
Journal of Computational and Applied Mathematics 156 (2003) 179–200
www.elsevier.com/locate/cam

Some algorithms for solving special tridiagonal block Toeplitz
linear systems
Borislav V. Minchev

Department of Computer Science, University of Bergen, Bergen N-5020, Norway

Received 14 April 2002; received in revised form 25 October 2002

Abstract

This paper is focused on di1erent methods and algorithms for solving tridiagonal block Toeplitz systems
of linear equations. We consider the El-Sayed method (Ph.D. Thesis, 1996) for such systems and propose
several modi9cations that lead to di1erent algorithms, which we discuss in detail. Our algorithms are then
compared with some classical techniques as far as implementation time is concerned, number of operations
and storage. Comments and conclusions for computing e:ciency of the proposed new algorithms are given.
Numerical experiments corroborating the theoretical results are also presented.
c© 2003 Elsevier Science B.V. All rights reserved.

MSC: 65F10

Keywords: Linear system; Block Toeplitz matrix; Matrix equation; Woodbury’s formula

1. Introduction

Many problems arising in practice lead to the solution of linear systems of equations with spe-
cial coe:cient matrices. Tridiagonal block Toeplitz linear systems arise in numerical solution of
ordinary and partial di1erential equations (ODE and PDE), interpolation problems,
boundary value problems (BVP), etc. [2,3,7,13]. It is known that these systems have the
form

Mx = f; (1)

E-mail address: borko@ii.uib.no (B.V. Minchev).
URL: http://www.ii.uib.no/∼borko/

0377-0427/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0377-0427(02)00911-1

mailto:borko@ii.uib.no
http://www.ii.uib.no/~borko/

180 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

where

M =

A B

B∗ A B 0

B∗ A :

: : :

: : :

: : :

0 : : B

B∗ A

; (2)

is an Hermitian tridiagonal block Toeplitz matrix with block size n. A and B are m×m matrices, x
and f are column vectors with size nm.
The aim of this paper is to discuss di1erent algorithms for solving (1) and compare them as far

as time for implementation, number of operations and storage are concerned.
We organize the present paper as follows:

1. In Section 2 we review LU factorization, Cholesky factorization [8] and adaptation the Cyclic
Reduction method [1] corresponding to the special form of M . We modify the method described
in [4].

2. In Section 3 we develop algorithms based on these modi9cations in order to optimize Joating
point operations, memory space and implementation.

3. Finally, we verify the results in a number of numerical experiments.

2. Methods for solving special block tridiagonal Toeplitz linear system

Let us recall some classical direct methods for solving the linear system (1): LU factorization,
Cholesky factorization, Cyclic Reduction [8], as well as one modi9cation of LU factorization de-
scribed in [4], which is based on the solution of a nonlinear matrix equation. For simplicity’s we
introduce the following notation x= {xi}i=1; :::; n, f= {fi}i=1; :::; n, where xi and fi are blocks with size
m × 1.

2.1. Block LU factorization

Matrix (2) admits the following LU factorization

M = LU;

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 181

where

L=

A1

B1 A2 0

B2 :

: :

: :

0 : :

Bn−1 An

; U =

F1 G1

F2 G2 0

: :

: :

: :

0 : Gn−1

Fn

;

where by the matrices Ai, Bi, Fi and Gi satisfy the relations

A1F1 = A;

B1 = B∗F−1
1 ;

G1 = A−1
1 B;

AiFi = A − Bi−1Gi−1

Bi = B∗F−1
i

Gi = A−1
i B

 for i = 2; : : : ; n − 1;

AnFn = A − Bn−1Gn−1: (3)

The matrices Ai and Fi are lower and upper triangular, respectively, and are obtained by LU factor-
ization.
Thus, solving the linear system (1) is equivalent to solving two simpler systems

Ly = f; y = {yi}i=1; :::; n

and

Ux = y; x = {xi}i=1; :::; n;

whose solutions are

y1 = A−1
1 f1;

yi = A−1
i (fi − Bi−1yi−1) for i = 2; : : : ; n (4)

and

xn = F−1
n yn;

xi = F−1
i (yi − Gixi+1) for i = n − 1; : : : ; 1; (5)

respectively.

182 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

2.2. Block Cholesky factorization

When the matrix M is positive de9nite the following factorization

M = LL∗;

exists, where

L=

A1

B1 A2 0

B2 :

: :

: :

0 : :

Bn−1 An

:

The matrices Ai, Bi satisfy the relations

A1A∗
1 = A;

B1 = B∗(A∗
1)

−1;

AiA∗
i = A − Bi−1B∗

i−1
Bi = B∗(A∗

i)
−1

}
for i = 2; : : : ; n − 1;

AnA∗
n = A − Bn−1B∗

n−1: (6)

It is well known that Ai and A∗
i are lower and upper triangular, respectively, and are obtained by

Cholesky factorization.
In this manner, solving the linear system (1) is again equivalent to solving two simpler systems

Ly = f; y = {yi}i=1; :::; n

and

L∗x = y; x = {xi}i=1; :::; n:

The solution of the 9rst system can be found by (4). The solution of the second system satis9es

xn = (A∗
n)

−1yn;

xi = (A∗
i)

−1(yi − B∗
i xi+1) for i = n − 1; : : : ; 1: (7)

2.3. Block cyclic reduction

In this section we adapt Bini’s method [1] to the special case when the coe:cient matrix is given
as in (2). Let us derive explicitly the substitution formulas for computing the block coordinates of

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 183

the solution x. Recall that block cyclic reduction can be applied only if the block size of M is
power of 2, in other words, let n= 2p. By performing an even–odd permutation of the block-rows
and block columns in (1) we obtain(

D(0)
1 L(0)

