is for the exponential function.

A different approach for approximating φ[1](T), in the case when λ1 > 0, is proposed in

[41]. It is based on the observation that for

B =


 T I

0 0


 ,

the exponential of B is given by

eB =


 eT φ[1](T)

0 I


 . (3.1.8)

Therefore, applying the approximation (3.1.5) with Rp given by (3.1.7) and T = B, we

obtain

eB = eλ1eB−λ1I ≈ eλ1


α

(p)
0 I +

p∑

j=1

α
(p)
j

[
B − (λ1 + θ

(p)
j)I

]−1


 . (3.1.9)

Equating the entries in positions (1,2) of (3.1.8) and (3.1.9) leads to the following approxi-

mation for φ[1](T)

φ[1](T) ≈ eλ1
p∑

j=1

α
(p)
j

λ1 + θ
(p)
j

[
T− (λ1 + θ

(p)
j)I

]−1
.

71

We have found that, for λ1 positive, the same idea can be easily generalized to the case

when approximations to φ[i](T) for i > 1 are needed. To approximate the function φ[2](T),

we take the matrix B to be of the form

B =




T 0 I

0 0 0

0 I 0


 .

It is easy to see, for example by direct computation, that its exponential is given by

eB =




eT φ[2](T) φ[1](T)

0 I 0

0 I I


 .

As before, based on formulas (3.1.5) and (3.1.7), we obtain the following approximation

φ[2](T) ≈ eλ1
p∑

j=1

α
(p)
j(

λ1 + θ
(p)
j

)2
[
T− (λ1 + θ

(p)
j)I

]−1
.

Approximations for the rest of the functions φ[i], for λ1 > 0, can be computed by a straight

forward generalization of the above process.

In the next algorithm we summarize the method based on the tridiagonal reduction for

computing any of the functions φ[i](A) for a symmetric matrix A and i = 1, 2,

Algotithm 3.1.2. (Tridiagonal Reduction)

• Calculate a symmetric tridiagonal reduction A = QTQT .

• Find the largest eigenvalue λ1 of T.

• Compute φ[i](T) by a Chebyshev rational approximation with respect to the value of λ1.

• Calculate φ[i](A) by φ[i](A) = Qφ[i](T)QT .

The cost of the algorithm, for each i, isO(43d3+d+d2+2d3), where d is the dimensionality

of A. Therefore, the total number of operations for computing each of the functions φ[i] is

O(103 d3). In the case of constant step size, once we have computed the first function φ[1],

we can reduce the work for computing the other φ[i] functions by reusing the tridiagonal

decomposition.

If the matrix A is symmetric and tridiagonal, the above algorithm requires only O(d2)
operations, since its first and last step are not needed. In this case instead of computing all

the φ[i] functions once, before the integration begins, and then apply them at every step to

a different vectors v, we can repeatedly compute the action of each φ[i] on its corresponding

72

vector v. The total number of operations in this case still does not exceed the work required

to compute the matrix-vector product φ[i] times v, especially when dÀ p . This is because

the inverse matrices in the third step of the algorithm are replaced by solutions of linear

systems with tridiagonal coefficient matrices. In general, algorithms designed to solve such

systems require O(d) operations, which leads to O(pd) flops needed to compute the action

φ[i]v. This is to be compared with O(d2) operations needed for a matrix-vector product. In

[Article 2 p.107], we present several direct methods for solving linear systems of equations,

some of which can be easily adopted to the tridiagonal case considered here. We will

comment more on this in Section 3.3.

When A is tridiagonal, the above approach allows to preserve the total number of

operations, needed to implement an exponential integrator, approximately the same even

when a variable step size strategy is used. The advantage of the Algorithm 3.1.2 is that it is

less expensive than Algorithm 3.1.1. Its disadvantages are that it is applicable only in the

case when the matrix A is symmetric (Hermitian) and that it cannot be used with variable

step size strategy, unless in the case when A is tridiagonal.

We next consider a method which is entirely based on the idea of approximating the

action of each of the functions φ[i] on a given state vector v. This approach is useful for

implementations employing a variable step size strategy.

3.2 Krylov subspace approximations

Since the mid-eighties, the idea of using the Krylov subspace approximations to the action of

the evolution operators has been studied by many authors. A short and definitely incomplete

list of publications on this topic includes [17, 18, 21, 27, 28, 57, 58]. The convergence

properties of the action of the matrix exponential operator are investigated in [17, 21,

58]. Later in [27] sharper error estimates are derived. It is also shown that, unless a

good preconditioner is not available, the Krylov approximation to eAv converges faster

than its corresponding approximation to the solution of the linear system (I − A)x = v.

An approximation to the action of the first function φ[1], based on the Krylov subspace

approximation techniques, was considered in [58] and later studied in [27]. It was found that

it obeys the same error bounds as the approximation to the matrix exponential operator.

This provided the initial motivation for developing a Rosenbrock-like exponential integrators

[28].

The main idea of the Krylov subspace technique is to approximately project the action

of the evolution operator φ[i](A) on a state vector v ∈ Cd, to a small Krylov subspace

Km ≡ span{v,Av, . . . , Am−1v}.

Usually, even for a relatively small m¿ d, an accurate approximation can be obtained [58].

Thus, the approach is to approximate the action of φ[i](A) by the action of φ[i] applied to

the projection of A on the smaller subspace Km.

73

It is convenient to choose an orthogonal basis Vm = [v1, v2, . . . , vm] of Km. It can be

generated by the Arnoldi algorithm, with v1 = v/||v||2 as an initial vector.

Algotithm 3.2.1. (Arnoldi)

Compute v1 = v/||v||2.
for j = 1, 2, . . . ,m do

for i = 1, 2, . . . , j do

hi,j = (Avj , vi),

end

w = Avj −
∑j

i=1 hi,jvi,

hj+1,j = ||w||2, vj+1 = w/hj+1,j ,

end

Alternatively, the Lanczos algorithm for generating a biorthogonal basis on the subspace

Km, can also be used (see [58]).

Let Hm be the m×m upper Hessenberg matrix consisting of the coefficients hi,j . Since

the Algorithm 3.2.1 is just a modified Gram-Schmidt process, the following relation holds

AVm = VmHm + hm+1,mvm+1e
T
m, (3.2.1)

where ei denotes the ith unit vector in Rm. Using the fact that Vm is orthogonal, from

the above relation, it follows that V T
mAVm = Hm. Therefore, Hm represents the orthogonal

projection of A to the subspace Km, with respect to the basis Vm. Similarly, VmV
T
m φ

[i](A)v

is the projection of φ[i](A)v on Km, that is the closest approximation to φ[i](A)v from Km.

If β ≡ ||v||2 then v = βv1 and since v1 = Vme1, we have

φ[i](A)v ≈ VmV
T
m φ

[i](A)v = βVmV
T
m φ

[i](A)v1

= βVmV
T
m φ

[i](A)Vme1.
(3.2.2)

From the computational point of view, the above formula is not useful, since it still involves

operations with the big matrix A. To avoid this, the idea is to replace the term V T
m φ

[i](A)Vm

in (3.2.2) by suitable approximation. Note that V T
m φ

[i](A)Vm is an m × m matrix. By

induction, from (3.2.1), one can prove [58, Lemma 3.1] that

pm−1(A)v = βVmpm−1(Hm)e1, for all polynomials pm−1 of degree ≤ m− 1.

Therefore, it is natural to approximate V T
m φ

[i](A)Vm by φ[i](Hm). From (3.2.2) we obtain

φ[i](A)v ≈ βVmφ
[i](Hm)e1. (3.2.3)

The approximation (3.2.3) can also be derived from the standard Krylov approximation to

the solution of linear systems of equations [57] and the Cauchy integral formula (see [27]).

74

The advantage of using (3.2.3) is that instead of working with the original large matrix A

we use its orthogonal approximation Hm, which has much smaller dimension. The action

φ[i](A)v is then computed in O(md) operations by using only matrix-vector multiplications

between elements with the original large size d. Thus, when m ¿ d the cost of computing

the expression βVmφ
[i](Hm)e1 is usually much less than the cost needed to compute φ[i](A)v.

In addition, when A is Hermitian, it is possible to speed up the whole process by applying

the Arnoldi algorithm to a shifted and inverted matrix [66]. It is chosen in such a way that

it emphasizes the eigenvalues of importance, so that the algorithm can quickly find them.

This approach relies on the fact that efficient preconditioned iterative solver is used to find

the action of the inverse matrix.

The computation of φ[i](Hm)e1 requires O(m3) operations in general and only O(m2) if

the matrix Hm is tridiagonal (e.g. A is symmetric). It can be done by using a Chebyshev

rational approximation, evaluated by partial fraction expansion (see Subsection 3.1.2).

The main computational cost of an exponential integrator, using Krylov subspace ap-

proximation technique, comes from the repeated application of Algorithm 3.2.1. At every

step we need to construct several bases of Krylov subspaces with respect to the same ma-

trix A and different vectors v. In general Algorithm 3.2.1 requires O(md2) operations. We

mention also that it assumes exact arithmetic is used. In practice, round off errors and

cancellations might cause a loss of the orthogonality between the vectors vi. A significant

improvement in the performance can be achieved by using double orthogonalization [38].

In addition, a convergence criterion is needed to determine the value of m that gives a suf-

ficiently accurate approximation. Thus, we conclude that the above approach is preferable

in the case when the number of Krylov bases needed can be significantly reduced. Efficient

exponential integrators based on this reduced idea are developed in [28]. The advantage of

the Krylov subspace approximation technique is that, implementations based on a variable

stepsize strategy, do not increase the total computational cost of the integrator.

3.3 Cauchy integral approach

The last approach for computing the functions φ[i] or their action on a given vector v, which

we consider, is introduced in [35]. It is based on the Cauchy integral formula

φ[i](A) =
1

2πi

∫

ΓA

φ[i](λ)(λI −A)−1dλ, (3.3.1)

where ΓA is a contour in the complex plane that encloses the eigenvalue of A, and it is also

well separated from 0. It is practical to choose the contour ΓA to be a circle centered on

the real axis. In this way when A is real, based on the symmetry, one can evaluate the

integral only on the upper half of the circle and then double the real part of the result. To

approximate the integral in (3.3.1), the authors in [35] propose to use the trapezoid rule,

75

which converges exponentially [65]. Therefore, we obtain the following approximation

φ[i](A) ≈ 1

k

k∑

j=1

λjφ
[i](λj)(λjI −A)−1, (3.3.2)

where k is the number of the equally spaced points λj along the contour ΓA. Usually, values

of k = 32 or k = 64, are sufficient to insure correct computations.

For problems with diagonal matrix A it is beneficial to choose the contour ΓA to be,

in addition, a circle centered at A. Thus, (3.3.2) simply reduces to the mean of φ[i] over

the equally spaced points along ΓA (or again just half of them for a real A). When the

matrix A is non-diagonal, the cost for computing an approximation to the functions φ[i]

increases. This is due to the number of the matrix inverses involved in (3.3.2). In the case

of constant stepsize, the total impact on the computational time is still small, since all the

φ[i] functions can be evaluated only once before the integration begins. However, in the

case of variable step size, direct application of (3.3.2) leads to significant increase in the

computational work. To gain more insight into how the formula (3.3.1) can be effectively

used, in the case of variable step size, we recall that the matrix A = γhL, where γ ∈ R, h is

the step size and L is the discretized linear operator. Note that every time when we need

to change the step size h, it is enough to change only the parameter γ.

The idea now is to represent φ[i](γhL) in such a way that the number of the matrix

inverses used in (3.3.1), respectively in (3.3.2), is independent of γ. If we can choose a

suitable contour Γ, such that for all different values of γ, which appear in the integration

process, it encloses the eigenvalues of γhL and γΓ is well separated from 0 then we can

compute each of the functions φ[i] by the following formula

φ[i](A) = φ[i](γhL) =
1

2πi

∫

Γ
φ[i](γλ)(λI − hL)−1dλ. (3.3.3)

As before, approximating the integral in (3.3.3) by the trapezoid rule, we get

φ[i](A) ≈ 1

k

k∑

j=1

λjφ
[i](γλj)(λjI − hL)−1, (3.3.4)

where now λj are the equally spaced points along the contour Γ. The above formula allows

to reduce the computational work needed to evaluate the functions φ[i] or their action on

a given vector v, in the case when a variable step size is used. The main advantage comes

form the fact that the inverse matrices in (3.3.4) no longer depend of γ. However, in any

case we have to compute k (or k/2) matrix inverses.

In the case when the matrix L arises from a finite difference approximation to a second

order partial differential operator, we can benefit from its sparse block structure. Similar

to the idea presented in Subsection 3.1.2, in this case, we can also evaluate the action of

the function φ[i] on a given vector v. If the number of operations required does not exceed

O(d2) the cost of a matrix-vector product then we obtain a competitive method. Note that

76

in general the matrix φ[i](γhL) does not retain the sparse block structure of L. Thus, what

we need is an efficient method for solving special sparse block linear systems of equations.

When the matrix −L is symmetric (Hermitian) and positive definite the most favourable

methods are preconditioned conjugate gradient and multigrid methods [34]. They are based

on the idea of approximating the solution by an iterative procedure and usually require O(d)
operations. The problem with these methods is that they require a good preconditioner or

a rather complex algorithm with considerable overhead to organize the computations. In

addition, we note that the matrices in (3.3.4) are symmetric (Hermitian) only if λj ∈ R.

Alternatively, direct methods for solving linear systems of equations can be used. In

order to be competitive, such methods are specially design to take advantage from the

sparse block structure of the coefficient matrix. In general, the structure of L depends

on the dimensionality of the problem, the type of the approximation and the boundary

conditions imposed. When L is block tridiagonal, two methods are of practical importance:

the Buneman variant of cyclic reduction [6] and the decomposition method based on the fast

Fourier transform (FFT) [11]. Both of these methods compute the solution in O(d log2 n)
operations, where n is the block size of L. Combination of the above two methods known

as Fourier analysis-cyclic reduction (FACR) is proposed in [31]. The asymptotic operation

count for this method is reduced to O(d log2 log2 n) (see [64]). A restriction for all of these

methods is that n should be power of two or a composite of small primes.

In [Article 2 p.107], we present a method for solving tridiagonal block Teoplitz linear

systems of equations, which does not impose any restrictions on n. The method is based

on a modified LU factorization and it is fully applicable to all the matrices in (3.3.4). In

[Article 3 p.133], the same idea is generalized to the case when the coefficient matrix has

pentadiagonal block circulant structure. The complexity of this methods is O(d2). Signifi-
cant computational savings can be achieved by using the techniques of solving linear systems

with multiple right hand sides. Since the methods are based on the LU decomposition idea,

we can factorize the k (k/2) coefficient matrices arising from (3.3.4) once and for all and

then use only the back-substitution formulas to find their action on a given vector v. Thus,

for k ¿ d we obtain methods which can be implemented with a variable step size, without

to increase the total computational work.

Before we consider some numerical experiments, we summarize the main advantages

and disadvantages of the different methods for computing the functions φ[i] or their actions

on a vector, presented in this chapter.

• Methods based on Algorithm 3.1.1 are expensive and not suitable for implementa-

tions using variable step size. Their main advantage is that they do not place any

restrictions on the coefficient matrix.

• Methods using Krylov subspace approximation techniques are suitable for implemen-

tations involving variable step size, but are applicable only in the case when the

number of the needed Krylov bases can be significantly reduced.

• Methods based on the Cauchy integral formula are suitable for both constant and

77

variable stepsize implementations. Particularly cheap methods, in the case of variable

stepsize, can be obtained if the the coefficient matrix has a sparse block structure.

Alternatively, for tridiagonal matrices, Algorithm 3.1.2 can be used.

3.4 Numerical experiments

In this section, we present numerical experiments with some of the exponential integra-

tors studied in the thesis. The examples under consideration are Kuramoto-Sivashinsky,

Allen-Cahn and Korteweg de Vries (KdV) equations. Since all of the tested exponential

integrators, except the method of Hochbruck–Ostermann given in Table 1.15, are based on

the nonstiff order conditions, to avoid possible order reduction, we consider examples where

the nonlinear term has sufficient spatial regularity. In general, for applications concern-

ing PDEs, the classical order of convergence is not always obtained (see Subsection 1.2.5).

