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Abstract

A new effective modification of the method which is described in [1]
for solving of real symmetric circulant pentadiagonal systems of linear
equations is proposed. We consider the case where the coefficient matrix
is not diagonal dominant. This paper shows efficiency and stability of the
presented method.

1. Introduction

In many problems we must solve linear systems having circulant coefficient
matrices [3, 4]. The circulant matrices can be factored as a product of two
simpler circulants and the systems may then be solved by using the Woodbury
formula.

In [1] is proposed a new stable method for solving of real symmetric pen-
tadiagonal circulant linear algebraic systems of equations where the coefficient
matrix is strongly diagonal dominant. Here we extend this method for solving
of real symmetric pentadiagonal circulant linear systems where the coefficient
matrix is not diagonal dominant. Such kind of systems have the form

Mx = f (1)

where

M = M(a, b, c, 0, . . . , 0, c, b) =




a b c c b
b a b . c
c b a . . 0

. . . . .
. . . . .

. . . . .
0 . . . . .

c c b a b
b c c b a




is n×n matrix (n ≥ 5). We assume that M is not a diagonal dominant matrix,
i.e.

|a| < 2|b|+ 2|c| (2)

where c 6= 0. The proposed method uses LU -decomposition. There are condi-
tions for coefficeients a, b, c for which the LU -decomposition exists. We carry out
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numerical experiments which help us to find the optimal decomposition. Fur-
ther on without loss of generality we assume that a < 0, c = −1 or a < 0, c = 1.
Then for these two cases (2) takes the form

− a < 2m + 2, (3)

where m = |b|.

2. Symmetric 3-parametric Pentadiagonal Linear Systems

In this section we shall describe the algorithm for computing a LU -decomposition
of a 3-parametric pentadiagonal matrix N fron the form

N = N(a, b, c; α, β, γ) =




α β c
β γ b .
c b a . . 0

. . . . .
. . . . .

. . . . c
0 . . . b

c b a




.

The problem is to find the parameters α, β, γ in such a way that N to have
a real LU -factorization

N = LU. (4)

I. First case : c = −1 a < 0, −a < 2m + 2.
In this case we find L and U in LU -factorization (4) of the form

L =




1
β
α 1
− 1

α . . 0
. . .

. . .
. . .

0 . . .

− 1
α

β
α 1




, U =




α β −1
. . .

. . . 0
. . .

. . .
. . −1

0 . β
α




,

i.e.
N = α L LT =

1
α

UT U.

The last equations are equivalent to nonlinear system
∣∣∣∣∣∣∣∣

γ + 1
α = a

β − β
α = b

α + β2

α = γ

(5)
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From (5) by eliminating of β and γ and puting

x = α +
1
α

(6)

we obtain the square equation

F (x) = x2 − x(2 + a) + m2 + 2a = 0. (7)

From (7) we get two values for x

x1 = (2+a)+
√

(2+a)2−4(m2+2a)

2 , x2 = (2+a)−
√

(2+a)2−4(m2+2a)

2 .

According to (3) we obtain that there are real solutions x1 and x2 of the
equation (7) if

∣∣∣∣
a < −2
m ∈ (−a−2

2 ,−a−2
2

] or
∣∣∣∣
−2 < a < 0
m ∈ [

0,−a−2
2

]

Obviously x2 ≤ x1.
From (6) we obtain the following square equation

α2 − αxi + 1 = 0, i = 1, 2.

The solutions are

α11 = x1+
√

x2
1−4

2 α21 = x1−
√

x2
1−4

2

α12 = x2+
√

x2
2−4

2 α22 = x2−
√

x2
2−4

2

There are six cases: x2 ≤ x1 ≤ −2, x2 ≤ −2 ≤ x1 ≤ 2, x2 ≤ −2 < 2 ≤
x1, −2 ≤ x2 ≤ 2 ≤ x1, −2 ≤ x2 ≤ x1 ≤ 2, 2 ≤ x2 ≤ x1.

We obtain that if a and m satisfy the conditions
∣∣∣∣

a < −18
m ∈ (−a−2

2 ,−a−2
2

) or
∣∣∣∣
−18 ≤ a < −6
m ∈ [√−8− 4a,−a−2

2

) (8)

then there are 4 different values of α for which x2 < x1 < −2.
If ∣∣∣∣

−18 < a < −2
m ∈ (−a−2

2 ,
√−8− 4a

] (9)

then there are two different real values of α received from x2 and x2 < −2.
Further on we compute the corresponding βij , γij

βij =
bαij

αij − 1
, γij = αij +

β2
ij

αij
.