∗

L(0) D(0)
2

)(
x(0)+

x(0)−

)(
f(0)
+

f(0)
−

)
; (8)

where

x(0)+ = {x(0)+k
}k=1; :::;2p−1 ; x(0)− = {x(0)−k

}k=1; :::;2p−1 ; f(0)
+ = {f(0)

+k
}k=1; :::;2p−1 ;

f(0)
− = {f(0)

−k
}k=1; :::;2p−1

are column vectors, whose elements are blocks of size m × 1, satisfying the relations

x(0)+k
= x2k ; x(0)−k

= x2k−1; f(0)
+k
= f2k ; f(0)

−k
= f2k−1 for k = 1; : : : ; 2p−1:

The cells

D(0)
1 = D(0)

2 =

A

: 0

:

0 :

A

; L(0) =

B

B∗ : 0

: :

0 : :

B∗ B

are matrices of block size 2p−1 × 2p−1.
We apply one step of block-Gaussian elimination to (8) and obtain∣∣∣∣∣∣

(D(0)
2 − L(0)D(0)−1

1 L(0)
∗
)x(0)− = f(0)

− − L(0)D(0)−1

1 f(0)
+ ;

x(0)+ = D(0)−1

1 (f(0)
+ − L(0)

∗
x(0)−):

(9)

Let

M (1) = D(0)
2 − L(0)D(0)−1

1 L(0)
∗
;

x(1) = x(0)− ;

f(1) = f(0)
− − L(0)D(0)−1

1 f(0)
+ :

Note that now the 9rst equation of (9) has the form

M (1)x(1) = f(1): (10)

184 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

Observe, that the matrix M (1) has the form

M (1) =

F (1) B(1)

B(1)
∗

A(1) :

: : :

: : :

: : B(1)

B(1)
∗

A(1)

;

where F (1) = A − BA−1B∗. Obviously, it is also a block tridiagonal matrix and, except for the
north-western corner block F (1) it has a block Toeplitz structure, with block size 2p−1×2p−1. Ap-
plying once again an even–odd permutation of the block rows and block columns to (10), we obtain(

D(1)
1 L(1)

∗

L(1) D(1)
2

)(
x(1)+

x(1)−

)(
f(1)
+

f(1)
−

)
; (11)

where

x(1)+ = {x(1)+k
}k=1; :::;2p−2 ; x(1)− = {x(1)−k

}k=1; :::;2p−2 ; f(1)
+ = {f(1)

+k
}k=1; :::;2p−2 ;

f(1)
− = {f(1)

−k
}k=1; :::;2p−2

are column vectors, whose elements are blocks of size m × 1 and satisfy the relations

x(1)+k
= x(1)2k ; x(1)−k

= x(1)2k−1; f(1)
+k
= f(1)

2k ; f(1)
−k
= f(1)

2k−1 for k = 1; : : : ; 2p−2:

Again the cells

D(1)
1 =

A(1)

: 0

:

0 :

A(1)

; D(1)
2 =

F (1)

A(1) 0

:

0 :

A(1)

;

L(1) =

B(1)

B(1)
∗

: 0

: :

0 : :

B(1)
∗

B(1)

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 185

are matrices of block size 2p−2 × 2p−2. We apply again one step of Gaussian elimination to (11)
and obtain

M (2)x(2) = f(2);

where M (2) is of the same type as M (1), but with block size 2p−2 × 2p−2. Proceeding in a similar
fashion, we obtain a sequence of linear systems of the form

M (j)x(j) = f(j) for j = 1; : : : ; p;

where

M (j) =

F (j) B(j)

B(j)
∗

A(j) :

: : :

: : :

: : B(j)

B(j)
∗

A(j)

is square matrix with block of size 2p−j for j = 1; : : : ; p. When j = p the cells M (p) = F (p). The
blocks of the matrix M (j) obey the following relations:

B(j) =−B(j−1)A(j−1)
−1

B(j−1);

A(j) = A(j−1) − B(j−1)
∗
A(j−1)

−1
B(j−1) − B(j−1)A(j−1)

−1
B(j−1)

∗
;

F (j) = F (j−1) − B(j−1)A(j−1)
−1

B(j−1)
∗
;

 for j = 1; : : : ; p; (12)

where A(0) = A, B(0) = B, F (0) = A.
For the block column vectors f(j) and x(j), we have

f(j) = f(j−1)
− − L(j−1)D(j−1)

1 f(j−1)
+ for j = 1; : : : ; p

f(j)
+k
= f(j)

2k ; f(j)
−k
= f(j)

2k−1 for k = 1; : : : ; 2p−j−1 for j = 0; : : : ; p − 1
(13)

and

x(j−1)− = x(j);

x(j−1)+ = D(j−1)−1
1 (f(j−1)

+ − L(j−1)
∗
x(j−1)−);

x(j−1)2k = x(j−1)+k
; x(j−1)2k−1 = x(j−1)−k

for k = 1; : : : ; 2p−j−2;

 for j = p; : : : ; 1; (14)

where f(0) = f; x(p) = F (p)
−1

f(p), x(0) = x.

186 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

The cells

D(j)
1 =

A(j)

: 0

:

0 :

A(j)

; L(j) =

B(j)

B(j)
∗

: 0

: :

0 : :

B(j)
∗

B(j)

for j = 0; : : : ; p − 1

are square matrices of block size 2p−j−1.

2.4. A modi6cation of LU factorization

In 1990 Rojo [14] proposed a new method for solving symmetric circulant tridiagonal linear sys-
tems and in recent years it has been modi9ed to dial with matrices M having a special structure. For
instance, in [5] it is adapted to the case when the coe:cient matrix M is pentadiagonal and strongly
diagonally dominant. In [11] M is allowed to be not diagonally dominant. El-Sayed [4] extended
Rojo’s method to tridiagonal block matrices. His approach consists in introducing a nonlinear matrix
equation to solving problem (1). The algorithms we propose in this paper are based on [4] and
investigate di1erent approaches for solving the nonlinear matrix equation of El-Sayed. We discuss
Woodbury’s formula and its numerical implementation.
Firstly, let us describe an algorithm for solving parametric linear systems of the form.