Order reduction, due to the lack of sufficient temporal and spatial smoothness, should be

expected. For parabolic problems with periodic boundary conditions, full order of conver-

gence can be observed [29, 30]. In our numerical experiments, for the Kuramoto-Sivashinsky

and the KdV equations, we also impose periodic boundary conditions. Thus, the linear term

L has a diagonal structure and the computation of the φ[i] functions by the Cauchy integral

formula (see Section 3.3) simply reduce to the mean of φ[i] over the contour Γ.

For all numerical experiments, a constant step size is used. Computation of the φ[i]

functions, in the non-diagonal example (Allen-Cahn equation), is also done by the Cauchy

integral approach. In this case, the total computational cost of a method is still small, since

all the matrix inverses in (3.3.4) are evaluated only once before the time-stepping begins.

Extensive numerical tests between linearly implicit methods [2], split step methods [59]

and exponential integrators based on the linear multistep and multistage idea are presented

in [14, 35]. There the authors conclude that the Exponential Time Differencing Runge–

Kutta (ETD RK) methods, presented in Subsection 1.2.3, consistently out perform all the

other methods.

Comparison between the stability regions for different exponential integrators based on

Lie group methods, applied to semi-discretized stiff problems, is given in [36]. There the

author concludes that, for such kind of problems, the RKMK methods (see Section 2.2)

suffer from numerical instability. It is due to the small convergence radius of the dExp−1

map.

Taking into account the above arguments, we have chosen to implement the following

exponential integrators:

• ETD RK3(CM) The third order method of Cox–Matthews given in Table 1.9;

• ETD2RK3 The third order method from Table 1.12;

• ETD2CF3 The third order method from Table 1.13;

• ETD RK4(CM) The fourth order method of Cox–Matthews given in Table 1.10;

78

• ETD RK4(Kr) The fourth order method of Krogstad given in Table 1.11;

• ETD RK4(Min) The fourth order method from Table 1.8;

• ETD RK4(HO) The fourth order method of Hochbruck–Ostermann given in Ta-

ble 1.15;

• IF RK4 The fourth order Integrating Factor Runge–Kutta methd based on the clas-

sical fourth order Runge–Kutta method (1.3.5);

• GIF1/RK4 The fourth order Generalized Integrating Factor Runge–Kutta method

from Table 2.4 with the classical fourth order Runge–Kutta coefficients (1.3.5);

• GIF2/RK4 The fourth order Generalized Integrating Factor Runge–Kutta method

from Table 2.5 with the classical fourth order Runge–Kutta coefficients (1.3.5);

• GIF3/RK4 The fourth order Generalized Integrating Factor Runge–Kutta method

with third order polynomial approximation to the nonlinear part N , also with the

classical fourth order Runge–Kutta coefficients (1.3.5);

• CF4 The fourth order Commutator Free Lie group method given in Table 2.6.

For each of the three test problems we compare accuracy against step size. The results

are given in different figures for each example.

The Kuramoto-Sivashinsky equation

The first example is the Kuramoto-Sivashinsky equation

ut = −uux − uxx − uxxxx, x ∈ [0, 32π]

with periodic boundary conditions and with initial condition borrowed from [35]

u(x, 0) = cos
(x
16

)(
1 + sin

(x
16

))
.

A 128-point Fourier spectral discretization in space is used. Since the boundary conditions

are periodic the transformed equation in the Fourier space can be represented in the form

(1.1.1), the linear and nonlinear parts are defined as

(Lû)(k) = (k2 − k4)û(k), N(û) = − ik
2
(F ((F−1(û))2)),

where F denotes the discrete Fourier transform. The integration in time is done entirely in

the Fourier space until t = 65. The results for the different numerical schemes are plotted

in Figure 3.1.

79

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Stepsize h

R
el

at
iv

e
er

ro
r

at
 ti

m
e

=
 6

5
 Kuramoto−Sivashinsky equation

ETD RK3(CM)

ETD2RK3

ETD2CF3

ETD RK4(CM)

ETD RK4(HO)

ETD RK4(Kr)

ETD RK4(Min)

10
−2

10
−1

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Stepsize h

R
el

at
iv

e
er

ro
r

at
 ti

m
e

=
 6

5

 Kuramoto−Sivashinsky equation

IF RK4

GIF1/RK4

GIF2/RK4

GIF3/RK4

CF4

Figure 3.1: Step size versus relative error for ETD RK (left) and GIF/RK (right) methods
for the Kuramoto-Sivashinsky equation

The Allen-Cahn equation

The second example is the Allen-Cahn equation written in the form

ut = εuxx + u− u3, x ∈ [−1, 1],

where ε = 0.01 and with boundary and initial conditions also borrowed form [35]

u(−1, t) = −1, u(1, t) = 1, u(x, 0) = 0.53x+ 0.47 sin(−1.5πx).

After discretization in space based on the Chebyshev grid points we can rewrite the equation

in the form (1.1.1), with

L = εD2, N(u) = u− u3,

where D is the Chebyshev differentiation matrix [65]. Therefore, the matrix L is full. The

integration in time is until t = 31. In Figure 3.2, we have plotted the results for the different

numerical schemes under consideration.

The Korteweg de Vries equation

The final example is the KdV equation considered in [36, Article 5]

ut = −uxxx − uux, x ∈ [−π, π],

with periodic boundary conditions and with initial condition

u(x, 0) = 3C/ cosh2(
√
Cx/2),

80

10
−2

10
−1

10
0

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Stepsize h

R
el

at
iv

e
er

ro
r

at
 ti

m
e

=
 3

1

 Allen−Cahn equation

ETD RK3(CM)

ETD2RK3

ETD2CF3

ETD RK4(CM)

ETD RK4(HO)

ETD RK4(Kr)

ETD RK4(Min)

10
−2

10
−1

10
0

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Stepsize h

R
el

at
iv

e
er

ro
r

at
 ti

m
e

=
 3

1

 Allen−Cahn equation

IF RK4

GIF1/RK4

GIF2/RK4

GIF3/RK4

CF4

Figure 3.2: Step size versus relative error for ETD RK (left) and GIF/RK (right) methods
for the Allen-Cahn equation

where C = 625. The exact solution is 2π/C periodic and is given by u(x, t) = u(x−Ct, 0).
We use a 256-point Fourier spectral discretization in space. In this case the matrix L is

again diagonal. The integration in time is done for one period. The results for the different

numerical schemes are plotted in Figure 3.3.

10
−7

10
−6

10
−5

10
−4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Stepsize h

E
rr

or
 a

t t
im

e
=

 2
π/

C

 Korteweg de Vries equation

ETD RK3(CM)

ETD2RK3

ETD2CF3

ETD RK4(CM)

ETD RK4(HO)

ETD RK4(Kr)

ETD RK4(Min)

10
−7

10
−6

10
−5

10
−4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Stepsize h

E
rr

or
 a

t t
im

e
=

 2
π/

C

 Korteweg de Vries equation

IF RK4

GIF1/RK4

GIF2/RK4

GIF3/RK4

CF4

Figure 3.3: Step size versus relative error for ETD RK (left) and GIF/RK (right) methods
for the Korteweg de Vries equation

As seen from Figure 3.1–3.3, all methods exhibit the predicted nonstiff order of conver-

gence under the chosen initial and boundary conditions. For all examples, the scheme ETD

RK4(Min) is more efficient than the other ETD RK schemes. This can be explained with

81

the fact that it was constructed based on the nonstiff order theory presented in Subsec-

tion 1.2.2, so that the error coefficients for the elementary differentials of higher order are

minimized. As expected, the ETD RK methods perform better than the IF RK methods

even based on the same underlying Runge–Kutta method. This is due to the fact that

the local error of IF RK methods is bigger than the local error of ETD RK methods (see

[46]). The local error for the GIF/RK methods reduces with increasing the degree of the

polynomial approximation to the nonlinear part of the problem. This results in several

orders in magnitude improvement in accuracy over the standard IF RK methods. However,

as it was pointed from Krogstad in [36, Article 5], the improved accuracy comes to some

extent at the price of stability. This fact, in particular, is well illustrated in the numerical

experiments for the KdV equation, where the GIF/RK methods fail to produce results for

large stepsizes. The reason for this is the reduced stability regions for GIF/RK methods

[36, Article 5].

82

Conclusions

The aim of this thesis was to study different classes of exponential integrators for time inte-

gration of semilinear problems and to propose an unified framework in which this methods

can be analyzed. Below, we give a summary of the main topics treated in the thesis.

Summary

In Chapter 1 we presented the philosophy behind exponential integrators applied to semi-

linear problems and discussed the three main classes of exponential integrators: exponential

linear multistep (multivalue), exponential Runge–Kutta (multistage) and exponential gen-

eral linear methods. Next, in Chapter 2 we studied the connection between exponential

integrators and Lie group methods based on the affine algebra action. The freedom in the

choice of the algebra action, allows all exponential integrators presented in Chapter 2 as well

as the methods proposed in [Article 1,91] to be applied to nonautonomous and quasilinear

problems of the the form

u′ = L(u, t)u+N(u, t), u(t0) = u0.

The only difference in this case is in the definition of the generic function F , which pro-

vides the representation of the differential equation on the manifold. Because of the time

dependence of the linear part, the resulting methods require at the beginning of each step

to recompute the exponential and the related φ[l] functions included in the format of the

method. In Chapter 3 we discussed different algorithms for fast and numerically stable

computation of the most commonly used ETD φ[i] functions. Finally, we tested some of the

exponential integrators studied in the thesis, on several well known examples.

Next, we summarize the main achievements of this thesis.

Contributions

We proposed in Subsection 1.2.1 a general class of exponential Runge–Kutta methods specif-

ically designed for time integration of semilinear problems. This class of methods include as

special cases all known exponential Runge–Kutta methods. The nonstiff order theory de-

veloped in Subsection 1.2.2, reduces to the the order theory for the adaptive Runge–Kutta

83

methods proposed in [5]. An advantage of our approach is that it provides a non-recursive

rule for generating each order condition from its corresponding rooted tree. In addition, the

same technique can also be applied to derive the nonstiff order conditions for the exponen-

tial general linear methods considered in Subsection 1.3.3. We believe that locating good

methods based on the nonstiff order conditions, is the first step for developing competitive

methods for realistic stiff problems.

We also studied the natural connection between exponential integrators and Lie group

methods with affine algebra action. In particular, in Subsection 2.4.2, we showed that

the Generalized Integrating Factor Runge–Kutta (GIF/RK) methods introduced in [36,

Article 5] are examples of RKMK methods. In addition, we proposed a new approach in

the derivation of GIF/RK methods, which allows the nonlinear part of the problem (1.1.1)

to be approximated by trigonometric polynomials. The choice of the algebra action plays

a crucial role in the overall performance of any Lie group method. In [Article 1, p.91], we

suggested a way how to construct exponential integrators based on the framework of Lie

group methods with algebra action arising from the solutions of differential equations with

nonautonomous frozen vector fields.

The main computational challenge in the implementation of every exponential integrator

comes from the necessity of computing the exponential and the related functions by some

fast and numerically stable algorithm. In Subsection 3.1.2, we generalized the tridiagonal

reduction approach, proposed in [41], to a general algorithm for computing all ETD φ[i]

functions. We also commented on the main advantages and disadvantages of other numer-

ical techniques, which can also be used for computing the ETD φ[i] functions. Usually, a

variable stepsize implementation of an exponential integrator requires efficient linear solver.

In the case when the linear part of the problem arises from a finite difference approximation,

we can benefit from its sparse block structure. In [Article 2 p.107], we presented a method

for solving tridiagonal block Teoplitz linear systems of equations. The method is a modi-

fication of the LU factorization proposed in [19]. In [Article 3 p.133], the same approach

was generalized to the case when the coefficient matrix has pentadiagonal block circulant

structure.

Future work

Many questions have arisen during the work on this thesis, which we intend to consider

in future work. For example, the choice of the φ[l] functions plays a significant role in the

actual performance of any exponential integrator. Notice that an ETDmethod will generally

perform better than an IF method, even based on the same underlying method. The possible

choices of φ[l] functions which lead to methods are still unclear. Thus, determining the set

of functions which provides in some sense optimal methods, is a crucial question which

requires further investigation.

Developing the nonstiff and respectively the stiff order conditions for exponential gen-

eral linear methods is a field of ongoing research. Such an order theory, will allow other

84

exponential general linear methods, different form the GIF/RK methods and the methods

introduced in [Article 1, p.91], to be constructed. The improved accuracy of GIF/RK meth-

ods, is due to their higher stage order (see [46]). The main difficulty with these methods,

as Krogstad pointed out in [36, Article 5], is that the improved accuracy comes to some

extent at the price of stability. A way to overcome this difficulty is to extend the class of

general linear methods with inherent Runge–Kutta stability to the exponential setting.

Probably the main question regarding the exponential integrators, which still needs to be

answered is: Are these methods fully competitive with the existing numerical techniques for

solving stiff problems. The answer of this question requires extensive numerical experiments

with various implementations, from fixed stepsize and fixed order to variable stepsize and

variable order codes. Thus, it is clear that the choice of reliable and numerically stable

algorithms for computing the exponential and the related functions is an important direction

for future investigations.

Differential algebraic equations (DAEs) are ordinary differential equations subject to

algebraic constraints. Many problems which arise in the real applications can be represented

by DAEs. Examples are the discretized incompressible Navier–Stokes equations, where the

incompressibility condition is the algebraic constraint. Extending the class of exponential

integrators to the set of DAEs is an other interesting topic for future research.

85

Bibliography

[1] R. Abraham, J. Marsden, and T. Ratiu, Manifolds, Tensor Analysis and Applications,

Springer, Second edition, 1988.

[2] U. Ascher, S. Ruuth, and B. Wetton, Implicit-explicit methods for time-dependent

partial differential equations, SIAM J. Numer. Anal. 32 (1995), 797–823.

[3] H. Berland and B. Owren, Fourth order exponential time integrators for the nonlinear

Scrödinger equation, private conversation, April, 2004.

[4] G. Beylkin, J. Keiser, and L. Vozovoi, A new class of time discretization schemes for

the solution of nonlinear PDEs, J. Comput. Phys. 147 (1998), 362–387.

[5] J. Bruder, K. Strehmel, and R. Weiner, Partitioned adaptive Runge–Kutta methods for

the solution of nonstiff and stiff systems, Numer. Math. 52 (1988), 621–638.

[6] O. Buneman, A compact non-iterative Poisson solver, Rep. 294, Stanford University

Institute for Plasma Research, 1969.

[7] J. C. Butcher, On the convergence of numerical solutions to ordinary differential equa-

tions, Math. Comp. 20 (1966), 1–10.

[8] , Numerical methods for ordinary differential equations, John Wiley & Sons,

2003.

[9] J. C. Butcher and Z. Jackiewicz, Construction of general linear methods with runge-

kutta stability properties, Numer. Algorithms 36 (2004), 63–72.

[10] J. C. Butcher and W. Wright, The construction of practical general linear methods,

BIT 43 (2003), 695–721.

[11] B. Buzbee, G. Golub, and C. Nielson, On direct methods for solving Poisson’s equation,

SIAM J. Numer. Anal. 7 (1970), 627–656.

[12] E. Celledoni, A. Marthinsen, and B. Owren, Commutator-free Lie group methods,

FGCS 19(3) (2003), 341–352.

86

[13] J. Certaine, The solution of ordinary differential equations with large time constant,

Math. methods for digital comput. (1960), 128–132.

[14] P. M. Cox and P.C. Matthews, Exponential time differencing for stiff systems, J. Com-

put. Phys. 176 (2002), 430–455.

[15] P. Crouch and R. Grossman, Numerical integration of ordinary differential equations

on manifolds, J. Nonlinear. Sci. 3 (1993), 1–33.

[16] P. Davies and N. Higham, A Schur-Parlett algorithm for computing matrix functions,

SIAM J. Matrix Anal. Appl. 25(2) (2003), 464–485.

[17] V. L. Druskin and L. A. Knizhnerman, Error bounds in the simple Lanczos procedure

for computing functions of symmetric matrices and eigenvalues, Comput. Maths. Math.

Phys. 7 (1991), 20–30.

[18] , Krylov subspace approximations of eigenpairs and matrix functions in exact

an computer arithmetic, Numer. Lin. Alg. Appl. 2 (1995), 205–217.