In other cases there are not real values of α so that N = LU .
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Theorem 1. For coefficients αij in case (8) we have
(i) α22 = min1≤i,j≤2 αij

(ii) α22 < −1
Proof. We will prove the case (i). We know x2 < x1 < −2. Hence

−
√

x2
2 − 4 < −

√
x2

1 − 4 < 0 <
√

x2
1 − 4 <

√
x2

2 − 4.

From the above inequalities we have

x2 −
√

x2
2 − 4 < x1 −

√
x2

1 − 4
α22 < α21

and

x2 −
√

x2
1 − 4 < x1 +

√
x2

2 − 4
α22 < α11

Obviously α22 < α12.
Hence

α22 = min
1≤i,j≤2

αij .

We will prove the case (ii) . We have x2 < x1 < −2.
Then x2 −

√
x2

2 − 4 < −2.
Hence

α22 < −1.

We denote L−1 = (ηij) = (ηi−j) the inverse matrix of L. Here ηij = 0
for i < j. We can compute the elements ηk, (k > 0) by the formula

ηk =
α

∆

[(
∆− β

2α

)k+1

+ (−1)k

(
∆ + β

2α

)k+1
]

,

where ∆ =
√

β2 + 4α and α = αi,j , β = βi,j i, j = 1, 2.
We shall prove that ηk → 0 where k → ∞ in case (8), i.e. where exist 4

different values of α.
Theorem 2. Assume α = α22 and β = β22 then β2 + 4α > 0.
Proof. The condition β2 + 4α > 0 is equivalent to

ϕ(α) = 4α2 + (m2 − 8)α + 4 < 0.

Solutions of ϕ(α) = 0 are ρ1 = 8−m2−m
√

m2−16
8 and ρ2 = 8−m2+m

√
m2−16

8 .
We will prove that ρ1 < α < ρ2.
It is easy to see that α < −1 < ρ2.

Using the inequality (a + 4) < x2 we obtain a+4−√a2+8a+12
2 < α.
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Consider the function l(m) = 8 − m2 − m
√

m2 − 16 which is monotone
decreasing in case (8).

Consequently

1
8
l(m) <

1
8
l(
√−8− 4a) =

1
2
(4 + a−

√
a2 + 8a + 12) < α i.e.ρ1 < α.

Hense ρ1 < α < ρ2.
Theorem 3. Assume α = α22, β = β22 , q1 = ∆−β

2α and q2 = ∆+β
2α . Then

|q1| < 1, |q2| < 1.

Proof. We have sign(∆ − β) = sign(−β) = sign(−b) and sign(∆ + β) =
sign(β) = sign(b). Consider two cases

1. Case. Assume b < 0. Hence q1 < 0 and q2 > 0. We shall prove that
−1 < q1 < 0 and 0 < q2 < 1.

We have m < −a−2
2 in our case (8). Then 2m + a− 2 < 0 and we obtain

2m + a− 2−
√

(2 + a)2 − 4(m2 + 2a) < 0

m + x2 − 2 < 0

2α− αx2 + bα < 0

According to (6) we have αx2 = α2 + 1. Then 1− α + bα
α−1 > 0.

Consequently
1 + β − α > 0. (10)

We use α < x2
2 and receive

m + 2(α− 1) < m + x2 − 2 < 0

−b + 2(α− 1) < 0

β − 2α > 0. (11)

According to (10) and (11) receive ∆ < β − 2α .
The last inequality is iquivalent to the inequality −1 < q1 < 0.
The inequalities 0 < q2 < 1 easy follow from (11).
2. Case. Assume b > 0. The proof is similar to the prof in first case.
II. Second case : c = 1, a < 0, −a < 2m + 2. In this case we obtain that

there are not real values of α for which to exist a real LU -decomposition.
In next two sections we describe the algorithm for solving the linear system

(1).

3. Solution of Pentadiagonal Symmetric Toeplitz Linear System
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Here we shall apply the results from section 2 for solving symmetric Toeplitz
linear system of the form Pu = f, where the symmetric Toeplitz matrix P
has the form

P = P (a, b, c; a, b, a) =




a b c
b a b .
c b a . . 0

. . . . .
. . . . .