Ny = f; (15)

where

N =

X B

B∗ A : 0

: : :

: : :

: : :

0 : : B

B∗ A

is a block tridiagonal matrix with block size n, X is a parameter block of size m × m, and
the vectors y = {yi}i=1; :::; n, and f = {fi}i=1; :::; n are column vectors consisting of n blocks of
size m × 1.

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 187

The matrix N admits the following LU factorization

N = LU =

I

B∗X−1 : 0

: :

0 : :

B∗X−1 I

X B

: : 0

: :

0 : B

X

;

where I is the m×m identity matrix. The above factorization exists when the parameter X satis9es
the nonlinear matrix equation

X + B∗X−1B= A: (16)

Thus, solving the linear system (15) is equivalent to solving two simpler systems

Lz = f; z = {zi}i=1; :::; n;

Uy = z; y = {yi}i=1; :::; n; (17)

whose solutions are

z1 = f1;

zi = fi − B∗X−1zi−1; i = 2; 3; : : : ; n;

yn = X−1zn;

yi = X−1(zi − Byi+1); i = n − 1; n − 2; : : : ; 1; (18)

respectively.
Now, we can 9nd the solution of (1). The matrices M and N are related by relation

M = N + E1V T
1 ;

where

E1 =

I

0

...

0

 ; V T

1 = (A − X 0 : : : 0) :

Using Woodbury’s formula we have

M−1 = N−1 − N−1E1(I + V T
1 N−1E1)−1V T

1 N−1:

188 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

Therefore, the solution x of (1) is obtained from the vector y as follows:

x=M−1f

=N−1f − N−1E1(I + V T
1 N−1E1)−1V T

1 N−1f

= y − N−1E1(I + (A − X)ET1N
−1E1)−1V T

1 y

= y − N−1E1(I + (A − X)ET1N
−1E1)−1(A − X)y1: (19)

El-Sayed proposes following decomposition

N = LDV;

for computing N−1E1 and ET1N
−1E1, where

L=

I

P : 0

: :

0 : :

P I

; V =

I Q

: : 0

: :

0 : Q

I

;

D = diag(X; X; : : : ; X)

are square matrices of block size n, P = B∗X−1 and Q = X−1B.
The matrix N−1 becomes

N−1 = V−1D−1L−1:

If we denote L−1 = (Lij) and V−1 = (Vij), then

Lij =

{
0; i ¡ j

(−1)i−jPi−j; i¿ j;

Vij =

{
0; i ¿ j

(−1)j−iQj−i; i6 j;

D−1 = diag(X−1; X−1; : : : ; X−1):

Therefore, the blocks (N−1E1)i of the vector N−1E1 satisfy the formulas

(N−1E1)i =
(
V−1D−1L−1E1

)
i

=
n∑

s=i

(−1)i+1Qs−iX−1Ps−1 for i = 1; : : : ; n: (20)

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 189

Hence

ET1N
−1E1 = (N−1E1)1 =

n∑
s=1

Qs−1X−1Ps−1: (21)

The coordinates xi of the vector x in (19) are given by

xi = yi −
[

n∑
s=i

(−1)i+1Qs−iX−1Ps−1
]

×
[
I + (A − X)

n∑
s=1

(−1)i+1Qs−1X−1Ps−1
]−1

(A − X)y1 for i = 1; : : : ; n:

Obviously, formulas (20) and (21) are not convenient to implement directly, because they require a
great number of redundant multiplications. For this reason we propose two algorithms for computing
the vector N−1E1.

Algorithm F. Solve m linear systems of type (17) with right-hand sides the corresponding to di1erent
columns of E1. Note that this approach does not take into consideration the special structure of the
right-hand sides vectors (having only a very sparse nonzero block). If the matrices A and B are real,
the algorithm costs O(8nm3) Jops and requires the storage of nm2 real numbers.

Algorithm R. The blocks (N−1E1)i are recursively computed by formula (20) using the following
algorithm:

• Find the cells Yi = (−1)n−iX−1Pn−i for i = 1; : : : ; n by

Y1 = X−1;

Yi = Yi−1(−P) for i = 2; : : : ; n:

• Compute the blocks (N−1E1)i by

(N−1E1)n = Yn;

(N−1E1)i = Yi − Q(N−1E1)i+1 for i = n − 1÷ 1:
Our theoretical investigation shows that the algorithm R:

1. Requires half as many Jops as the algorithm F, at the expense of minimal increase of storage
memory. If the matrices A and B are real the algorithm costs O(4nm3) Jops and needs to store
(n+ 2)m2 real numbers,

2. Takes advantage of the special form of the matrix E1.

3. Algorithms for solving special block tridiagonal linear systems

In this section we compare the algorithms for solving special block tridiagonal linear systems
described in Section 2 and there modi9cations.

190 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

3.1. Algorithm LU

1. Find the matrices Ai; Bi; Fi and Gi according to (3).
2. Solve the system Ly = f by (4).
3. Solve the system Ux = y by (5).

end.

If the matrices A and B are real, this algorithm requires O((15n=3)m3 + (n=3)m3 + (n=3)m3) =
O((17n=3)m3) Jops and the storage of (3n+ 1)m2 + 2nm real numbers.

3.2. Algorithm CHOL

1. Find the matrices Ai and Bi according to (6).
2. Solve the system Ly = f by (4).
3. Solve the system L∗x = y by (7).

end.

If the matrices A and B are real, this algorithm requires O((11n=3)m3 + (n=3)m3 + (n=3)m3) =
O((13n=3)m3) Jops and the storage of [(3n+ 4)=2]m2 + 3nm=2 real numbers.