[19] S.M. El-Sayed, Study of special matrices and numerical methods for special matrix

equations, Ph.D. thesis, Bulgarian Academy of Sciences, 1996, in Bulgarian.

[20] A. Friedli, Verallgemeinerte Runge–Kutta verfahren zur löesung steifer differentialgle-

ichungssysteme, Lect. Notes Math. 631 (1978).

[21] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approx-

imation methods, SIAM J. Sci. Statist. Comput. 13 (1992), 1236–1264.

[22] G. Golub and C. Van Loan, Matrix computations, Johns Hopkins University Press,

Baltimore, 1996, 3td ed.

[23] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, Springer, 2003,

Number 31 in Springer Series in Computational Mathematics.

[24] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I, Non-

stiff Problems, Springer, 1993, Number 8 in Springer Series in Computational Mathe-

matics, 2nd edition.

[25] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and

Differential–Algebraic Problems, Springer, 1996, Number 14 in Springer Series in Com-

putational Mathematics, 2nd edition.

[26] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math-

ematics 840, Springer, Berlin, 1981.

[27] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix expo-

nential operator, SIAM J. Numer. Anal. 34 (1997), 1911–1925.

87

[28] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large systems

of differential equations, SIAM J. Sci. Comput 19(5) (1998), 1552–1574.

[29] M. Hochbruck and A. Osterman, Explicit exponential Runge–Kutta methods for semi-

linear parabolic problems, Submitted to SIAM J. Numer. Anal., 2004.

[30] , Exponential Runge–Kutta methods for parabolic problems, To appear in Appl.

Numer. Math., 2004.

[31] R. Hockney, The potential calculation and some applications, Methods of Computa-

tional Physics 7 (1969), 136–211.

[32] A. Iserles, H. Munthe-Kaas, S.P. Nørsett, and A. Zanna, Lie-group methods, Acta

Numerica 9 (2000), 215–365.

[33] Z. Jackiewicz, A. Marthinsenand, and B. Owren, Construction of Runge–Kutta methods

of Crouch–Grossman type of high order, Adv. Comput. Math. 13(4) (2000), 405–415.

[34] C. Johnson, Numerical solution of partial differential equations by the finite element

methods, Cambridge University press, 1987.

[35] A.-K. Kassam and L.N. Trefethen, Fourth order time stepping for stiff PDEs, To appear

in: SIAM J. Sci. Comp., 2003.

[36] S. Krogstad, Topics in numerical Lie group integration, Ph.D. thesis, University of

Bergen, 2003.

[37] J. Lawson, Generalized Runge–Kutta processes for stable systems with large Lipschitz

constants, SIAM J. Numer. Anal. 4 (1969), 372–390.

[38] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK user’s guide, SIAM, 1998.

[39] E. Lodden, Geometric integration of the heat equation, Master’s thesis, University of

Bergen, 2000.

[40] Y. Y. Lu, Exponentials of symmetric matrices through tridiagonal reductions, Linear

Algebra Appl. 279 (1998), 317–324.

[41] , Computing a matrix function for exponential integrators, J. Comp. and Appl.

Math. 161(1) (2003), 203–216.

[42] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems,

Birkhäuser, Basel, 1995.

[43] Y. Maday, A. Patera, and E. Rønquist, An operator-integration-factor splitting method

for time-dependent problems: application to incompressible fluid flow, J. Sci. Comp.

5(4) (1990), 263–292.

88

[44] J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry, Springer, Second

edition, 1999, Number 17 in Text in Applied Mathematics.

[45] B. Minchev, Exponential time differencing and Lie-group methods for stiff problems,

Talk given at the International Conference on Scientific Computation and Differential

Equations, SciCADE 2003, Trondheim, Norway, June 30 - July 4, 2003.

[46] B. Minchev and W. Wright, A review of exponential integrators, in preparation, Uni-

versity of Bergen, 2004.

[47] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a

matrix, twenty-five years later, SIAM Review 45(1) (2003), 3–49.

[48] H. Munthe-Kaas, Lie-Butcher theory for Runge–Kutta methods, BIT 35 (1995), 572–

587.

[49] , Runge–Kutta methods on Lie groups, BIT 38 (1998), 92–111.

[50] , High order Runge–Kutta methods on manifolds, Appl. Num. Math. 29 (1999),

115–127.

[51] H. Munthe-Kaas and W. Wright, A hitchhikers guide to Lie-Butcher theory, in prepa-

ration, University of Bergen, 2004.

[52] A. Murua, Formal series and numerical integrators, part I: Systems of ODEs and

symplectic integrators, Appl. Numer. Math. 29 (1999), 221–251.

[53] S. Nørsett, An A-stable modification of the Adams-Bashforth methods, Lect. Notes

Math. 109 (1969), 214–219.

[54] A. Ostermann, Numerical solutions of abstract ODEs, Lecture notes from Dobbiaco

Summer School on Numerical Analysis, 2004.

[55] B. Owren and A. Marthinsen, Runge–Kutta methods adapted to manifolds and based

on rigid frames, BIT 39(1) (1999), 116–142.

[56] B.N. Parlett, A recurrence among the elements of functions of triangular matrices,

Linear Algebra Appl. 14 (1976), 117–121.

[57] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math.

Comp. 37 (1981), 105–126.

[58] , Analysis of some Krylov subspace approximations to the matrix exponential

operator, SIAM J. Numer. Anal. 29(1) (1992), 209–228.

[59] J. Sanz-Serna and M. Calvo, Numerical Hamiltonian problems, Chapman & Hall, Lon-

don, 1994.

89

[60] T. Steihaug and A. Wolfbrand, An attempt to avoid exact jacobian and nonlinear

equations in the numerical solution of stiff differential equations, Math. Comp. 33

(1979), 521–534.

[61] K. Strehmel and R. Weiner, Behandlug steifer anfangswetprobleme gewöhnlicher differ-

entialgleichungen mit adaptiven Runge–Kutta methoden, Computing 29 (1982), 153–

165.

[62] , B-convergence results for linearly implicit one step methods, BIT 27 (1987),

264–281.

[63] A. Suslowicz, Application of numerical Lie group integrators to parabolic PDEs, Tech-

nical report 219, University of Bergen, 2001.

[64] P. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR

algorithms for the discrete solution of the Poisson’s equation on a rectangle, SIAM

Review 19 (1977), 490–501.

[65] L. N. Trefethen, Spectral methods in Matlab, SIAM, 2000.

[66] J. van den Eshof and M. Hochbruck, Preconditioning Lanczos approximations to the

matrix exponential, tech. rep. Heinrich-Heine Universität Düsseldorf, 2004.

[67] V. Varadarajan, Lie groups, Lie algebras, and their representation, Springer, New York,

1984.

[68] R. S. Varga, On higher order stable implicit methods for solving parabolic differential

equations, J. Math. and Phys XL (1961), 220–231.

[69] W. Wright, General linear methods with inherent Runge–Kutta stability, Ph.D. thesis,

The University of Aucland, New Zealand, 2002.

[70] K. Yosida, Functional analysis, Springer, Berlin, 1980, Grundlehren der mathematis-

chen Wissenschaften, vol. 123.

90

Article 1

Lie group integrators with nonautonomous frozen vector fields

Submitted to

Appl. Numer. Math.

91

.

92

Lie group integrators with nonautonomous

frozen vector fields

Borislav V. Minchev

Department of Computer Science, University of Bergen,

Thormhlensgate 55, N-5020 Bergen, Norway

Abstract

Lie group methods for nonautonomous semi-discretized in space, partial differential
equations are considered. The choice of frozen vector field and its corresponding
algebra action on the manifold for such problems is discussed. A new exponential
integrator for semilinear problems, based on commutator free Lie group methods
with algebra action arising from the solutions of differential equations with nonau-
tonomous frozen vector fields is derived. The proposed new scheme is then compared
with some existing methods in several numerical experiments.

Key words: Lie group methods, algebra action, exponential integrators, stiff
systems
1991 MSC: 65L06, 65M29, 35G10, 58F39

1 Introduction

Recently, a lot of Lie group integrators for solving semi-discretized partial
differential equations (PDEs) has been derived in the literature. The original
idea was first introduced in [16] and then further investigated for the heat
equation in [4,12,17], stiff PDEs in [10,11,14], convection diffusion problems in
[3] and for the Schrödinger equation in [1]. What is common between all this
methods is that to advance from one point to another they all use an algebra
action arising from the solution of an autonomous differential equation, which
does not depend explicitly on the time t.

In this paper we propose a way how to construct Lie group integrators for
nonautonomous problems based on an algebra action arising from the solution

Email address: Borko.Minchev@ii.uib.no (Borislav V. Minchev).
URL: http://www.ii.uib.no/∼borko (Borislav V. Minchev).

Submitted to Applied Numerical Mathematics

of a differential equation which can depend explicitly on t. The idea is a
natural extension of the autonomous case. The approach is to rewrite the
differential equation in its equivalent autonomous form and then to apply the
affine action [16] to the transformed equation. Thus, what we obtain are time
dependent frozen vector fields. This provides us some extra freedom in the
construction process, which can be used to choose the algebra action to be a
better approximation of the flow of the original vector field.

The paper is organized as follows: We start in Section 2 with introducing
some notation and the basic theory involved. Next we consider the framework
for nonautonomous problems and discuss how it is related with the choice
of the algebra action. In Section 3 we propose a new time dependent frozen
vector field and its corresponding algebra action. In addition, we discuss some
further generalizations. In Section 4 we derive a new exponential integrator
for semilinear problems based on the fourth order commutator free Lie group
method [4]. Finally in Section 5 we compare the proposed new exponential
integrator with some existing methods and discuss the advantages of the new
approach.

2 Background theory and notations

The framework which we use in this paper is given by Lie groups and their
action upon a homogeneous manifold [8,15,16]. We take advantage of the fact
that, in order to construct a Lie group integrator, we do not really need to
know what the structure of the Lie group is and how it acts on the manifold.
It is enough to specify the generic presentation of the differential equation and
the algebra action on the manifold (see [14]). For simplicity, we do not include
a discussion on the structure of the underlying Lie group and how it acts on
a manifold.

Let us first consider the following differential equation defined on a d + p

dimensional manifold M≡ Rd+p.

y′ = f(y(t)), y(t0) = y0. (2.1)

The very first question in the construction of a Lie group integrator is how
to define the basic motions on M. Since Rd+p is a linear space, it is easy to
construct integrator which stays on the manifold. The challenge in this case
is how to choose the basic motions in such a way that they provide a good
approximation to the flow of the original vector field. In this paper we define
the basic movements onM to be given by the solution of a simpler differential
equation

y′ = FΘ(y), y(t0) = y0, (2.2)

which locally approximates (2.1). Thus, the Lie algebra g is generated from

94

the set of all coefficients Θ of the frozen vector fields FΘ and the Lie algebra
action ∗ : g×M→M on the manifold is simply given by the solution of (2.2).
In other words, if Θ ∈ g, its action upon the point y0 ∈ M, which we denote
by hΘ ∗ y0, is given by the solution of (2.2) at time t0+h. Every frozen vector
field can be represented in the form FΘ(y) = Θ~ y, where ~ : g×M→ TM
and according to (2.2), it satisfies

Θ ~ y =
d

dt

∣∣∣∣∣
t=0

tΘ ∗ y.

Note that the map Θ→ FΘ is an algebra homomorphism between g and the
set of all vector fields on M. If the algebra action ∗ is transitive i.e. starting
from a point y0 ∈ M we can reach any other point y1 ∈ M by letting some
element Θ ∈ g act on y0, the differential equation (2.1) can be rewritten in
the form

y′ = F (y) ~ y, y(t0) = y0, (2.3)

where F : M → g. The above formulation is called the generic presentation
of the differential equation on the manifold and plays an important role in the
theory of the Lie group integrators (see [16]).

The choice of the frozen vector field FΘ and its corresponding algebra action,
very much depends of the actual structure of f(y). The simplest possible case
is when g = {b ∈ Rd+p}, F (y0) = f(y0) = b and Fb(y) = b ~ y = b then the
algebra action on M is given by translations and we recover the traditional
integration schemes. In the case when f(y) = L(y)y + N(y), one can define
the Lie algebra g = {(A, b) ∈ R(d+p)×(d+p) o Rd+p}, the function F (y0) =
(L(y0), N(y0)) = (A, b) and the frozen vector field F(A,b)(y) = (A, b) ~ y =
Ay + b. This is exactly the affine algebra action proposed in [16]. Note that
such a representation of f(y) is always possible, for example by letting L(y) be
the Jacobian of f at the point y and N(y) = f(y) − L(y)y. Other choices are
also possible see for example [12,17].

In this paper we are interesting in the construction of Lie group methods for
the following nonautonomous problem defined on Rd

u′ = f(u, t), u(t0) = u0. (2.4)

Formally it does not fit in the above presented framework, but by adding the
trivial differential equation t′ = 1 to the system (2.4), we can rewrite it in the
form (2.1) with p = 1 and

f =


 f(u, t)

1


 , y =


u
t


 .

This of course is a very well known idea in the theory of ODEs, however its
application to Lie group methods, if done carefully, can lead to some extra

95

freedom which we would like to exploit. Note that now the time variable t

goes in the definition of the manifoldM and therefore it also appears like one
of the arguments of the generic function F , the frozen vector field F and its
corresponding algebra action.

From a computational point of view it might look some what unreasonable
to increase the dimensionality of the problem, but we keep in mind that the
solution of (2.4) is given by the first d components of the solution of (2.1).
Thus, the approach is to apply a Lie group method to equation (2.1) and then
to restate it in Rd.

The simplest nonautonomous case is when the Lie algebra g = {b ∈ Rd+1} or
equivalently g = {(b[0], λ) : b[0] ∈ Rd, λ ∈ R} then the generic function is given

by F
([

u0

t0

])
= (f(u0, t0), 1) = (b[0], 1), the frozen vector field is F(b[0],λ)

([
u

t

])
=

[
b[0]

λ

]
and the algebra action is h(b[0], λ) ∗

[
u0

t0

]
=
[
u0+hb[0]

t0+hλ

]
. When f(u, t) =

L(u, t)u + N(u, t) then the Lie algebra g = {(A, b) ∈ Rd+1×d+1 o Rd+1}.
It can also be represented like the set of all triples (A, b[0], λ) closed under
linear combinations and commutators between the elements (see section 3),
where A ∈ Rd×d, b[0] ∈ Rd, λ ∈ R. In this case the generic function is defined
like F

([
u0

t0

])
= (L(u0, t0), N(u0, t0), 1) = (A, b[0], 1), the frozen vector field

is F(A,b[0],λ)
([

u

t

])
=
[
Au+b[0]

λ

]
and its corresponding algebra action is given by

h(A, b[0], λ) ∗
[
u0

t0

]
=
[
ehAu0+hb[0]φ[1](hA)

t0+hλ

]
, where ehA denotes the matrix exponen-

tial and the function φ[1] is given in Lemma 2 (see section 3).

If we consider just the first d components of the algebra action: in the first
case we simply obtain translations like basic motions on Rd; in the second
case we again recover the affine action. Thus, we conclude that for thes two
cases the only difference between autonomous and nonautonomos systems is
in the definition of the generic function F , which for nonautonomous systems
depends also from the time variable. We remark that in the above two cases
the frozen vector field does not really depends of t. This explains the observed
similarities between autonomous and nonautonomous systems.

A more interesting situation arises when the function f(u, t) has the form
L(u, t)u+N [0](u, t) + tN [1](u, t). A natural question now is how to choose the
frozen vector field in this case. In the next section, we propose a time depen-
dent frozen vector field and its corresponding algebra action which reflects the
structure of f . In addition, we discuss how this idea can be further generalized
if second and higher powers of t are included.

96

3 Nonautonomous frozen vector fields

We first consider the case when the vector field of (2.4) has the form

f(u, t) = L(u, t)u+N [0](u, t) + tN [1](u, t).

If we treat the nonlinear part as a single function N = N [0]+ tN [1] then we do
not gain anything in comparison with the affine case presented in the previous
section. A more demanding task is to allow our frozen vector field to be time
dependent. It is desirable in this case to approximate the nonlinear part of
f(u, t) by a linear polynomial of t.