. . . . c
0 . . . b

c b a




and a < 0, c = −1 and −a < 2m + 2. Consider the linear system

Ny = f, (12)

where N = N(a, b, c; α, β, γ). The parameters (α, β, γ) can be found as in section
2. We use the received LU -decompisition and transform the system (12) into
two triangular systems Lz = f and Uw = z. Solutions of the last two triangular
systems can be obtained by the formulas

∣∣∣∣∣∣

z1 = f1

z2 = f2 − β
αz1

zi = fi − β
αzi−1 + 1

αzi−2, i = 3, . . . , n

and
∣∣∣∣∣∣

wn = zn

α

wn−1 = zn−1−βwn

α
wn−i = 1

α

(
zn−i − βwn−(i−1) + wn−(i−2)

)
, i = 2, . . . , n− 1

Further for the matrix

R =

(
a− α b− β

b− β a− γ

)
=

1
α

(
β2 + 1 −β

−β 1

)

we use the factorisation R = 1
αSST , where

S =




√
β2 + 1 0

− β√
β2+1

1√
β2+1


 .

In this case the matrices P and N are conected by the relation

P = N +
1
α

B BT , (13)
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where B =
(

S
0

)
is n× 2 matrix and 0 is the (n− 2)× 2 zero matrix. Using

(13) and the Woodbury’s formula [2] we receive

P−1 = N−1 − 1
α

N−1B(I +
1
α

BT N−1B)−1BT N−1;

u = P−1f = y − 1
α

N−1B(I +
1
α

BT N−1B)−1BT y.

4. Solving of pentadiagonal symmetric circulant linear system

Now we can start with consideration of our new method for solving n × n
linear system of the kind (1) where a < 0, c = −1, a < 2m + 2. We introduce
the notations

f̂ = (f1, f2, . . . , fn−2)T , f̃ = (fn−1, fn)T , f =
(

f̂

f̃

)
;

x̂ = (x1, x2, . . . , xn−2)T , x̃ = (xn−1, xn)T , x =
(

x̂
x̃

)
;

Q =

( −1 b

0 −1

)
, V T =

(
QT , 0T , Q

)
, A =

(
a b

b a

)
,

where 0 is (n− 6)× 2 zero matrix. According to above notations the system (1)
can be writen in the form

(
P V

V T A

) (
x̂

x̃

)
=

(
f̂

f̃

)
, (14)

where (n− 2)× (n− 2) matrix P has the form P = P (a, b,−1; a, b, a). But (14)
is equivalent to

Px̂ + V x̃ = f̂

V T x̂ + Ax̃ = f̃
(15)

After elimination of x̃ from (15) we get the linear system

Gx̂ = r,

where
G = P − V A−1V T , r = f̂ − V A−1f̃ . (16)

If we apply again the Woodbury’s formula from the first relation (16) we obtain

G−1 = P−1 + P−1V (A− V T P−1V )−1V T P−1
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and
x̂ = G−1r = u + P−1V (A− V T P−1V )−1V T u, (17)

where u = P−1r.
Finding of x̂ from (17) we get x̃ from the second equation (15) by formula

x̃ = A−1(f̃ − V T x̂).

5. Numerical experiments

The method described here were tried for n × n symmetric circulant linear
systems Mx = f with exact solution x = (1, 1, . . . , 1)T .

Example 1. We compute solutions of system (1) where a and m satisfy con-
ditions (8). There are four different real values of α which are α22, α21, α12, α11

and α22 is the smallest value.
Table 1.

n ε = ||x− x̃||∞
a = −20, b = 10 a = −30, b = −15 a = −16, b = 8

α22 α22 α22

10 8.8818E − 16 5.5511E − 16 2.2204E − 16
30 1.1102E − 15 1.3323E − 15 2.2204E − 16
50 1.3323E − 15 1.3323E − 15 4.4409E − 16
100 1.3323E − 15 1.5543E − 15 4.4409E − 16
500 1.3323E − 15 1.4433E − 15 4.4409E − 16
1000 1.3323E − 15 1.4433E − 15 4.4409E − 16

6. Conclusion

The method described here is a very effective and stable one, provided opti-
mal LU factorization is used.

Our method is competitive the other methods [3] for solving circulant linear
systems which appear in many appliications.
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