3.3. Algorithm CR (cyclic reduction)

1. Find the matrices A(j); B(j) and F (j) for j = 1; : : : ; p by (12).
2. Compute the vectors f(j) for j = 1; : : : ; p by (13).
3. Solve the linear system F (p)x(p) = f(p).
4. Restore the coordinates of the vector x according to (14).

end.

If the matrices A and B are real, this algorithm requires O([18p + 2]m3 + [4pm3 + 4 ∗ 2pm2] +
2m3 + 6 ∗ 2pm2) =O([22p+4]m3 + 10 ∗ 2pm2) Jops and the storage of (2p+9)m2 + (8 ∗ 2p − 6)m
real numbers, where p= log2 n.
Some identical computations are imposed by program realization on formulas (12) and (13). It

is clear, that the vectors f(j)
− are not used in the next calculations. Based on this consideration and

according to the special structure of the cells D(j)
1 ; D(j)

2 and L(j) the next new algorithm—modi9cation
of Cyclic Reduction is developed. It needs less Jops and less storage.

3.4. Algorithm CRM (cyclic reduction-modi6cation)

1. Find the matrices A(j); B(j), F (j) and the vectors f(j)
+ by the scheme

1.1. Put
A(0) = A; B(0) = B; F (0) = F ,
f−k = f2k−1 for k = 1; : : : ; 2p−1.

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 191

1.2. For j = 1; 2; : : : ; p − 1 compute
W1 = B(j−1)A(j−1)−1 ,
W2 = B(j−1)∗A(j−1)−1 ,
W3 =W1B(j−1)

∗
,

A(j) = A(j−1) − W2B(j−1) − W3,
B(j) =−W1B(j−1),
F (j) = F (j−1) − W3,
f1 = f−1 − W1f

(j−1)
+1 ,

fk = f−k − W2f
(j−1)
+k−1 − W1f

(j−1)
+k

for k = 2; : : : ; 2p−j,
f−k = f2k−1

f(j)
+k
= f2k

}
for k = 1; : : : ; 2p−j−1.

1.3. Find
W1 = B(p−1)A(p−1)−1 ,
F (p) = F (p−1) − W1B(p−1)

∗
,

f1 = f−1 − W1f
(p−1)
+1 .

2. Solve the linear system F (p)x1 = f1.
3. Retrieve the coordinates of the vector x by the scheme

x2 = A(p−1)−1 [f(p−1)
+1 − B(p−1)∗x1],

x+k = A(j−1)
−1
[f(j−1)

+k
− B(j−1)

∗
xk − B(j−1)xk+1]

for k = 1; : : : ; 2p−j − 1
x+s = A(j−1)

−1
[f(j−1)

+s
− B(j−1)

∗
xs]; s= 2p−j

x2k−1 = xk ; x2k = x+k for k = 2p−j; : : : ; 1

j = p − 1; : : : ; 1

end.

If the matrices A and B are real, this algorithm requires O([12pm3 + 4 ∗ 2pm2] + 2m3 + 6 ∗ 2pm2)
= O([12p + 2]m3 + 10 ∗ 2pm2) Jops and the storage of (2p + 9)m2 + (4 ∗ 2p − 1)m real numbers,
where p= log2 n.
For the new algorithms based on the discussion in Section 2.4, we must address the problem of

solving the nonlinear matrix equation (16). In [6], Engwerda proves that, if A is a positive-de9nite
matrix, then solution of (16) is equivalent to the solution of following matrix equation

Z + B̃∗Z−1B̃= I; (22)

where B̃=A−1=2BA−1=2; Z=A−1=2XA−1=2. Thus, the results proposed in [6,10] can be readily adapted
to produce following algorithms for (16).
Let # ¿ 0 be a 9xed tolerance.

Algorithm EI $ (Engwerda; Ivanov)

1. Find the matrix B̃= A−1=2BA−1=2.
2. Solve Eq. (22) by the following algorithm:

192 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

2.1. Z0 = $I; (1=26 $6 1).
2.2. For k = 1; 2; : : : compute

Zk+1 = I − B̃∗Z−1
k B̃,

if ‖Zk − Zk+1‖∞ = ‖Zk + B̃∗Z−1
k B̃ − I‖∞6 #, then stop

2.3. Zk → Z+, where Z+ is maximal solution of (22).
3. Compute the solution X = A1=2Zk+1A1=2.

end.

If the matrices A and B are real, this algorithm requires O(8m3 + [2m3 + 2m3 + 2m3]k + 4m3) =
O([6k+12]m3) Jops, where k is number of iterations for solving (22). The algorithm needs to store
7m2 real numbers.
Since for each k, Zk are positive de9nite matrices, can modify the above algorithms using the

idea proposed by Zhan [15].

Algorithm EI $M (Engwerda; Ivanov—Modi9cation)

1. Find the matrix B̃= A−1=2BA−1=2.
2. Solve Eq. (22) as follows:

2.1. Z0 = $I; (126 $6 1).
2.2. For k = 1; 2; : : :

◦ Compute the Cholesky factorization of Zk; Zk = L̃L̃∗,
◦ Solve the triangular matrix equation L̃Z̃ = B̃,
◦ Compute Zk+1 = I − Z̃∗Z̃ ,
if ‖Zk − Zk+1‖∞ = ‖Zk + B̃∗Z−1

k B̃ − I‖∞6 #, then stop
2.3. Zk → Z+.

3. Compute X = A1=2Zk+1A1=2.
end.

If the matrices A and B are real, this algorithm requires O(8m3 + [(m3=3) + (4m3=3) + 2m3]k +
4m3)=O([(11=3)k+12]m3) Jops, where k is number of iterations. The algorithm stores (17m2+m)=2
real numbers.
In case we wish to solve (16) by a direct solver, we can use the following adaptation of the

algorithm presented in [12].