The only way to include t in the definition of the frozen vector field is to
append it to the dependent variables. Thus, by adding the trivial differential
equation v′ = 1, v(t0) = t0 to the system (2.4), we obtain

y′ = Ly + N, y(t0) = y0, (3.1)

where

L =


L(u, t) N

[1](u, t)

0 0


 , N =


N

[0](u, t)

1


 , y =


 u
v


 , y0 =


u0
t0


 .

The advantage of rewriting (2.4) in the above form is that now we can easily
see how to define the Lie algebra g, the generic function F , the frozen vector
field F and its corresponding algebra action (see section 2). The Lie algebra
in this case is g = {(A, b) ∈ Rd+1×d+1 o Rd+1}, with

A =


A b[1]

0 0


 , b =


 b

[0]

λ


 , (3.2)

where A ∈ Rd×d, b[1], b[0] ∈ Rd and λ ∈ R. Equivalently we can represent g

like the quadruplet (A, b[1], b[0], λ) closed under linear combinations and com-
mutators. The function F which provides the generic presentation is given
by

F

([
u0

t0

])
=
(
L(u0, t0), N

[1](u0, t0), N
[0](u0, t0), 1

)
= (A, b[1], b[0], 1). (3.3)

To obtain an explicit form of the frozen vector field we use the following result.

Lemma 1 The solution of the differential equation y′ = Ay + b, y(t0) = y0,
at the time t0 + h is given by

y(t0 + h) =


u(t0 + h)

t0 + hλ


 ,

97

where u(t0 + h) is the solution of

u′ = Au+ b[0] + t0(1− λ)b[1] + tλb[1], u(t0) = u0.

Proof: The proof follows directly by substituting (3.2) in the differential equa-
tion y′ = Ay + b and then solving it with respect to the last variable. 2

Thus, we have obtained the following time dependent frozen vector field

F(A,b[1],b[0],λ)

([
u

t

])
= (A, b[1], b[0], λ) ~

[
u

t

]
=

[
Au+ c0 + tc1

λ

]
, (3.4)

where c0 = b[0] + t0(1 − λ)b[1] and c1 = λb[1]. Note that for λ = 1 we have

c0 = b[0], c1 = b[1] and therefore the generic presentation F
([

u

t

])
~
[
u

t

]
=
[
f(u,t)
1

]

is satisfied.

The last thing which we need to define is the algebra action corresponding to
the frozen vector field (3.4). In the next Lemma we give a general formula for
the flow of the frozen vector field, which approximates the nonlinear part of
f by a polynomial of t of degree p.

Lemma 2 The solution of the differential equation

u′ = Au+
p∑

j=0

tjcj, u(t0) = u0,

where p ∈ N, A ∈ Rd×d and cj ∈ Rd at the time t0 + h is given by

u(t0 + h) = ehAu0 +
p∑

k=0

hk+1δkφ
[k+1](hA),

where δk =
∑p

j=k
j!

(j−k)!
t
j−k
0 cj, φ[1](z) = ez−1

z
and φ[k+1](z) = φ[k](z)−φ[k](0)

z
.

Proof: From the variation of constants formulae it follows that

u(t0 + h)=ehAu0 + ehA
∫ h

0
e−τA

(p∑

j=0

(t0 + τ)jcj

)
dτ

=ehAu0 +
p∑

j=0

(
δje

hA 1

j!

∫ h

0
e−τAτ jdτ

)
.

Multiple applications of integration by parts complete the proof. 2

98

Combining the results of Lemma 1 and Lemma 2 leads to the following explicit
form for the algebra action corresponding to the vector field (3.4)

h(A, b[1], b[0], λ) ∗

[
u0

t0

]
=

[
ehAu0 + h(b[0] + t0b

[1])φ[1](hA) + h2λb[1]φ[2](hA)

t0 + hλ

]
(3.5)

Once we have defined the generic presentation, the Lie algebra g and its action
on M we can use any Lie group method to find the solution of (2.4). The
solution of (3.1) is simply given by its first d components.

In the case when a Runge-Kutta Munthe-Kaas method with exact Exp map is
used the format requires the inverse of the dExp map (see [16]). Computation-
ally it might be very expensive to find exactly the dExp−1 map and thus the
approach proposed in [16] is to replace it with polynomial approximation of
order higher than the order of the method. This imposes the necessity of using
commutators between the elements of g. In this case if Θi = (Ai, b

[1]
i , b

[0]
i , λi)

for i = 1, 2 are two elements from g then their commutator is given by

[Θ1,Θ2] =
(
[A1, A2], A1b

[1]
2 − A2b

[1]
1 , A1b

[0]
2 − A2b

[0]
1 + λ2b

[1]
1 − λ1b

[1]
2 , 0

)
,

where [A1, A2] = A1A2 − A2A1 is the matrix commutator.

The above approach can be easily generalized when the function f(u, t) =
L(u, t)u+

∑p
k=0 t

kN [k](u, t). In this case we append p trivial differential equa-
tions corresponding to t, t2, . . . , tp to the system (2.4) . Thus, the dimension
of the manifold is d+p, but we keep in mind that we are only interested in its
first d components. The Lie algebra is g = {(A, b[p], . . . , b[0], λ) : A ∈ Rd×d, λ ∈
R, b[k] ∈ Rd} and its action upon the manifold is given by Lemma 2. The
coefficients cj can be found in the same way as in Lemma 1. For p = 2 they
are

c0=b
[0] + (1− λ)t0b

[1] + (1− λ)2t20b
[2],

c1=λb
[1] + 2λ(1− λ)t0b

[2],

c3=λ
2b[2].

We conclude this section with the observation that based on the same idea,
methods with approximations of the nonlinear part of f by trigonometric
polynomials can also be derived. In this case, the exact flow of the frozen
vector field can be computed in the similar manner (see [14]).

99

4 Exponential integrator for semilinear prob-

lems

In this section we derive an exponential integrator based on the frozen vector
field (3.4) and its corresponding algebra action (3.5) for the semilinear problem

u′ = Lu+N(u, t), u(t0) = u0, (4.1)

where L is a constant linear term and N is a nonlinear term. Such systems of-
ten arise after the spatial discretization of certain PDEs. Comparisons between
the stability regions for different Lie group methods applied to semi-discretized
stiff PDEs is given in [11]. There the author suggests that for this type of prob-
lem the best methods are likely to be the commutator free Lie group methods
[4]. This provides our motivation in the choice of the Lie group method.

Next we give an equivalent formulation of the method proposed in [4]. This
formulation allows us to construct methods without knowing what the exact
structure of the Lie group acting on the manifold is, or how the Exp map
between the Lie algebra and the Lie group is defined. The general format of
an s stage commutator free Lie group method advancing from point yn to
point yn+1 with a time step of size h is given by the following algorithm.

Algorithm 1 (Commutator-free Lie group method)

for i = 1, . . . , s do

Ui = (h
∑s

k=1 α
k
iJFk) ∗ · · · ∗ (h

∑s
k=1 α

k
i1Fk) ∗ yn

Fi = F (Ui)
end

un+1 = (h
∑s

k=1 β
k
JFk) ∗ · · · ∗ (h

∑s
k=1 β

k
1Fk) ∗ yn

Here the function F gives the generic presentation (2.3), the coefficients αkij, β
k
j

are parameters of the method and the value J counts the number of flow
calculations required at each stage. In [4], the following fourth order method
based on the classical fourth order method of Kutta is proposed.

0
1
2

1
2

1
2

0 1
2

1
2
1
2

1
2

-1
2

0

0

0

1





1
4
1
12

1
6
1
6

1
6
1
6

- 1
12
1
4





(4.2)

We use the symbol } to denote all the substages included in a stage with

100

J > 1. Note that in (4.2) the frozen vector field corresponding to the second
stage is the same as for the first substage of the fourth stage. This reduces the
cost of the method.

In order to use the frozen vector field (3.4) from the previous section we rewrite
the nonlinear part of (4.1) in the form

N(u, t) = Nn + t
N(u, t)−Nn

t
= N [0] + tN [1], (4.3)

where Nn = N(un, tn) is the value of the nonlinear part at the beginning of
the step number n. Keeping in mind (3.3) and (3.5), based on (4.2), we have
found a new fourth order exponential integrator, which written in the original
u variable is given by

U1 = un ,

U2 = e
hL
2 un + h1

2
φ[1]Nn ,

U3 = e
hL
2 un + h

[
1
2
φ[1]Nn +

(
tn
2
φ[1] + h

4
φ[2]

)
N
[1]
2

]
,

U4 = e
hL
2 U2 + h

[
1
2
φ[1]Nn +

(
tnφ

[1] + h
2
φ[1] + h

2
φ[2]

)
N
[1]
3

]
,

Û = e
hL
2 un + h

[
1
2
φ[1]Nn +

(
tnφ

[1] + h
2
φ[2]

) (
N

[1]
2

6
+

N
[1]
3

6
−

N
[1]
4

12

)]
,

un+1 = e
hL
2 Û + h

[
1
2
φ[1]Nn +

(
tnφ

[1] + h
2
φ[1] + h

2
φ[2]

) (
N

[1]
2

6
+

N
[1]
3

6
+

N
[1]
4

4

)]
,

(4.4)

where N
[1]
j = N(Uj , tn+cjh)−Nn

tn+cjh
for j = 1, . . . , 4 and the arguments of all the φ[j]

functions are hL
2
.

It is possible to rewrite (4.4) in equivalent form which does not involves split-
ting of the internal stages (see [1,14]). Such a representation is rather useless,
since its implementation is more expensive than the one proposed, but it shows
that (4.4) is a method based just on the pure Runge–Kutta idea.

If we represent the nonlinear part of (4.1), as a polynomial of second degree

N(u, t) = Nn + t
Nn −Nn−1

t
+ t2

N(u, t)− 2Nn +Nn−1

t2
,

where Nn and Nn−1 are the values of N at the end of step number n and n−1
respectively, we obtain a method which fits into the framework of general
linear methods [2]. Thus, we see that by just changing the algebra action, any
Lie group method based on a pure Runge–Kutta method can result in a more
general method. This is a very interesting phenomena which highlights the
important role of the algebra action.

101

5 Numerical experiments

In this section we present results from numerical experiments on the Kuramoto-
Sivashinsky and Allen-Cahn equations. For both examples we compare the
following four methods:

• IF4 The fourth order integrating factor method [5,10,18] based on the clas-
sical fourth order method of Kutta.

• CF4 The fourth order commutator free Lie group method (4.2) with affine
algebra action [4].

• CF4A1 The method (4.4) with algebra action given by (3.5).
• ETDRK4B The method of Krogstad [10].

Since all of the above methods are based on the nonstiff order conditions,
to avoid possible order reduction, we consider examples where the nonlinear
term N has sufficient spatial regularity. In general, for applications concerning
PDEs, the classical order of convergence is not always obtained. Order reduc-
tion, due to the lack of sufficient temporal and spatial smoothness, should be
expected. For parabolic problems, full order of convergence can be observerd,
if periodic boundary conditions are imposed [6,7].

To avoid problems with numerical instability, the computation of the φ[i] func-
tions, which suffer from cancelation errors when the eigenvalues of the dis-
cretized linear operator are close to zero, we use the approach of Kassam and
Trefethen [9]. The idea is to evaluate the φ[i] functions by Cauchy’s integral
formula

φ[i] (γhL) =
1

2πi

∫

Γ
φ[i](γλ) (λI − hL)−1 dλ, (5.1)

where γ ∈ R. The contour Γ is a closed curve in the complex plane that en-
closes the eigenvalue of γhL and such that γΓ is well separated from zero. The
trapezoidal rule is then used to approximate the integral in (5.1). If the dis-
cretized linear operator L is diagonal (Kuramoto-Sivashinsky equation) then
the integral reduces simply to the mean of φ[i] over the contour Γ. However,
for non-diagonal problems (Allen-Cahn equation), the computations become
more expensive and require the computation of several matrix inverses. That
is why for such problems it is important for a method to use as few φ function
evaluations as possible. In addition, if L has a special sparse structure one can
apply effective methods to find it inverse [13,14].

The Kuramoto-Sivashinsky equation

The first example is the Kuramoto-Sivashinsky equation

ut = −uux − uxx − uxxxx, x ∈ [0, 32π]

102

10
−2

10
−1

10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Stepsize h

R
el

at
iv

e
er

ro
r

at
 ti

m
e

=
 6

5

 Kuramoto−Sivashinsky equation

IF4
ETDRK4B
CF4
CF4A1

Fig. 1. Step size versus relative error for fourth order methods for the Ku-
ramoto-Sivashinsky equation

with periodic boundary conditions and with the initial condition borrowed
from [9]

u(x, 0) = cos
(
x

16

)(
1 + sin

(
x

16

))
.

A 128-point Fourier spectral discretization in space is used. Since the boundary
conditions are periodic the transformed equation in the Fourier space can be
represented in the form (4.1), the linear and nonlinear parts are defined as

(Lû)(k) = (k2 − k4)û(k), N(û) = −
ik

2
(F((F−1(û))2)),

where F denotes the discrete Fourier transform. The integration in time is done
entirely in the Fourier space until t = 65. The results for the four different
numerical schemes are plotted in Figure 1.

The Allen-Cahn equation

The second example is the Allen-Cahn equation written in the form

ut = εuxx + u− u3, x ∈ [−1, 1],

where ε = 0.01 and with boundary and initial conditions also borrowed
from [9]

u(−1, t) = −1, u(1, t) = 1, u(x, 0) = 0.53x+ 0.47 sin(−1.5πx).

103

10
−2

10
−1

10
0

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Stepsize h

R
el

at
iv

e
er

ro
r

at
 ti

m
e

=
 3

1

 Allen−Cahn equation

IF4
ETDRK4B
CF4
CF4A1

Fig. 2. Step size versus relative error for fourth order methods for the Allen-Cahn
equation

After discretization in space based on the Chebyshev grid points we can rewrite
the equation in the form (4.1), with

L = εD2, N(u) = u− u3,

where D is the Chebyshev differentiation matrix [18], this means the matrix
L is full. The standard build in MATLAB function inv was used to find the
matrix inverse in (5.1). The integration in time is until t = 31. In Figure 2 we
have plotted the results for the four different numerical schemes.

For both examples we see that all the methods exhibit the expected fourth
order, but the best with respect to the accuracy is the ETDRK4B method.
For the Kuramoto-Sivashinsky equation the improvement of using the alge-
bra action (3.5) in CF4A1 is small in comparison with the affine action in
CF4. However, for the non-diagonal example, the CF4A1 performs signifi-
cantly better than CF4 and it is competitive with the ETDRK4B method.
This together with the fact that it uses only 1 exponential and 2 φ function
evaluations per step (for comparison ETDRK4B uses 2 exponentials and 5 φ
function evaluations per step) suggests that CF4A1 is the best method in this
case.

104

6 Concluding remarks

In this paper we have introduced the use of time dependent frozen vector fields
in the construction of Lie group integrators for nonautonomous problems.
This approach, provides extra freedom in the choice of the algebra action and
allows us to choose the basic motions on the manifold to be given by the
solutions of differential equations, which better approximate the flow of the
original vector field. Based on this idea we have derived a new fourth order
exponential integrator for semilinear problems with constant linear part. We
do not claim that the proposed representation (4.3) of the nonlinear part
is optimal. Other choices are worth investigating. However, the results from
the numerical experiments suggest that the new method based on (4.3) is
efficient in the case when the discretized linear operator is non-diagonal and
a variable step size strategy is used. The content of this paper poses many
questions which need to be answered. For example what are the stability
regions of such methods and to what extend the spatial regularity of the
problem effects the overall order of the method. An other important question
is, for a given problem, how do we find a good algebra action? The goal is to
choose a differential equation which is easier to solve, but still captures the
key features of the original one. This is a very challenging task and it is likely
to be problem dependent. The option presented here is to approximate the
vector field by a higher order polynomial with constant coefficients. However,
we should keep in mind that there is a certain balance between the benefit
provided by increasing the order of the approximation and the computational
cost of its corresponding algebra action.

Acknowledgments

The author would like to thank Hans Munthe-Kaas and William Wright for
useful discussions throughout the work on this paper. This work has been par-
tially supported by Norwegian Research Council through the GI4PDE project,
contract number 142955/431.

References

[1] H. Berland and B. Owren, Fourth order exponential time integrators for the

nonlinear Scrödinger equation, private conversation, April, 2004.

[2] J. C. Butcher, Numerical methods for ordinary differential equations, John
Wiley & Sons, 2003.