Algorithm M (Meini)

1. Set X0 = A; A0 = A; B0 = B.
2. For k = 1; 2; : : : compute

W = A−1
k Bk ,

Bk+1 = BkW ,
W = B∗

kW ,
Ak+1 = Ak − BkA−1

k B∗
k − W ,

Xk+1 = Xk − W ,
if ‖Xk+1 − Xk‖∞6 # for # ¿ 0, then stop.

3. Xk → X+, where X+ is maximal solution of (16).
end.

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 193

If the matrices A and B are real, this algorithm requires O(2m3 + 5 ∗ 2m3) = O(12m3) Jops per
iteration and the storage of 7m2 real numbers.
In analogy with the algorithm EI $M we can consider the following modi9cation of Meini’s

algorithm.

Algorithm MM (Meini—Modi9cation)

1. Set X0 = A; A0 = A; B0 = B.
2. For k = 1; 2; : : :

2.1. Compute the Cholesky factorization of Ak; Ak = L̃L̃∗,
2.2. Solve the triangular matrix equations

L̃Ỹ = Bk ,
L̃Z̃ = B∗

k ,
2.3. Compute

W = Ỹ ∗Ỹ ,
Bk+1 = Z̃∗Ỹ ,
Ak+1 = Ak − Z̃∗Z̃ − W ,
Xk+1 = Xk − W ,

if ‖Xk − Xk+1‖∞6 # for # ¿ 0, then stop.
3. Xk → X+.

end.

If the matrices A and B are real, this algorithm requires O((m3=3)+(8m3=3)+3∗2m3)=O(27m3=3)
Jops, per iteration and the storage of (19m2 + m)=2 real numbers.
The algorithms EI $M and MM require less operations per iteration at the expense of a min-

imal increase of the memory space. However, their MATLAB implementation shows that they
are slower than EI $ and M, respectively. This is due because they call fewer built in MATLAB
function.
The advantage of the algorithms M and MM is their quadratic convergence, which guarantees

fewer iterations to reach the required accuracy.
Based on the discussion presented in this section, we propose the following new algorithm

for (1).

3.5. Algorithm %(&)

1. Solve the matrix equation (16) by algorithm %, where
%∈{EI $; EI $M; M; MM}.

2. Find the vector y = N−1f by formulas (18).
3. Compute the matrix N−1E1 by algorithm &, where &∈{F; R}.
4. Compute the solution x of (1) by formula (19) with successive calculation of the expressions:

C = (A − X)(N−1E1)1; (I + C)−1; (A − X)y1,
z = (I + C)−1(A − X)y1; x = y − N−1E1z.
end.

194 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

For real matrices A and B, this algorithm requires O(k ∗ o% + 8nm2 + o& + 6m3) Jops and the
storage of m% + nm + m& + (2m2 + m) real numbers, where k is number of iterations for solving
the matrix equation (16), o% and m% are, respectively, the number of operations and memory space
required for implementation of the algorithm %. The numbers o& and m& are similarly de9ned.

4. Numerical experiments

In this section we wish to corroborate the discussion of Section 3 by solving (1), with M given
as in (2), and exact solution x = (1; 1; : : : ; 1)T.
In our numerical experiments, M is real, symmetric, with several block size n and several size

and structure of the cells A and B. The above algorithms are compared by means of execution times
and accuracy of the solution.
The codes are written in MATLAB language and computations are done on a PENTIUM computer.

The results of the experiments are given in separate tables for each example. The following notation
is used:

• LU stands for the LU algorithm.
• CHOL stands for the CHOL algorithm.
• CR stands for the CR algorithm.
• CRM stands for the CRM algorithm.
• EI 1(F) stands for the %(&) algorithm. The matrix equation (16) is solved by algorithm EI $ with
initial guess Z0 = I , then N−1E1 is computed by algorithm F .

• EI 1(R) stands for the %(&) algorithm. The matrix equation (16) is solved by algorithm EI $ with
initial guess Z0 = I , then N−1E1 is computed by algorithm R.

• EI 1
2(R) stands for the %(&) algorithm. The matrix equation (16) is solved by algorithm EI $ with

initial guess Z0 = 1
2 I , then N−1E1 is computed by algorithm R.

• M(R) stands for the %(&) algorithm. The matrix equation (16) is solved by algorithm M, then
N−1E1 is computed by algorithm R.

• n= 2p is the block size of matrix M and m is the size of each block.

For all programs the value of # is set to #= 10−14.

• Iter is the smallest number k, for which

‖Zk − Zk+1‖∞6 # for algorithm EI $;

‖Xk − Xk+1‖∞6 # for algorithm M:

• Err:= ‖x − x̃‖∞, where x̃ is the computed solution.

Table 1 reports the Jops and memory space required for each program.
From Table 1 we see that algorithm CRM requires less memory space than the others. Its number

of operation depends of the relationship between the sizes m and n. If m ¡ 5n=6p then algorithm
CRM requires O(10nm2) Jops and if m ¿ 5n=6p then—O(12m3 log2 n). The algorithms EI $(R) and
M(R) are more e1ective than the classical LU and CHOL. Even under the assumption that the

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 195

Table 1
Flops and memory space

Algorithm Flops Memory space

LU (17n=3)m3 + O(nm2) 3nm2 + 2nm
CHOL (13n=3)m3 + O(nm2) (3n=2)m2 + (3n=2)m
CR 22m3 log2 n+ 10nm2 + O(nm) 2m2 log2 n+ 8nm
CRM 12m3 log2 n+ 10nm2 + O(nm) 2m2 log2 n+ 4nm
EI $(F) (8n+ 6Iter)m3 + O(nm2) nm2 + (n+ 1)m
EI $(R) (4n+ 6Iter)m3 + O(nm2) nm2 + (n+ 1)m
M(R) (4n+ 12Iter)m3 + O(nm2) nm2 + (n+ 1)m

number of iterations Iter is considerably less than n, for m6 3 and p¿ 3 they require less Jops
than algorithm CRM.
In the next examples the cells A and B of the matrix M are chosen in such way that they guarantee

the existence of a positive de9nite solution of Eq. (16) [9,12].

Example 1. The cells A and B are chosen like in Example 7.3 from [9], i.e.

A=

1:20 −0:30 0:10

−0:30 2:10 0:20

0:10 0:20 0:65

 ; B=

0:37 0:13 0:12

−0:30 0:34 0:12

0:11 −0:17 0:29

 :

Here ‖B̃‖2 = ‖A−1=2BA−1=2‖2 = 0:511. To reach the required accuracy in solving Eq. (16) Algorithm
EI 1 needs 404 iterations while Algorithm M only 10 iterations. In Table 2 we present the execution
time (in seconds) and the error, of each algorithm for di1erent values of m and n.

Example 2. We let the cells of the matrix M to be the matrices of example 5.2 from [12],
i.e. A = I , and B = (bi; j) a symmetric matrix, whose entries are determined as below: by the
scheme:

1. Fix a real 06 %6 1=2.
2. For i = 1; : : : ; m

For j = i; : : : ; m
bi; j = 2 ∗ i + j

end j.
Compute s1 =

∑i−1
j=1 bi; j; s2 =

∑m
j=i bi; j.

For j = i; : : : ; m
bi; j =

bi; j(1=2−%−s1)
s2

; bj; i = bi; j

end j.
end i.

196 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

Table 2
Execution time (in seconds) and errors for Example 1

Algorithm m= 3

n= 26 = 64 n= 210 = 1024

Err. Time Err. Time

LU 2:0650e− 014 0.06 3:3640e− 014 1.04
CHOL 1:3545e− 014 0.05 5:1292e− 014 0.88
CR 1:2079e− 013 0.05 3:2019e− 013 1.42
CRM 6:1284e− 014 0.06 1:6398e− 013 0.77
EI 1(F) 1:4211e− 014 0.16 8:4155e− 014 1.81
EI 1(R) 1:9540e− 014 0.11 8:4155e− 014 0.83
M(R) 1:2879e− 014 0.06 5:8620e− 014 0.77

n= 28 = 256 n= 212 = 4096

LU 2:8089e− 014 0.27 3:3640e− 014 5.99
CHOL 4:6407e− 014 0.27 5:1292e− 014 4.45
CR 3:0931e− 013 0.33 3:2019e− 013 11.32
CRM 1:5998e− 013 0.22 1:6398e− 013 3.40
EI 1(F) 2:9532e− 014 0.55 3:0065e− 013 9.72
EI 1(R) 2:9976e− 014 0.28 3:0065e− 013 4.34
M(R) 3:2863e− 014 0.22 2:5757e− 013 4.23

The matrix B is symmetric, nonnegative and such that Be = (1=2 − %)e, where e is the vector
having all its entries equal to 1. Thus ‖B̃‖2 = ‖A−1=2BA−1=2‖2 = 1=2− %.
We consider the following two cases:

1. % = 0:4; then ‖B̃‖2 = 0:1. To obtain the required accuracy for (16), Algorithm EI 1 needs 8
iterations, Algorithm M 4 iterations.

2. % = 0; then ‖B̃‖2 = 1
2 . In this case, we solve Eq. (22) by algorithm EI $, with initial guess

Z0 = 1
2 I ($ =

1
2). To reach the required accuracy for (16), Algorithm EI 1

2 needs 9 iterations.
The use of Algorithm EI 1 is not recommended, because it needs more than 3 · 106 iterations.
Algorithm M needs of 32 iterations.

In Tables 3 and 4 we give execution time (in seconds) and errors, for % = 0 and % = 0:4,
respectively.

Example 3. Let

A= circ(20;−8; 1; : : : ; 1;−8);

be a circulant matrix and B= I . In this case ‖B̃‖2 = ‖A−1=2BA−1=2‖2 = 0:1667. To reach the required
accuracy for (16) Algorithm EI 1 needs 10 iterations, Algorithm M—5 iterations.

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 197

Table 3
Execution time (in seconds) and errors for Example 2: (% = 0)

Algorithm m= 3 m= 5 m= 10

Err. Time Err. Time Err. Time

n= 26 = 64
LU 8:8818e− 015 0.11 4:3299e− 015 0.11 1:3989e− 014 0.11
CHOL 1:1990e− 014 0.06 7:7716e− 015 0.06 3:9968e− 015 0.11
CR 6:3505e− 014 0.05 4:9960e− 015 0.05 7:6605e− 015 0.11
CRM 4:3521e− 014 0.06 1:6431e− 014 0.06 2:2204e− 015 0.06
EI 1

2 (R) 6:3949e− 014 0.05 7:1054e− 014 0.06 8:5265e− 014 0.06
M(R) 1:7764e− 013 0.05 1:5632e− 013 0.05 2:8422e− 014 0.06

n= 28 = 256
LU 5:4845e− 014 0.22 2:7645e− 014 0.28 8:7153e− 014 0.55
CHOL 1:3767e− 013 0.22 5:1958e− 014 0.28 6:4615e− 014 0.44
CR 1:0281e− 012 0.27 4:8628e− 014 0.27 9:7033e− 014 0.33
CRM 6:8057e− 013 0.16 2:4425e− 013 0.22 4:0079e− 014 0.22
EI 1

2 (R) 1:0658e− 012 0.17 4:2633e− 012 0.22 2:5295e− 012 0.22
M(R) 5:6843e− 013 0.17 8:5265e− 013 0.22 7:1054e− 013 0.22

n= 210 = 1024
LU 3:9635e− 013 1.10 6:2017e− 013 1.26 2:7101e− 013 2.58
CHOL 3:6748e− 013 0.88 1:4135e− 012 1.04 3:4261e− 013 2.03
CR 1:6434e− 011 1.42 6:9700e− 013 1.44 1:3676e− 012 1.48
CRM 1:0729e− 011 0.82 3:9986e− 012 0.83 6:7812e− 013 0.88
EI 1