[3] E. Celledoni, Eulerian and Semi-Lagrangian schemes based on commutator free

105

exponential integrators, Preprint submitted to GI Preprint Server, 2003.

[4] E. Celledoni, A. Marthinsen, and B. Owren, Commutator-free Lie group

methods, FGCS 19(3) (2003), 341–352.

[5] B. Fornberg and T.A. Driscoll, A fast spectral algorithm for nonlinear wave

equations with linear dispersion, J.Comp. Phys. 155 (1999), 456–467.

[6] M. Hochbruck and A. Osterman, Explicit exponential Runge-Kutta methods for

semilinear parabolic problems, Submitted to SIAM J. Numer. Anal., 2004.

[7] , Exponential Runge-Kutta methods for parabolic problems, To appear in
Appl. Numer. Math., 2004.

[8] A. Iserles, H. Munthe-Kaas, S.P. Nørsett, and A. Zanna, Lie-group methods,
Acta Numerica 9 (2000), 215–365.

[9] A.-K. Kassam and L.N. Trefethen, Fourth order time stepping for stiff PDEs,
SIAM J. Sci. Comp., to appear, 2003.

[10] S. Krogstad, Generalized integrating factor methods for stiff PDEs, Preprint
submitted to J. Comput. Phys., 2003.

[11] , Topics in numerical Lie group integration, Ph.D. thesis, University of
Bergen, 2003.

[12] E. Lodden, Geometric integration of the heat equation, Master’s thesis,
University of Bergen, 2000.

[13] B. Minchev, Some algorithms for solving special tridiagonal block teoplitz linear

systems, J. Comp. and Appl. Math. 156(1) (2003), 179–200.

[14] , Exponential integrators for semilinear problems, Ph.D. thesis,
University of Bergen, 2004.

[15] H. Munthe-Kaas, Runge-Kutta methods on Lie groups, BIT 38 (1998), 92–111.

[16] , High order Runge-Kutta methods on manifolds, Appl. Num. Math. 29
(1999), 115–127.

[17] A. Suslowicz, Application of numerical Lie group integrators to parabolic PDEs,
Technical report 219, University of Bergen, 2001.

[18] L. N. Trefethen, Spectral methods in Matlab, SIAM, 2000.

106

Article 2

Some Algorithms for Solving Special Tridiagonal Block

Teoplitz Linear Systems

Published in

J. Comp. and Appl. Math.

156(1), 179-200, 2003

107

.

108

Some Algorithms for Solving Special

Tridiagonal Block Teoplitz Linear Systems

Borislav V. Minchev

Department of Computer Science, University of Bergen, N-5020 Bergen, Norway

Abstract

This paper is focused on different methods and algorithms for solving tridiagonal
block Teoplitz systems of linear equations. We consider the El-Sayed method [4] for
such systems and propose several modifications that lead to different algorithms,
which we discuss in detail. Our algorithms are then compared with some classical
techniques as far as implementation time is concerned, number of operations and
storage. Comments and conclusions for computing efficiency of the proposed new
algorithms are given. Numerical experiments corroborating the theoretical results
are also presented.

Key words: linear system, block Teoplitz matrix, matrix equation, Woodbury’s
formula
1991 MSC: 65F10

1 Introduction

Many problems arising in practice lead to the solution of linear systems of
equations with special coefficient matrices. Tridiagonal block Teoplitz lin-
ear systems arise in numerical solution of ordinary and partial differential
equations (ODE and PDE), interpolation problems, boundary value problems
(BVP), etc. [2,3,7,13]. It is known that these systems have the form

M x = f, (1)

where

Email address: Borko.Minchev@ii.uib.no (Borislav V. Minchev).
URL: http://www.ii.uib.no/∼borko (Borislav V. Minchev).

Published in J. Comp. and Appl. Math., 156(1), 179-200, 2003

M =































A B
B∗ A B 0

B∗ A .
. . .
. . .
. . .

0 . . B
B∗ A































, (2)

is an Hermitian tridiagonal block Teoplitz matrix with block size n. A and B
are m×m matrices, x and f are column vectors with size nm .

The aim of this paper is to discuss different algorithms for solving (1) and
compare them as far as time for implementation, number of operations and
storage are concerned.
We organize the present paper as fallows:

1. In Section 2 we review LU factorization, Cholesky factorization [8] and
adaptation the Cyclic Reduction method [1] corresponding to the special
form of M . We modify the method described in [4].

2. In Section 3 we develop algorithms based on these modifications in order
to optimize floating point operations, memory space and implementation.

3. Finally we verify the results in a number of numerical experiments.

2 Methods for solving special block tridiagonal Teoplitz linear sys-

tem

Let us recall some classical direct methods for solving the linear system (1):
LU factorization, Cholesky factorization, Cyclic Reduction [8], as well as one
modification of LU factorization described in [4], which is based on the solution
of a nonlinear matrix equation. For simplicity’s we introduce the following
notation x = {xi}i=1,...,n, f = {fi}i=1,...,n , where xi and fi are blocks with size
m× 1.

2.1 Block LU factorization

The matrix (2) admits following LU factorization

M = L U,

110

where

L =



























A1

B1 A2 0
B2 .

. .
. .

0 . .
Bn−1 An



























, U =



























F1 G1

F2 G2 0
. .

. .
. .

0 . Gn−1

Fn



























,

where by, the matrices Ai, Bi, Fi and Gi satisfy the relations

A1 F1 = A
B1 = B∗ F−1

1

G1 = A−1
1 B

Ai Fi = A−Bi−1 Gi−1

Bi = B∗ F−1
i

Gi = A−1
i B











for i = 2, . . . , n− 1.

An Fn = A−Bn−1 Gn−1

(3)

The matrices Ai and Fi are lower and upper triangular respectively and are
obtained by LU factorization.
Thus, solving the linear system (1) is equivalent to solving two simpler systems

L y = f, y = {yi}i=1,...,n

and

U x = y, x = {xi}i=1,...,n,

whose solutions are

y1 = A−1
1 f1

yi = A−1
i (fi −Bi−1 yi−1), for i = 2, . . . , n

(4)

and
xn = F−1

n yn
xi = F−1

i (yi −Gi xi+1), for i = n− 1, . . . , 1
(5)

respectively.

2.2 Block Cholesky factorization

When the matrix M is positive definite the following factorization

M = L L∗,

111

exist, where

L =



























A1

B1 A2 0
B2 .

. .
. .

0 . .
Bn−1 An



























.

The matrices Ai, Bi satisfy the relations

A1 A∗
1 = A

B1 = B∗ (A∗
1)

−1

Ai A
∗
i = A−Bi−1 B∗

i−1

Bi = B∗ (A∗
i)

−1

}

for i = 2, . . . , n− 1.

An A∗
n = A−Bn−1 B∗

n−1

(6)

It is well known that Ai and A∗
i are lower and upper triangular respectively

and are obtained by Cholesky factorization.
In this manner, solving the linear system (1) is again equivalent to solving two
simpler systems

L y = f, y = {yi}i=1,...,n

and

L∗ x = y, x = {xi}i=1,...,n.

The solution of the first system can be found by (4). The solution of the second
system satisfies

xn = (A∗
n)

−1 yn
xi = (A∗

i)
−1 (yi −B∗

i xi+1), for i = n− 1, . . . , 1.
(7)

2.3 Block Cyclic Reduction

In this section we adapt Bini’s method [1] to the special case when the co-
efficient matrix is given as in (2). Let us derive explicitly the substitution
formulas for computing the block coordinates of the solution x. Recall that
Block Cyclic Reduction can be applied only if the block size of M is power of
2 in other words let n = 2p. By performing an even-odd permutation of the
block-rows and block columns in (1) we obtain





D
(0)
1 L(0)∗

L(0) D
(0)
2









x
(0)
+

x
(0)
−









f
(0)
+

f
(0)
−



 , (8)

112

where

x
(0)
+ = {x

(0)
+k
}k=1,...,2p−1 , x

(0)
− = {x

(0)
−k
}k=1,...,2p−1 , f

(0)
+ = {f

(0)
+k
}k=1,...,2p−1 ,

f
(0)
− = {f

(0)
−k
}k=1,...,2p−1

are column vectors, whose elements are blocks of size m × 1, satisfying the
relations

x
(0)
+k
= x2k, x

(0)
−k
= x2k−1, f

(0)
+k
= f2k, f

(0)
−k
= f2k−1 for k = 1 . . . 2p−1.

The cells

D
(0)
1 = D

(0)
2 =

















A
. 0
.

0 .
A

















, L(0) =

















B
B∗ . 0

. .
0 . .

B∗ B

















.

are matrices of block size 2p−1 × 2p−1.
We apply one step of block-Gaussian elimination to (8) and obtain

∣

∣

∣

∣

∣

∣

∣

(D
(0)
2 − L(0)D

(0)−1

1 L(0)∗) x
(0)
− = f

(0)
− − L(0)D

(0)−1

1 f
(0)
+

x
(0)
+ = D

(0)−1

1 (f
(0)
+ − L(0)∗x

(0)
−).

(9)

Let

M (1) = D
(0)
2 − L(0)D

(0)−1

1 L(0)∗

x(1) = x
(0)
−

f (1) = f
(0)
− − L(0)D

(0)−1

1 f
(0)
+ .

Note that now the first equation of (9) has the form

M (1)x(1) = f (1). (10)

Observe, that the matrix M (1) has the form

M (1) =





















F (1) B(1)

B(1)∗ A(1) .
. . .

. . .
. . B(1)

B(1)∗ A(1)





















,

where F (1) = A − BA−1B∗. Obviously, it is also a block tridiagonal matrix
and, except for the north-western corner block F (1) it has a block Teoplitz

113

structure, with block size 2p−1 × 2p−1. Applying once again an even-odd per-
mutation of the block rows and block columns to (10) , we obtain





D
(1)
1 L(1)∗

L(1) D
(1)
2









x
(1)
+

x
(1)
−









f
(1)
+

f
(1)
−



 , (11)

where

x
(1)
+ = {x

(1)
+k
}k=1,...,2p−2 , x

(1)
− = {x

(1)
−k
}k=1,...,2p−2 , f

(1)
+ = {f

(1)
+k
}k=1,...,2p−2 ,

f
(1)
− = {f

(1)
−k
}k=1,...,2p−2

are column vectors, whose elements are blocks of size m × 1 and satisfy the
relations

x
(1)
+k
= x

(1)
2k , x

(1)
−k
= x

(1)
2k−1, f

(1)
+k
= f

(1)
2k , f

(1)
−k
= f

(1)
2k−1, for k = 1, . . . , 2p−2.

Again the cells

D
(1)
1 =

















A(1)

. 0
.

0 .
A(1)

















, D
(1)
2 =

















F (1)

A(1) 0
.

0 .
A(1)

















,

L(1) =

















B(1)

B(1)∗ . 0
. .

0 . .
B(1)∗ B(1)

















are matrices of block size 2p−2 × 2p−2. We apply again one step of Gaussian
elimination to (11) and obtain

M (2)x(2) = f (2),

where M (2) is of the same type as M (1), but with block size 2p−2 × 2p−2.
Proceeding in a similar fashion, we obtain a sequence of linear systems of the
form

M (j)x(j) = f (j) for j = 1, . . . , p,

where

M (j) =





















F (j) B(j)

B(j)∗ A(j) .
. . .

. . .
. . B(j)

B(j)∗ A(j)





















114

is square matrix with block of size 2p−j for j = 1, . . . , p. When j = p the
cells M (p) = F (p).
The blocks of the matrix M (j) obey the following relations:

B(j) = −B(j−1)A(j−1)−1

B(j−1),

A(j) = A(j−1) −B(j−1)∗A(j−1)−1

B(j−1)

−B(j−1)A(j−1)−1

B(j−1)∗ ,

F (j) = F (j−1) −B(j−1)A(j−1)−1

B(j−1)∗ ,























for j = 1, . . . , p, (12)

where A(0) = A, B(0) = B, F (0) = A.
For the block column vectors f (j) and x(j), we have

f (j) = f
(j−1)
− − L(j−1)D

(j−1)
1 f

(j−1)
+ , for j = 1, . . . , p

f
(j)
+k
= f

(j)
2k ,

f
(j)
−k
= f

(j)
2k−1







for k = 1, . . . , 2p−j−1, for j = 0, . . . , p− 1
(13)

and

x
(j−1)
− = x(j),

x
(j−1)
+ = D

(j−1)−1

1 (f
(j−1)
+ − L(j−1)∗x

(j−1)
−),

x
(j−1)
2k = x

(j−1)
+k

,

x
(j−1)
2k−1 = x

(j−1)
−k







for k = 1, . . . , 2p−j−2,







































for j = p, . . . , 1, (14)

where f (0) = f, x(p) = F (p)−1

f (p), x(0) = x.
For j=0,. . . , p-1 the cells

D
(j)
1 =

















A(j)

. 0
.

0 .
A(j)

















, L(j) =

















B(j)

B(j)∗ . 0
. .

0 . .
B(j)∗ B(j)

















are square matrices of block size 2p−j−1.

2.4 A modification of LU factorization

In 1990 Rojo [14] proposed a new method for solving symmetric circulant
tridiagonal linear systems and in recent years it has been modified to dial with
matrices M having a special structure. For instance in [5] it is adapted to the
case when the coefficient matrix M is pentadiagonal and strongly diagonally
dominant. In [11] M is allowed to be not diagonally dominant. El-Sayed [4]
extended Rojo’s method to tridiagonal block matrices. His approach consists

115

in introducing a nonlinear matrix equation to solving the problem (1). The
algorithms we propose in this paper are based on [4] and investigate different
approaches for solving the nonlinear matrix equation of El-Sayed. We discuss
Woodbury’s formula and its numerical implementation.
Firstly, let us describe an algorithm for solving parametric linear systems of
the form.

N y = f, (15)

where

N =



























X B
B∗ A . 0

. . .
. . .
. . .

0 . . B
B∗ A



























,

is a block tridiagonal matrix with block size n, X is a parameter block of size
m × m, and the vectors y = {yi}i=1,...,n, and f = {fi}i=1,...,n are column
vectors consisting of n blocks of size m× 1.
The matrix N admits the following LU factorization

N = LU =

















I
B∗X−1 . 0

. .
0 . .

B∗X−1 I

































X B
. . 0
. .

0 . B
X

















,

where I is the m×m identity matrix. The above factorization exists when the
parameter X satisfies the nonlinear matrix equation

X +B∗X−1B = A. (16)

Thus, solving the linear system (15) is equivalent to solving two simpler sys-
tems

L z = f, z = {zi}i=1,...,n

U y = z, y = {yi}i=1,...,n,
(17)

whose solutions are

z1 = f1

zi = fi −B∗X−1zi−1, i = 2, 3, . . . , n,
yn = X−1zn
yi = X−1(zi −Byi+1), i = n− 1, n− 2, . . . , 1,

(18)

respectively.
Now, we can find the solution of (1). The matrices M and N are related by
relation

M = N + E1V
T
1 ,

116

where E1 =













I
0
...
0













, V T
1 =

(

A−X 0 . . . 0
)

.

Using Woodbury’s formula we have

M−1 = N−1 −N−1E1(I + V T
1 N−1E1)

−1V T
1 N−1.

Therefore, the solution x of (1) is obtained from the vector y as follows

x = M−1f
= N−1f −N−1E1(I + V T

1 N−1E1)
−1V T

1 N−1f
= y −N−1E1(I + (A−X)ET

1 N
−1E1)

−1V T
1 y

= y −N−1E1(I + (A−X)ET
1 N

−1E1)
−1(A−X)y1.

(19)

El-Sayed proposes following decomposition

N = LDV,

for computing N−1E1 and ET
1 N

−1E1, where

L =

















I
P . 0

. .
0 . .

P I

















, V =

















I Q
. . 0
. .

0 . Q
I

















,

D = diag(X,X, . . . , X)

are square matrices of block size n, P = B∗X−1 and Q = X−1B.
The matrix N−1 becomes

N−1 = V −1D−1L−1.

If we denote L−1 = (Lij) and V −1 = (Vij), then

Lij =

{

0 i < j
(−1)i−jP i−j i ≥ j,

Vij =

{

0 i > j
(−1)j−iQj−i i ≤ j,

D−1 = diag(X−1, X−1, . . . , X−1).

Therefore, the blocks (N−1E1)i of the vector N
−1E1 satisfy the formulas

(N−1E1)i = (V
−1D−1L−1E1)i

=
∑n

s=i(−1)
i+1Qs−iX−1P s−1 for i = 1, . . . , n. (20)

117

Hence

ET
1 N

−1E1 = (N
−1E1)1 =

n
∑

s=1

Qs−1X−1P s−1. (21)

The coordinates xi for i=1, . . . , n of the vector x in (19) are given by

xi = yi − [
∑n

s=i(−1)
i+1Qs−iX−1P s−1]×

× [I + (A−X)
∑n

s=1(−1)
i+1Qs−1X−1P s−1]

−1
(A−X)y1.

Obviously formulas (20) and (21) are not convenient to implement directly,
because they require a great number of redundant multiplications. For this
reason we propose two algorithms for computing the vector N−1E1.

Algorithm F. Solve m linear systems of type (17) with right-hand sides the
corresponding to different columns of E1. Note that this approach does not
take into consideration the special structure of the right-hand sides vectors
(having only a very sparse nonzero block). If the matrices A and B are
real, the algorithm costs O(8nm3) flops and requires the storage of nm2

real numbers.

Algorithm R. The blocks (N−1E1)i are recursively computed by the for-
mula (20) using the following algorithm:

• Find the cells Yi = (−1)n−iX−1P n−i, for i = 1, . . . , n by

Y1 = X−1

Yi = Yi−1(−P), for i = 2, . . . , n.

• Compute the blocks (N−1E1)i by

(N−1E1)n = Yn
(N−1E1)i = Yi −Q(N−1E1)i+1, for i = n− 1÷ 1.

Our theoretical investigation shows that the algorithm R:

1. Requires half as many flops as the algorithm F, at the expense of minimal
increase of storage memory. If the matrices A and B are real the algorithm
costs O(4nm3) flops and needs to store (n+ 2)m2 real numbers;

2. Takes advantage of the special form of the matrix E1.

3 Algorithms for solving special block tridiagonal linear systems

In this section we compare the algorithms for solving special block tridiagonal
linear systems described in Section 2 and there modifications.

118

3.1 Algorithm LU

1. Find the matrices Ai, Bi, Fi and Gi according to (3).

2. Solve the system L y = f by (4).

3. Solve the system U x = y by (5).

end.

If the matrices A and B are real, this algorithm requires O(15n
3
m3 +

n
3
m3 + n

3
m3) = O(17n

3
m3) flops and the storage of (3n + 1)m2 + 2nm real

numbers.

3.2 Algorithm CHOL

1. Find the matrices Ai and Bi according to (6).

2. Solve the system L y = f by (4).

3. Solve the system L∗ x = y by (7).

end.

If the matrices A and B are real, this algorithm requires O(11n
3
m3 +

n
3
m3+ n

3
m3) = O(13n

3
m3) flops and the storage of 3n+4

2
m2+ 3nm

2
real numbers.

3.3 Algorithm CR (Cyclic Reduction)

1. Find the matrices A(j), B(j) and F (j) for j = 1, . . . , p by (12).

2. Compute the vectors f (j) for j = 1, . . . , p by (13).

3. Solve the linear system F (p) x(p) = f (p).

4. Restore the coordinates of the vector x according to (14).

end.

If the matrices A and B are real, this algorithm requires O([18p+2]m3+
[4pm3 + 4 ∗ 2pm2] + 2m3 + 6 ∗ 2pm2) = O([22p+ 4]m3 + 10 ∗ 2pm2) flops and
the storage of (2p+ 9)m2 + (8 ∗ 2p − 6)m real numbers, where p = log2 n.

Some identical computations are imposed by program realization on formulas
(12) and (13). It is clear, that the vectors f

(j)
− are not used in the next calcu-

lations. Based on this consideration and according to the special structure of
the cells D

(j)
1 , D

(j)
2 and L(j) the next new algorithm - modification of Cyclic

Reduction is developed. It needs less flops and less storage.

3.4 Algorithm CRM (Cyclic Reduction-Modification)

1. Find the matrices A(j), B(j), F (j) and the vectors f
(j)
+ by the scheme

1.1 Put

119

A(0) = A,B(0) = B,F (0) = F,

f−k
= f2k−1, for k = 1, . . . , 2p−1.

1.2 For j = 1, 2, . . . , p− 1 compute

W1 = B(j−1)A(j−1)−1

,

W2 = B(j−1)∗A(j−1)−1

,

W3 = W1B
(j−1)∗ ,

A(j) = A(j−1) −W2B
(j−1) −W3,

B(j) = −W1B
(j−1),

F (j) = F (j−1) −W3,

f1 = f−1
−W1f

(j−1)
+1

,

fk = f−k
−W2f

(j−1)
+k−1

−W1f
(j−1)
+k

, for k = 2, . . . , 2p−j,

f−k
= f2k−1

f
(j)
+k

= f2k







for k = 1, . . . , 2p−j−1.

1.3 Find

W1 = B(p−1)A(p−1)−1

,

F (p) = F (p−1) −W1B
(p−1)∗ ,

f1 = f−1
−W1f

(p−1)
+1

.

2. Solve the linear system F (p) x1 = f1.

3. Retrieve the coordinates of the vector x by the scheme

x2 = A(p−1)−1
[

f
(p−1)
+1

−B(p−1)∗x1

]

,

x+k
= A(j−1)−1

[

f
(j−1)
+k

−B(j−1)∗xk −B(j−1)xk+1

]

for k = 1, . . . , 2p−j − 1

x+s
= A(j−1)−1

[

f
(j−1)
+s

−B(j−1)∗xs
]

, s = 2p−j

x2k−1 = xk, x2k = x+k
for k = 2p−j, . . . , 1



































j = p−1, . . . , 1

end.

If the matrices A and B are real, this algorithm requires O([12pm3 +
4 ∗ 2pm2] + 2m3 + 6 ∗ 2pm2) = O([12p + 2]m3 + 10 ∗ 2pm2) flops and the
storage of (2p+ 9)m2 + (4 ∗ 2p − 1)m real numbers, where p = log2 n.

For the new algorithms based on the discussion in section 2.4, we must address
the problem of solving the nonlinear matrix equation (16). In [6], Engwerda
proves that, if A is a positive definite matrix, then solution of (16) is equivalent
to the solution of following matrix equation

Z + B̃∗Z−1B̃ = I, (22)

where B̃ = A− 1

2BA− 1

2 , Z = A− 1

2XA− 1

2 . Thus, the results proposed in

120

[6,10] can be readily adapted to produce following algorithms for (16).
Let ε > 0 be a fixed tolerance.

Algorithm EI_γ (Engwerda; Ivanov)

1. Find the matrix B̃ = A− 1

2BA− 1

2 .

2. Solve Equation (22) by the following algorithm:

2.1 Z0 = γI, (1
2
≤ γ ≤ 1).

2.2 For k = 1, 2, . . . compute

Zk+1 = I − B̃∗Z−1
k B̃,

if ‖ Zk − Zk+1 ‖∞ = ‖ Zk + B̃∗Z−1
k B̃ − I‖∞ ≤ ε, then stop

2.3 Zk → Z+, where Z+ is maximal solution of (22).

3. Compute the solution X = A
1

2Zk+1A
1

2 .
end.

If the matrices A and B are real, this algorithm requires O(8m3+[2m3+
2m3 + 2m3]k + 4m3) = O([6k + 12]m3) flops, where k is number of iterations
for solving (22). The algorithm needs to store 7m2 real numbers.

Since for each k, Zk are positive definite matrices, can modify the above algo-
rithms using the idea proposed by Zhan [15].

Algorithm EI_γM (Engwerda; Ivanov - Modification)

1. Find the matrix B̃ = A− 1

2BA− 1

2 .

2. Solve the equation (22) as fallows:

2.1 Z0 = γI, (1
2
≤ γ ≤ 1).

2.2 For k = 1, 2, . . .

◦ Compute the Cholesky factorization of Zk, Zk = L̃L̃∗,

◦ Solve the triangular matrix equation L̃Z̃ = B̃,

◦ Compute Zk+1 = I − Z̃∗Z̃,

if ‖ Zk − Zk+1 ‖∞ = ‖ Zk + B̃∗Z−1
k B̃ − I‖∞ ≤ ε, then stop

2.3 Zk → Z+.

3. Compute X = A
1

2Zk+1A
1

2 .

end.

If the matrices A and B are real, this algorithm requires O(8m3+[m
3

3
+

4m3

3
+2m3]k+4m3) = O([11

3
k+12]m3) flops, where k is number of iterations.

The algorithm stores 17m2+m
2

real numbers.

In case we wish to solve (16) by a direct solver, we can use the following
adaption of the algorithm presented in [12].

121

Algorithm M (Meini)

1. Set X0 = A,A0 = A,B0 = B.

2. For k = 1, 2, . . . compute

W = A−1
k Bk,

Bk+1 = BkW,

W = B∗
kW,

Ak+1 = Ak −BkA
−1
k B∗

k −W,

Xk+1 = Xk −W,

if ‖ Xk+1 − Xk ‖∞ ≤ ε for ε > 0, then stop.

3. Xk → X+, where X+ is maximal solution of (16).

end.

If the matrices A and B are real, this algorithm requires O(2m3 + 5 ∗
2m3) = O(12m3) flops per iteration and the storage of 7m2 real numbers.

In analogy with the algorithm EI_γM we can consider the following modifi-
cation of Meini’s algorithm.

Algorithm MM (Meini - Modification)

1. Set X0 = A,A0 = A,B0 = B.

2. For k = 1, 2, . . .

2.1 Compute the Cholesky factorization of Ak, Ak = L̃L̃∗,

2.2 Solve the triangular matrix equations

L̃Ỹ = Bk,

L̃Z̃ = B∗
k,

2.3 Compute

W = Ỹ ∗Ỹ ,

Bk+1 = Z̃∗Ỹ ,

Ak+1 = Ak − Z̃∗Z̃ −W,

Xk+1 = Xk −W,

if ‖ Xk − Xk+1 ‖∞ ≤ ε for ε > 0, then stop.

3. Xk → X+.

end.

If the matrices A and B are real, this algorithm requires O(m
3

3
+ 8m3

3
+3∗

2m3) = O(27m
3

3
) flops, per iteration and the storage of 19m2+m

2
real numbers.

122

The algorithms EI_γM and MM require less operations per iteration at the
expense of a minimal increase of the memory space. However, their MATLAB
implementation shows that they are slower than EI_γ and M respectively.
This is due because they call fewer built in MATLAB function.

The advantage of the algorithms M and MM is their quadratic convergence,
which guarantees fewer iterations to reach the required accuracy.

Based on the discussion presented in this section, we propose the following
new algorithm for (1).

3.5 Algorithm α(β)

1. Solve the matrix equation (16) by algorithm α, where

α ∈ {EI_γ, EI_γM, M, MM}.

2. Find the vector y = N−1f by formulas (18).

3. Compute the matrix N−1E1 by algorithm β, where β ∈ {F, R}.

4. Compute the solution x of (1) by formula (19) with successive calcu-
lation of the expressions:

C = (A−X)(N−1E1)1 ; (I + C)−1 ; (A−X)y1;

z = (I + C)−1(A−X)y1 ; x = y −N−1E1z.

end.

For real matrices A and B, this algorithm requires O(k∗oα+8nm
2+oβ+6m

3)
flops and the storage of mα + nm + mβ + (2m

2 + m) real numbers, where
k is number of iterations for solving the matrix equation (16), oα and mα

are respectively the number of operations and memory space required for
implementation of the algorithm α. The numbers oβ and mβ are similarly
defined.

4 Numerical experiments

In this section we wish to corroborate the discussion of Section 3 by solving
(1), with M given as in (2), and exact solution x = (1, 1, . . . , 1)T .

In our numerical experiments, M is real, symmetric, with several block size n
and several size and structure of the cells A and B. The above algorithms are
compared by means of execution times and accuracy of the solution.

The codes are written in MATLAB language and computations are done on
a PENTIUM computer. The results of the experiments are given in separate

123

Table 1
Flops and memory space

Algorithm flops memory space

LU 17n
3 m3 +O(nm2) 3nm2 + 2nm

CHOL 13n
3 m3 +O(nm2) 3n

2 m2 + 3n
2 m

CR 22m3 log2 n+ 10nm
2 +O(nm) 2m2 log2 n+ 8nm

CRM 12m3 log2 n+ 10nm
2 +O(nm) 2m2 log2 n+ 4nm

EI_γ(F) (8n+ 6Iter)m3 +O(nm2) nm2 + (n+ 1)m

EI_γ(R) (4n+ 6Iter)m3 +O(nm2) nm2 + (n+ 1)m

M(R) (4n+ 12Iter)m3 +O(nm2) nm2 + (n+ 1)m

tables for each example. The following notation is used:

• LU stands for the LU algorithm.
• CHOL stands for the CHOL algorithm.
• CR stands for the CR algorithm.
• CRM stands for the CRM algorithm.
• EI_1(F) stands for the α(β) algorithm. The matrix equation (16) is solved
by algorithm EI_γ with initial guess Z0 = I, then N−1E1 is computed by
algorithm F .

• EI_1(R) stands for the α(β) algorithm. The matrix equation (16) is solved
by algorithm EI_γ with initial guess Z0 = I, then N−1E1 is computed by
algorithm R.

• EI_1
2
(R) stands for the α(β) algorithm. The matrix equation (16) is solved

by algorithm EI_γ with initial guess Z0 =
1
2
I, then N−1E1 is computed

by algorithm R.
• M(R) stands for the α(β) algorithm. The matrix equation (16) is solved by
algorithm M, then N−1E1 is computed by algorithm R.

• n = 2p is the block size of matrix M and m is the size of each block.

For all programs the value of ε is set to ε = 10−14.

• Iter is the smallest number k, for which:
‖Zk − Zk+1‖∞ ≤ ε for algorithm EI_γ,
‖Xk −Xk+1‖∞ ≤ ε for algorithm M .

• Err. = ‖x− x̃‖∞, where x̃ is the computed solution.

Table 1 reports the flops and memory space required for each program.

124

From Table 1. we see that algorithm CRM requires less memory space than the
others. Its number of operation depends of the relationship between the sizes
m and n. If m < 5n/6p then algorithm CRM requires O(10nm2) flops and
if m > 5n/6p then - O(12m3 log2 n). The algorithms EI_γ(R) and M(R) are
more effective than the classical LU and CHOL. Even under the assumption
that the number of iterations Iter is considerably less than n, for m < 3 and
p ≥ 3 they require less flops than algorithm CRM.

In the next examples the cells A and B of the matrixM are chosen in such way
that they guarantee the existence of a positive definite solution of Equation
(16) [9,12].

Example 1.

The cells A and B are chosen like in Example 7.3 from [9] i.e.

A =







1.20 −0.30 0.10
−0.30 2.10 0.20
0.10 0.20 0.65





 , B =







0.37 0.13 0.12
−0.30 0.34 0.12
0.11 −0.17 0.29





 .

Here ‖B̃‖2 = ‖A− 1

2BA− 1

2‖2 = 0.511. To reach the required accuracy in
solving Equation (16) Algorithm EI_1 needs 404 iterations while Algorithm
M only 10 iterations. In Table 2 we present the execution time (in seconds)
and the error, of each algorithm for different values of m and n.

Example 2.

We let the cells of the matrix M to be the matrices of example 5.2 from [12],
i.e. A = I, and B = (bi,j) a symmetric matrix, whose entries are determined
as below: by the scheme:

1. Fix a real 0 ≤ α ≤ 1/2.
2. For i = 1, . . . ,m

For j = i, . . . ,m
bi,j = 2 ∗ i+ j

end j.
Compute s1 =

∑i−1
j=1 bi,j, s2 =

∑m
j=i bi,j .

For j = i, . . . ,m
bi,j =

bi,j(1/2−α−s1)

s2
, bj,i = bi,j

end j.
end i.

The matrix B is symmetric, nonnegative and such that Be = (1/2−α)e, where

e is the vector having all it’s entries equal to 1. Thus ‖B̃‖2 = ‖A− 1

2BA− 1

2‖2 =
1/2− α.