2 (R) 3:8426e− 011 0.71 6:7075e− 012 0.75 3:6380e− 011 1.04
M(R) 3:0809e− 011 0.73 2:0236e− 011 0.77 8:1968e− 011 1.05

n= 212 = 4096
LU 5:5140e− 012 5.99 4:9095e− 012 6.70 4:1102e− 012 19.17
CHOL 8:9115e− 012 4.45 4:0730e− 012 5.05 2:1547e− 012 11.32
CR 2:6242e− 010 11.73 1:1125e− 011 11.87 2:1823e− 011 11.98
CRM 1:7121e− 010 3.35 6:3752e− 011 3.40 1:0165e− 011 3.51
EI 1

2 (R) 1:0141e− 009 4.17 9:7543e− 010 4.34 5:6480e− 010 5.77
M(R) 6:2664e− 010 4.23 4:4201e− 010 4.34 7:0941e− 010 5.76

In Table 5 we give the execution time (in seconds) and the error of each algorithms for di1erent
values of m and n.

5. Conclusions

From the discussion and the results obtained by numerical experiments, we can conclude that:

1. The proposed modi9cations of formulas (20) and (21) (Algorithm R) lead to a considerable
decrease in the number of operations, for computing the block vector N−1E1. That explains

198 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

Table 4
Execution time (in seconds) and errors for Example 2: (% = 0:4)

Algorithm m= 3 m= 5 m= 10

Err. Time Err. Time Err. Time

n= 26 = 64
LU 4:4409e− 016 0.05 4:4409e− 016 0.11 8:8818e− 016 0.11
CHOL 6:6613e− 016 0.05 5:5511e− 016 0.06 8:8818e− 016 0.11
CR 4:4409e− 016 0.05 5:5511e− 016 0.05 6:6613e− 016 0.06
CRM 4:4409e− 016 0.05 5:5511e− 016 0.05 6:6613e− 016 0.06
EI 1(F) 6:6613e− 016 0.11 3:3307e− 016 0.17 08:8818e− 016 0.33
EI 1(R) 6:6613e− 016 0.05 3:3307e− 016 0.06 8:8818e− 016 0.06
M(R) 4:4409e− 016 0.05 5:5511e− 016 0.05 7:7716e− 016 0.06

n= 28 = 256
LU 4:4409e− 016 0.21 4:4409e− 016 0.27 8:8818e− 016 0.55
CHOL 6:6613e− 016 0.22 5:5511e− 016 0.27 8:8818e− 016 0.44
CR 4:4409e− 016 0.27 5:5511e− 016 0.28 6:6613e− 016 0.28
CRM 4:4409e− 016 0.18 5:5511e− 016 0.20 6:6613e− 016 0.22
EI 1(F) 6:6613e− 016 0.44 3:3307e− 016 0.60 8:8818e− 016 1.16
EI 1(R) 6:6613e− 016 0.17 3:3307e− 016 0.22 8:8818e− 016 0.22
M(R) 4:4409e− 016 0.16 5:5511e− 016 0.16 7:7716e− 016 0.22

n= 210 = 1024
LU 4:4409e− 016 1.04 4:4409e− 016 1.27 8:8818e− 016 2.59
CHOL 6:6613e− 016 0.94 5:5511e− 016 1.05 8:8818e− 016 1.97
CR 4:4409e− 016 1.43 5:5511e− 016 1.42 6:6613e− 016 1.48
CRM 4:4409e− 016 0.77 5:5511e− 016 0.88 6:6613e− 016 0.83
EI 1(F) 6:6613e− 016 1.76 3:3307e− 016 2.52 8:8818e− 016 4.78
EI 1(R) 6:6613e− 016 0.76 3:3307e− 016 0.83 8:8818e− 016 1.10
M(R) 4:4409e− 016 0.72 5:5511e− 016 0.77 7:7716e− 016 0.99

n= 212 = 4096
LU 4:4409e− 016 5.99 4:4409e− 016 6.70 8:8818e− 016 18.51
CHOL 6:6613e− 016 4.45 5:5511e− 016 5.11 8:8818e− 016 10.93
CR 4:4409e− 016 11.81 5:5511e− 016 12.14 6:6613e− 016 12.31
CRM 4:4409e− 016 3.35 5:5511e− 016 3.40 6:6613e− 016 3.57
EI 1(F) 6:6613e− 016 9.62 3:3307e− 016 13.74 8:8818e− 016 24.33
EI 1(R) 6:6613e− 016 4.22 3:3307e− 016 4.28 8:8818e− 016 5.99
M(R) 4:4409e− 016 4.23 5:5511e− 016 4.34 7:7716e− 016 5.76

why the execution time for Algorithms EI $(R) and M(R) is less than for Algorithm
EI $(F).

2. The adapted algorithms CRM, EI $(R) and M(R) essentially take advantage of the special struc-
ture of the matrix M , and this makes them more e1ective than the classical algorithms LU,
CHOL, CR as far as the number of operation, memory requirements and execution time are
concerned.