125

Table 2
Execution time (in seconds) and errors for Example 1

m = 3
Algorithm n = 26 = 64 n = 210 = 1024

Err. time Err. time

LU 2.0650e-014 0.06 3.3640e-014 1.04
CHOL 1.3545e-014 0.05 5.1292e-014 0.88
CR 1.2079e-013 0.05 3.2019e-013 1.42
CRM 6.1284e-014 0.06 1.6398e-013 0.77
EI_1(F) 1.4211e-014 0.16 8.4155e-014 1.81
EI_1(R) 1.9540e-014 0.11 8.4155e-014 0.83
M(R) 1.2879e-014 0.06 5.8620e-014 0.77

n = 28 = 256 n = 212 = 4096

LU 2.8089e-014 0.27 3.3640e-014 5.99
CHOL 4.6407e-014 0.27 5.1292e-014 4.45
CR 3.0931e-013 0.33 3.2019e-013 11.32
CRM 1.5998e-013 0.22 1.6398e-013 3.40
EI_1(F) 2.9532e-014 0.55 3.0065e-013 9.72
EI_1(R) 2.9976e-014 0.28 3.0065e-013 4.34
M(R) 3.2863e-014 0.22 2.5757e-013 4.23

We consider the following two cases:

1. α = 0.4; then ‖B̃‖2 = 0.1. To obtain the required accuracy for (16),
Algorithm EI_1 needs 8 iterations, Algorithm M 4 iterations.

2. α = 0; then ‖B̃‖2 = 1
2
. In this case, we solve the equation (22) by

algorithm EI_γ, with initial guess Z0 = 1
2
I (γ = 1

2
). To reach the

required accuracy for (16), Algorithm EI_ 1
2
needs 9 iterations. The use of

Algorithm EI_1 is not recommended, because it needs more than 3 ∗106

iterations. Algorithm M needs of 32 iterations.

In Tables 3 and 4 we give execution time (in seconds) and errors, for α = 0
and α = 0.4 respectively.

Example 3.

Let

A = circ(20,−8, 1, . . . , 1,−8),

be a circulant matrix and B = I. In this case ‖B̃‖2 = ‖A− 1

2BA− 1

2‖2 =
0.1667. To reach the required accuracy for (16) Algorithm EI_1 needs 10 iter-
ations, Algorithm M - 5 iterations.

In Table 5 we give the execution time (in seconds) and the error of each
algorithms for different values of m and n.

126

Table 3
Execution time (in seconds) and errors for Example 2: (α = 0)

m = 3 m = 5 m = 10
Algorithm n = 26 = 64

Err. time Err. time Err. time

LU 8.8818e-015 0.11 4.3299e-015 0.11 1.3989e-014 0.11
CHOL 1.1990e-014 0.06 7.7716e-015 0.06 3.9968e-015 0.11
CR 6.3505e-014 0.05 4.9960e-015 0.05 7.6605e-015 0.11
CRM 4.3521e-014 0.06 1.6431e-014 0.06 2.2204e-015 0.06
EI_1

2(R) 6.3949e-014 0.05 7.1054e-014 0.06 8.5265e-014 0.06
M(R) 1.7764e-013 0.05 1.5632e-013 0.05 2.8422e-014 0.06

n = 28 = 256
LU 5.4845e-014 0.22 2.7645e-014 0.28 8.7153e-014 0.55
CHOL 1.3767e-013 0.22 5.1958e-014 0.28 6.4615e-014 0.44
CR 1.0281e-012 0.27 4.8628e-014 0.27 9.7033e-014 0.33
CRM 6.8057e-013 0.16 2.4425e-013 0.22 4.0079e-014 0.22
EI_1

2(R) 1.0658e-012 0.17 4.2633e-012 0.22 2.5295e-012 0.22
M(R) 5.6843e-013 0.17 8.5265e-013 0.22 7.1054e-013 0.22

n = 210 = 1024
LU 3.9635e-013 1.10 6.2017e-013 1.26 2.7101e-013 2.58
CHOL 3.6748e-013 0.88 1.4135e-012 1.04 3.4261e-013 2.03
CR 1.6434e-011 1.42 6.9700e-013 1.44 1.3676e-012 1.48
CRM 1.0729e-011 0.82 3.9986e-012 0.83 6.7812e-013 0.88
EI_1

2(R) 3.8426e-011 0.71 6.7075e-012 0.75 3.6380e-011 1.04
M(R) 3.0809e-011 0.73 2.0236e-011 0.77 8.1968e-011 1.05

n = 212 = 4096
LU 5.5140e-012 5.99 4.9095e-012 6.70 4.1102e-012 19.17
CHOL 8.9115e-012 4.45 4.0730e-012 5.05 2.1547e-012 11.32
CR 2.6242e-010 11.73 1.1125e-011 11.87 2.1823e-011 11.98
CRM 1.7121e-010 3.35 6.3752e-011 3.40 1.0165e-011 3.51
EI_1

2(R) 1.0141e-009 4.17 9.7543e-010 4.34 5.6480e-010 5.77
M(R) 6.2664e-010 4.23 4.4201e-010 4.34 7.0941e-010 5.76

5 Conclusions

From the discussion and the results obtained by numerical experiments, we
can conclude that:

1. The proposed modifications of formulas (20) and (21) (Algorithm R) lead
to a considerable decrease in the number of operations, for computing
the block vector N−1E1. That explains why the execution time for for
Algorithms EI_γ(R) and M(R) is less than for Algorithm EI_γ(F).

2. The adapted algorithms CRM, EI_γ(R) and M(R) essentially take ad-
vantage of the special structure of the matrix M , and this makes them
more effective than the classical algorithms LU, CHOL, CR as far as

127

Table 4
Execution time (in seconds) and errors for Example 2: (α = 0.4)

m = 3 m = 5 m = 10
Algorithm n = 26 = 64

Err. time Err. time Err. time

LU 4.4409e-016 0.05 4.4409e-016 0.11 8.8818e-016 0.11
CHOL 6.6613e-016 0.05 5.5511e-016 0.06 8.8818e-016 0.11
CR 4.4409e-016 0.05 5.5511e-016 0.05 6.6613e-016 0.06
CRM 4.4409e-016 0.05 5.5511e-016 0.05 6.6613e-016 0.06
EI_1(F) 6.6613e-016 0.11 3.3307e-016 0.17 08.8818e-016 0.33
EI_1(R) 6.6613e-016 0.05 3.3307e-016 0.06 8.8818e-016 0.06
M(R) 4.4409e-016 0.05 5.5511e-016 0.05 7.7716e-016 0.06

n = 28 = 256

LU 4.4409e-016 0.21 4.4409e-016 0.27 8.8818e-016 0.55
CHOL 6.6613e-016 0.22 5.5511e-016 0.27 8.8818e-016 0.44
CR 4.4409e-016 0.27 5.5511e-016 0.28 6.6613e-016 0.28
CRM 4.4409e-016 0.18 5.5511e-016 0.20 6.6613e-016 0.22
EI_1(F) 6.6613e-016 0.44 3.3307e-016 0.60 8.8818e-016 1.16
EI_1(R) 6.6613e-016 0.17 3.3307e-016 0.22 8.8818e-016 0.22
M(R) 4.4409e-016 0.16 5.5511e-016 0.16 7.7716e-016 0.22

n = 210 = 1024

LU 4.4409e-016 1.04 4.4409e-016 1.27 8.8818e-016 2.59
CHOL 6.6613e-016 0.94 5.5511e-016 1.05 8.8818e-016 1.97
CR 4.4409e-016 1.43 5.5511e-016 1.42 6.6613e-016 1.48
CRM 4.4409e-016 0.77 5.5511e-016 0.88 6.6613e-016 0.83
EI_1(F) 6.6613e-016 1.76 3.3307e-016 2.52 8.8818e-016 4.78
EI_1(R) 6.6613e-016 0.76 3.3307e-016 0.83 8.8818e-016 1.10
M(R) 4.4409e-016 0.72 5.5511e-016 0.77 7.7716e-016 0.99

n = 212 = 4096

LU 4.4409e-016 5.99 4.4409e-016 6.70 8.8818e-016 18.51
CHOL 6.6613e-016 4.45 5.5511e-016 5.11 8.8818e-016 10.93
CR 4.4409e-016 11.81 5.5511e-016 12.14 6.6613e-016 12.31
CRM 4.4409e-016 3.35 5.5511e-016 3.40 6.6613e-016 3.57
EI_1(F) 6.6613e-016 9.62 3.3307e-016 13.74 8.8818e-016 24.33
EI_1(R) 6.6613e-016 4.22 3.3307e-016 4.28 8.8818e-016 5.99
M(R) 4.4409e-016 4.23 5.5511e-016 4.34 7.7716e-016 5.76

the number of operation, memory requirements and execution time are
concerned.

3. The Algorithms CRM, EI_γ(R) and M(R) are comparable for accuracy
of the computed solution, execution time for required flops (for m ≤ 3
and p ≥ 3). For large values of the m, Algorithm CRM requires the least
flops, which, together with the fact that it uses the least memory space,
suggest es that it is most suitable when the block size of M is a power of
two.

128

Table 5
Execution time (in seconds) and errors for Example 3

m = 5 m = 7 m = 10
Algorithm n = 26 = 64

Err. time Err. time Err. time

LU 6.6613e-016 0.05 6.6613e-016 0.05 1.3323e-015 0.11
CHOL 1.1102e-015 0.05 6.6613e-016 0.05 8.8818e-016 0.11
CR 6.6613e-016 0.06 1.1102e-015 0.06 1.7764e-015 0.06
CRM 7.7716e-016 0.05 1.7764e-015 0.06 1.5543e-015 0.06
EI_1(F) 3.7748e-015 0.11 2.4425e-015 0.22 2.8866e-015 0.33
EI_1(R) 3.7748e-015 0.05 2.4425e-015 0.06 2.8866e-015 0.06
M(R) 5.5511e-016 0.05 4.4409e-016 0.05 6.6613e-016 0.06

n = 28 = 256

LU 6.6613e-016 0.33 6.6613e-016 0.38 1.3323e-015 0.50
CHOL 1.1102e-015 0.22 6.6613e-016 0.33 8.8818e-016 0.44
CR 6.6613e-016 0.27 1.1102e-015 0.28 1.7764e-015 0.28
CRM 7.7716e-016 0.17 1.7764e-015 0.22 1.5543e-015 0.22
EI_1(F) 3.7748e-015 0.60 2.4425e-015 0.83 2.8866e-015 1.15
EI_1(R) 3.7748e-015 0.22 2.4425e-015 0.22 2.8866e-015 0.23
M(R) 5.5511e-016 0.16 4.4409e-016 0.17 6.6613e-016 0.27

n = 210 = 1024

LU 6.6613e-016 1.26 6.6613e-016 1.82 1.3323e-015 2.59
CHOL 1.1102e-015 1.05 6.6613e-016 1.21 8.8818e-016 1.98
CR 6.6613e-016 1.48 1.1102e-015 1.42 1.7764e-015 1.48
CRM 7.7716e-016 0.82 1.7764e-015 0.88 1.5543e-015 0.88
EI_1(F) 3.7748e-015 2.58 2.4425e-015 3.46 2.8866e-015 4.83
EI_1(R) 3.7748e-015 0.77 2.4425e-015 0.83 2.8866e-015 1.10
M(R) 5.5511e-016 0.77 4.4409e-016 0.82 6.6613e-016 0.99

n = 212 = 4096

LU 6.6613e-016 6.70 6.6613e-016 7.58 1.3323e-015 18.290
CHOL 1.1102e-015 5.05 6.6613e-016 5.71 8.8818e-016 11.15
CR 6.6613e-016 11.84 1.1102e-015 11.91 1.7764e-015 12.58
CRM 7.7716e-016 3.69 1.7764e-015 3.74 1.5543e-015 3.87
EI_1(F) 3.7748e-015 13.89 2.4425e-015 18.29 2.8866e-015 24.71
EI_1(R) 3.7748e-015 4.45 2.4425e-015 4.67 2.8866e-015 5.93
M(R) 5.5511e-016 4.40 4.4409e-016 4.62 6.6613e-016 5.77

4. If n is not a power of two and the cells of the matrix M satisfy the
conditions for existence of the solution of equation (16), then the use of
Algorithms M(R) is recommended instead.

129

Acknowledgments

This work was partially supported by Shoumen University under contract N
17/2001 and by Norwegian Research Counsil trought the GI4PDE project,
contract no. 142955/431. I wish to thank Ivan Ivanov and Antonella Zanna
for their helpful remarks and comments.

References

[1] D. Bini, B. Meini, Solving Block Banded Block Teoplitz Systems with
Structured Blocks: New Algorithms and Open Problems, in: Largre-Scale
Scientific Computations of Engineering and Environmental Problems II, Notes

on Numerical Fluid Mechanics, vol.73 Vieweg, 2000, pp. 15-24.

[2] B.L. Buzbee, G.H. Golub, C.W. Nielson, On direct methods for solving Poisson’s
equations, SIAM J. Numer. Analysis 7 (1970) 627-656.

[3] F. Diele, L. Lopez, The use of the factorization of five-diagonal matrices by
tridiagonal Teoplitz matrices, Appl. Mtah. Lett. 11 (1998) 61-69.

[4] S.M. El-Sayed, Study of special matrices and numerical methods for special
matrix equations, Ph.D. Thesis, Sofia, 1996 (in Bulgarian).

[5] S.M. El-Sayed, I.G. Ivanov, M.G. Petkov, A new modification of the
Rojo Method for solving symmetric circulant five-diagonal systems of linear
equations, Computers Math. Applic. 35 (1998) 35-44 .

[6] J.C. Engwerda, C.M. Ran Andre, A.L. Rijkeboer, Necessary and Sufficient
Conditions for the Existence of a Positive Definite Solution of the Matrix
Equation X +A∗X−1A = Q, Linear Algebra Appl. 186 (1993) 255-275.

[7] G. Fiorentino, S. Serra, Multigrid methods for symmetric positive definite
block Teoplitz matrices with nonnegative generating functions, SIAM J. Sci.

Computing 17 (1996) 1068-1081.

[8] G. Golub, C. Van Loan, Matrix Computation, The John Hopkins University
Press, Baltimore, 1989.

[9] C.-H. Guo and P. Lancaster, Iterative solution of two matrix equations, The

Mathematics of Computation 68 (1999) 1589-1603.

[10] I. Ivanov, V. Hasanov, F.Uhlig, Iterative methods for computing a positive
definite solution of matrix equations X ± A∗X−1A = I, submitted to
Mathematics of Computation.

[11] I. Ivanov, B. Mintchev, A Method for Solving Special Circulant Pentadiagonal
Linear System, in: Large-Scale Scientific Computations of Engineering and
Environmental Problems II, Notes on Numerical Fluid Mechanics, vol.73,
Vieweg, 2000, pp. 144-151.

130

[12] B. Meini, Matrix Equations and Structures: Efficient Solution of Special discrete
Algebraic Riccati Equations, in: Second Conference on Numerical Analysis and

Applications, LNIS 1988, Springer, Berlin, 2000, pp. 578-585.

[13] J. Rissanen, Solution of linear equations with Hancel and Teoplitz matrices,
Numer. Math. 22 (1974) 361-366.

[14] O. Rojo, A new method for solving symmetric circulant tridiagonal systems of
linear equations, Computers Math. Applic. 20 (1990) 61-67.

[15] X. Zhan, Computing the extremal positive definite solutions of a matrix
equation, Siam J. Sci. Comput. 17 (1996) 1167-1174.

131

.

132

Article 3

A Method for Solving Hermitian Pentadiagonal Block Circulant

Systems of Linear Equations

Published in

LNCS 2907, Springer

481-488, 2004

133

.

134

A Method for Solving Hermitian

Pentadiagonal Block Circulant Systems of

Linear Equations

Borislav V. Minchev a, Ivan G. Ivanov b

aDepartment of Computer Science, University of Bergen,

Thormhlensgate 55, N-5020 Bergen, Norway

bFaculty of Economics and Business Administration,

Sofia University, Sofia 1113, Bulgaria

Abstract

A new effective method and its two modifications for solving Hermitian pentadi-
agonal block circulant systems of linear equations are proposed. New algorithms
based on the proposed method are constructed. Our algorithms are then compared
with some classical techniques as far as implementation time is concerned, number
of operations and storage. Numerical experiments corroborating the effectiveness of
the proposed algorithms are also reported.

Key words: linear system, block circulant matrix, matrix equation, Woodbury’s
formula
1991 MSC: 65F10

1 Introduction

Linear systems of equations having circulant coefficient matrices appear in
many applications. For example, in finite difference approximations to elliptic
equations subject to periodic boundary conditions [2,8] and in approximations
of periodic functions using splines [1,9]. In case when multidimensional prob-
lems are concerned the coefficient matrices of the resulting linear systems are
with block circulant structure [7].

Email addresses: Borko.Minchev@ii.uib.no (Borislav V. Minchev),
i−ivanov@feb.uni-sofia.bg (Ivan G. Ivanov).
URL: http://www.ii.uib.no/∼borko (Borislav V. Minchev).

Published in LSSC, LNCS 2907, Springer, 481-488, 2004

In this paper we propose a new method and its two modifications for solv-
ing Hermitian pentadiagonal block circulant systems of linear equations. It is
known that these systems have the form

W x = f, (1)

where

W =































M N S S∗ N∗

N∗ M N S S∗

S∗ N∗ . . . 0
S∗

.

0 . . . N S

S S∗ N∗ M N

N S S∗ N∗ M































(2)

is Hermitian pentadiagonal block circulant matrix with block size n. M , N

and S are m×m matrices, x = {xi}i=1,...,n, f = {fi}i=1,...,n, are column vectors
with block size n, xi and fi, are blocks with size m× 1.

Our goal is to construct a new effective method for solving (1) and then to
compare it with some classical techniques.

The paper is organized as follows: in Section 2 we present the new method and
discuss its two modifications based on different applications of the Woodbury’s
formula [4]; in Section 3 we report some numerical experiments corroborating
the effectiveness of the proposed algorithms.

2 A Modification of LU factorizations

Adapting the ideas suggested in [6], we construct a new method for solving
linear systems with coefficient matrices of the form (2). Our approach is based
on the solution of a special nonlinear matrix equation. One can fine the solution
of (1) using the following steps:

Step 1. Solve the parametric linear system

T y = f, (3)

where

T =





















X Y S

Y ∗ Z N . 0
S∗ N∗ M . .

. . . . S

0 . . . N

S∗ N∗ M





















136

is pentadiagonal matrix with block size n. It has a block Teoplitz structure
except for the north-western corner, y = {yi}i=1,...,n, and f = {fi}i=1,...,n are
column vectors with blocks size n, yi and fi are blocks with size m× 1.

The matrix T admits the following LU factorization

T = LU =

















Im

Y ∗X−1 . 0
S∗X−1 . .

. . .

0 S∗X−1 Y ∗X−1 Im

































X Y S 0
. . .

. . S

0 . Y

X

















,

where Im is the identity matrix with size m×m.
The above decomposition exists when the parameters X = X∗, Y and Z = Z∗

satisfy the relations
∣

∣

∣

∣

∣

∣

∣

Z = Y ∗X−1Y +X

N = Y ∗X−1S + Y

M = S∗X−1S + Z

. (4)

Let us introduce the following notations

F =

(

X Y

Y ∗ Z

)

, Q =

(

S 0
N S

)

, R =

(

M N

N∗ M

)

. (5)

If F is a positive definite solution of the matrix equation

F +Q∗F−1Q = R (6)

and X = X∗ > 0, Z = Z∗ > 0 then the blocks X, Y and Z satisfy the
system (4).

Thus, solving the linear system (3) is equivalent to solve two simpler systems

L z = f, z = {zi}i=1,...,n

U y = z, y = {yi}i=1,...,n.

Step 2. Solve the pentadiagonal block Teoplitz linear system

P u = f, (7)

137

where

P =



























M N S

N∗ M N . 0
S∗ N∗ M . .

.

. . . . S

0 . . . N

S∗ N∗ M



























(8)

is Hermitian pentadiagonal block Teoplitz matrix with block size n, u =
{ui}i=1,...,n and f = {fi}i=1,...,n are column vectors with block size n , ui and
fi are blocks with size m× 1.
The matrices T and P satisfy the relation P = T + J2V̂ , where

J2 =

(

Im 0 0 . . . 0
0 Im 0 . . . 0

)T

, V̂ =

(

M −X N − Y 0 . . . 0
N∗ − Y ∗ M − Z 0 . . . 0

)

are matrices with block size n× 2 and 2× n respectively.
Using the Woodbury’s formula we have

P−1 = T−1 − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ T−1, (9)

where I2m is the identity matrix with size 2m× 2m. Therefore, the solution u

of (7) is given by

u = P−1f = y − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ y.

One can find the matrix T−1J2 by solving 2m linear systems of type (3) with
right-hand sides the corresponding two different columns of J2. This approach
does not take into account the very sparse nonzero structure of J2. For real
M , N and S it costs O(20nm3) flops and needs to store 2nm2 real numbers.
In order to decrease the number of operations needed to compute T−1J2, we
consider a new approach which is motivated by the ideas suggested in [5].
Let us denote the block columns vectors of J2 with E1 and E2 respectively i.e.

E1 =
(

Im 0 0 . . . 0
)T

, E2 =
(

0 Im 0 . . . 0
)T

.

Put A = Y ∗X−1 and B = S∗X−1.

The matrix T admits the following decomposition

T = LDL∗, where L =

















Im

A . 0
B . .

. . .

0 B A Im

















138

is a square matrix of block size n and D = diag(X, . . . , X).

Let (L−1)ij be the blocks of the matrix L−1. We have

(

L−1
)

ij
=

{

0 i < j

Zi−j+1 i ≥ j,
where

Z1 = Im, Z2 = −A, Z3 = A2 −B,

Zj = −AZj−1 −BZj−2 for j = 4 . . . n.

Obviously D−1 = diag(X−1, . . . , X−1).
We propose to compute T−1J2 by consecutive calculations of T

−1E1 and T−1E2

using the following algorithm:

Algorithm RP Recursive computations for Pentadiagonal system

• Find the cells Ki = X−1Zi for i = 1, . . . , n by the formulas

K1 = X−1

K2 = −X−1A

Ki = −Ki−1A−Ki−2B for i = 3, . . . n.

• Compute the blocks (T−1E1)i and (T
−1E2)i by the formulas

(T−1E1)n=Kn

(T−1E1)n−1=Kn−1 − A∗(T−1E1)n
(T−1E1)i=Ki − A∗(T−1E1)i+1 −B∗(T−1E1)i+2 for i = n− 2, . . . , 2

(T−1E1)1=X−1 − A∗(T−1E1)2 −B∗(T−1E1)3

(T−1E2)n=Kn−1

(T−1E2)n−1=Kn−2 − A∗(T−1E2)n
(T−1E2)i=Ki−1 − A∗(T−1E2)i+1 −B∗(T−1E2)i+2 for i = n− 2, . . . , 2

(T−1E2)1=−A∗(T−1E2)2 −B∗(T−1E2)3.

If the blocksM , N and S are real the algorithm RP costs O(12nm3) flops and
needs to store (3n+2)m2 real numbers. According to the above algorithm, in
the next step, we consider two different approaches for solving (1).

Step 3. Solve the system (1)

3.1 The matrix W satisfies the relation

W = P + Ũ Ṽ ,

where

Ũ =



















Im 0 0 0
0 Im 0 0
...
...
...
...

0 0 Im 0
0 0 0 Im



















, Ṽ =











0 0 . . . S∗ N∗

0 0 . . . 0 S∗

S 0 . . . 0 0
N S . . . 0 0











139

are matrices with block size n× 4 and 4× n respectively.
Using the Woodbury’s formula we have

W−1 = P−1 − P−1Ũ
[

I4m + Ṽ P−1Ũ
]−1

Ṽ P−1,

where I4m is the identity matrix of size 4m× 4m.
The solution x of (1) is obtained from the vector u by the formula

x = W−1f = u− P−1Ũ
[

I4m + Ṽ P−1Ũ
]−1

Ṽ u.

Denote the block columns vectors of Ũ by E1, E2, En−1 and En respectively.
Thus, the computation of P−1Ũ can be done by consecutive calculations of
P−1E1, P−1E2, P−1En−1 and P−1En using the formula (9). For i = 1, 2,
n− 1, n we have

P−1Ei = T−1Ei − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ T−1Ei. (10)

Note that the numerical implementation of formulas (10) is very “cheap”, since

we already know from Step 2 the elements T−1J2 and
[

I2m + V̂ T−1J2

]−1
. We

recommend formulas (10) instead of solving 4m linear system of the form (7)
with right hand side the corresponding column vectors of Ũ . It is easy to
observe that the blocks of T−1En−1 and T−1En satisfy the relations

(T−1En−1)n = K∗
2 ,

(T−1En−1)i = K∗
n−i −K∗

n−i+1A for i = n− 1, . . . , 1,

(T−1En)i = K∗
n+1−i for i = n, . . . , 1,

where Ki for i = 1, . . . , n are the blocks from algorithm RP.

3.2 In order to decrease the size of the inverse matrix in the Woodbury’s
formula, we propose the following decomposition of the matrix W

W =

(

P V

V ∗ R

)

,

where P is from (8), with block size n− 2× n− 2, R is from (5) and

V ∗ =

(

S 0 . . . S∗ N∗

N S . . . 0 S∗

)

is a matrix with block size 2× n− 2.
Put

x̂ =
(

x1, . . . , xn−2

)T

, x̃ =
(

xn−1 xn

)T

, x =

(

x̂

x̃

)

,

f̂ =
(

f1, . . . , fn−2

)T

, f̃ =
(

fn−1 fn

)T

, f =

(

f̂

f̃

)

.

140

In this notations system (1) can be written in the form

(

P V

V ∗ R

)(

x̂

x̃

)

=

(

f̂

f̃

)

,

which is equivalent to
∣

∣

∣

∣

∣

Gx̂ = r

x̃ = R−1
(

f̃ − V ∗x̂
)

,

where G = P − V R−1V ∗, r = f̂ − V R−1f̃ .

By Woodbury’s formula we have

G−1 = P−1 + P−1V
[

R− V ∗P−1V
]−1

V ∗P−1.

Therefore,

x̂ = G−1r = z + P−1V [R− V ∗P−1V]
−1

V ∗z,

where z = P−1r can be computed by means of Step 2.
Denote the block columns vectors of V with H1 and H2 respectively. The
computation of P−1V can also be done by consecutive calculations of P−1H1

and P−1H2 using the formula (9). For i = 1,2

P−1Hi = T−1Hi − T−1J2

[

I2m + V̂ T−1J2

]−1
V̂ T−1Hi.

The numerical implementation of the last formulas is again “cheap”, since we

already know from Step 2 the elements T−1J2 and
[

I2m + V̂ T−1J2

]−1
. The

blocks of T−1H1 and T−1H2 satisfy the relations

(T−1H1)i = (T
−1E1)iS

∗ +K∗
n−2−iS +K∗

n−i−1Q̃ for i = 1, . . . , n− 3

(T−1H1)n−2 = (T
−1E1)n−2S

∗ +K∗
1Q̃

(T−1H2)i = (T
−1E1)iN

∗ + (T−1E2)iS
∗ +K∗

n−1−iS for i = 1, . . . , n− 2,

where Q̃ = N−AS andKi for i = 1, . . . , n are the blocks from Algorithm RP.

3 Numerical experiments

In this section we compare our algorithms with some classical techniques for
solving (1), with W given as in (2), and the exact solution x = (1, 1, . . . , 1)T .

In our numerical experiments, W is Hermitian pentadiagonal block circulant
with several block sizes n. The algorithms are compared by means of execution
time and accuracy of the solution.

141

Table 1
Execution time (in seconds) and errors for Example 1

m = 3
Algorithm n = 4000 n = 6000 n = 8000

Err. time Err. time Err. time

LU 1.4482e-015 2.95 1.4482e-015 6.04 1.4482e-015 10.15
CHOL 2.2888e-015 2.00 2.2888e-015 3.23 2.2888e-015 5.44
M_RP(4m) 4.2635e-014 1.95 4.1064e-014 3.14 4.7126e-014 5.02
M_RP(2m) 3.3956e-014 1.63 4.1081e-014 2.62 6.0280e-014 4.34

The codes are written in MATLAB language and the computations are done
on an AMD computer. The results of the experiments are given in different
tables for each example.

The following notations are used: LU stands for classical LU factorization;
CHOL stands for the classical Cholesky factorization; M_RP(4m) stands for
algorithm based on the proposed new method using Step 3.1; M_RP(2m)
stands for algorithm based on the proposed new method using Step 3.2;
Err. = ‖x− ˜̃x‖∞, where ˜̃x is the computed solution.

To solve the system (1) we need to compute a positive definite solution of the
matrix equation (6). The sufficient condition for the existence of a positive

definite solution is ‖R− 1

2 QR− 1

2‖ ≤ 1
2
, (see [3]). In the next two examples the

cells of the matrix W , which form the matrices R and Q, are chosen to satisfy
this condition.

Example 1 Let

M =







8 1− i 1.5
1 + i 9 1
1.5 1 8





 , N =







0 1 0
0 2 0
1− i 0 0





 ,

S =







1.2− 3i −0.3− i 0.1
−0.30 2.1 0.2
0.1 0.2 0.65 + 2i





 .

In Table 1, we present the execution time (in seconds) and the error for each
algorithm for different values of n.

Example 2 Let

M = circ(22,−8, 1, . . . , 1,−8), N = circ(−7.2, 1.8, . . . , 1.8)

are circulant matrices and S = I.

The results from the numerical experiments for this example are given in
Table 2.

142

Table 2
Execution time (in seconds) and errors for Example 2

m = 7
Algorithm n = 4000 n = 6000 n = 8000

Err. time Err. time Err. time

LU 1.7764e-015 3.49 1.7764e-015 6.66 1.7764e-015 11.01
CHOL 1.9984e-015 2.39 1.9984e-015 3.90 1.9984e-015 5.98
M_RP(4m) 2.6182e-014 2.14 3.2072e-014 3.40 3.7038e-014 4.88
M_RP(2m) 2.5537e-014 1.87 3.1282e-014 2.83 3.6124e-014 4.47

4 Conclusions

The proposed new algorithms M_RP(2m) and M_RP(4m) are faster than the
classical LU and CHOL. From the theoretical discussions and the numerical
experiments, we can conclude that Algorithm M_RP(2m) is most suitable for
implementation. This is due to the size of the inverse matrix in the Wood-
bury’s formula. The inverse matrix in M_RP(2m) is two times smaller than
the inverse matrix in M_RP(4m). This leads to a considerable decrease in the
execution time.

The complexity of the proposed new algorithms is O(nm3). For compari-
son, algorithm based on the Fast Fourier Transform (FFT) has complexity
O(nm log(n)), but it can be implemented only when the block size of the ma-
trixW is power of two. Our method does not have these restrictions. The only
restriction on the applicability of our method is related with the existence of
a solution of the matrix equation (6).

References

[1] J. H. Ahlberg, E. N. Nilson, J. L. Walsh, The Theory of Splines and Their

Applications, Academic Press, New York, 1967.

[2] R. Chan, T. Chan, Circulant preconditioners for elliptic problems, sJ. Numer.
Linear Algebra Appl. 1, (1992), 77-101.

[3] J. C. Engwerda, On the Existence of a Positive Definite Solution of the Matrix
Equation X +AT X−1A = I, Linear Algebra Appl., 194, (1993), 91-108.

[4] G. Golub, C. Van Loan, Matrix Computation, The John Hopkins University
Press, Baltimore, 1989.

[5] B. Minchev, Some Algorithms for Solving Special Tridiagonal Block Teoplitz
Linear Systems, J. Comp. and Appl. Math. vol. 156/1, (2003), 179-200.

143

[6] B. Mintchev, I. Ivanov, On the Computer Realization of Algorithms for Solving
Special Block Linear Systems, Applications of Mathematics in Engineering and

Economics’27, Heron Press, Sofia (2002), 303-313.

[7] C. Mingkui, On the Solution of circulant linear systems, SIAM J. Numer.

Analysis 24, (1987), 668-683.

[8] W. L. Wood, Periodicity effects on the iterative solution of elliptic difference
equations, SIAM J. Numer. Analysis 8, (1971), 439-464.

[9] U. Zavyalov, B. Kvasov, V. Miroshnichenko, Spline Functions Methods (in
Russian), Moscow, 1980.

144

ISBN 82-92610-01-4

Bergen, Norway 2004