B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200 199

Table 5
Execution time (in seconds) and errors for Example 3

Algorithm m= 5 m= 7 m= 10

Err. Time Err. Time Err. Time

n= 26 = 64
LU 6:6613e− 016 0.05 6:6613e− 016 0.05 1:3323e− 015 0.11
CHOL 1:1102e− 015 0.05 6:6613e− 016 0.05 8:8818e− 016 0.11
CR 6:6613e− 016 0.06 1:1102e− 015 0.06 1:7764e− 015 0.06
CRM 7:7716e− 016 0.05 1:7764e− 015 0.06 1:5543e− 015 0.06
EI 1(F) 3:7748e− 015 0.11 2:4425e− 015 0.22 2:8866e− 015 0.33
EI 1(R) 3:7748e− 015 0.05 2:4425e− 015 0.06 2:8866e− 015 0.06
M(R) 5:5511e− 016 0.05 4:4409e− 016 0.05 6:6613e− 016 0.06

n= 28 = 256
LU 6:6613e− 016 0.33 6:6613e− 016 0.38 1:3323e− 015 0.50
CHOL 1:1102e− 015 0.22 6:6613e− 016 0.33 8:8818e− 016 0.44
CR 6:6613e− 016 0.27 1:1102e− 015 0.28 1:7764e− 015 0.28
CRM 7:7716e− 016 0.17 1:7764e− 015 0.22 1:5543e− 015 0.22
EI 1(F) 3:7748e− 015 0.60 2:4425e− 015 0.83 2:8866e− 015 1.15
EI 1(R) 3:7748e− 015 0.22 2:4425e− 015 0.22 2:8866e− 015 0.23
M(R) 5:5511e− 016 0.16 4:4409e− 016 0.17 6:6613e− 016 0.27

n= 210 = 1024
LU 6:6613e− 016 1.26 6:6613e− 016 1.82 1:3323e− 015 2.59
CHOL 1:1102e− 015 1.05 6:6613e− 016 1.21 8:8818e− 016 1.98
CR 6:6613e− 016 1.48 1:1102e− 015 1.42 1:7764e− 015 1.48
CRM 7:7716e− 016 0.82 1:7764e− 015 0.88 1:5543e− 015 0.88
EI 1(F) 3:7748e− 015 2.58 2:4425e− 015 3.46 2:8866e− 015 4.83
EI 1(R) 3:7748e− 015 0.77 2:4425e− 015 0.83 2:8866e− 015 1.10
M(R) 5:5511e− 016 0.77 4:4409e− 016 0.82 6:6613e− 016 0.99

n= 212 = 4096
LU 6:6613e− 016 6.70 6:6613e− 016 7.58 1:3323e− 015 18.290
CHOL 1:1102e− 015 5.05 6:6613e− 016 5.71 8:8818e− 016 11.15
CR 6:6613e− 016 11.84 1:1102e− 015 11.91 1:7764e− 015 12.58
CRM 7:7716e− 016 3.69 1:7764e− 015 3.74 1:5543e− 015 3.87
EI 1(F) 3:7748e− 015 13.89 2:4425e− 015 18.29 2:8866e− 015 24.71
EI 1(R) 3:7748e− 015 4.45 2:4425e− 015 4.67 2:8866e− 015 5.93
M(R) 5:5511e− 016 4.40 4:4409e− 016 4.62 6:6613e− 016 5.77

3. The Algorithms CRM, EI $(R) and M(R) are comparable for accuracy of the computed solution,
execution time for required Jops (for m6 3 and p¿ 3). For large values of the m, Algorithm
CRM requires the least Jops, which, together with the fact that it uses the least memory space,
suggests that it is most suitable when the block size of M is a power of two.

4. If n is not a power of two and the cells of the matrix M satisfy the conditions for existence of
the solution of Eq. (16), then the use of Algorithms M(R) is recommended instead.

200 B.V. Minchev / Journal of Computational and Applied Mathematics 156 (2003) 179–200

Acknowledgements

This work was partially supported by Shoumen University under contract N 17/2001. I wish to
thank Ivan Ivanov and Antonella Zanna for their helpful remarks and comments.

References

[1] D. Bini, B. Meini, Solving block banded block Toeplitz systems with structured blocks: new algorithms and open
problems, in: Large-scale Scienti9c Computations of Engineering and Environmental Problems II, Notes on Numerical
Fluid Mechanics, Vol. 73, Vieweg, Braunschweig, Wiesbaden, 2000, pp. 15–24.

[2] B.L. Buzbee, G.H. Golub, C.W. Nielson, On direct methods for solving Poisson’s equations, SIAM J. Numer. Anal.
7 (1970) 627–656.

[3] F. Diele, L. Lopez, The use of the factorization of 9ve-diagonal matrices by tridiagonal Toeplitz matrices, Appl.
Math. Lett. 11 (1998) 61–69.

[4] S.M. El-Sayed, Investigation of special matrices and numerical methods for special matrix equations. Ph.D. Thesis,
So9a, 1996 (in Bulgarian).

[5] S.M. El-Sayed, I.G. Ivanov, M.G. Petkov, A new modi9cation of the Rojo Method for solving symmetric circulant
9ve-diagonal systems of linear equations, Comput. Math. Appl. 35 (1998) 35–44.

[6] J.C. Engwerda, C.M. Ran Andre, A.L. Rijkeboer, Necessary and su:cient conditions for the existence of a positive
de9nite solution of the matrix equation X + A∗X−1A= Q, Linear Algebra Appl. 186 (1993) 255–275.

[7] G. Fiorentino, S. Serra, Multigrid methods for symmetric positive de9nite block Toeplitz matrices with nonnegative
generating functions, SIAM J. Sci. Comput. 17 (1996) 1068–1081.

[8] G. Golub, C. Van Loan, Matrix Computation, The Johns Hopkins University Press, Baltimore, MD, 1989.
[9] C.-H. Guo, P. Lancaster, Iterative solution of two matrix equations, Math. Comput. 68 (1999) 1589–1603.
[10] I. Ivanov, V. Hasanov, F. Uhlig, Iterative methods for computing a positive de9nite solution of matrix equations

X ± A∗X−1A= I , Math. Comput., submitted.
[11] I. Ivanov, B. Mintchev, A method for solving special circulant pentadiagonal linear system, in: Large-scale Scienti9c

Computations of Engineering and Environmental Problems II, Notes on Numerical Fluid Mechanics, Vol. 73, Vieweg,
Braunschweig, Wiesbaden, 2000, pp. 144–151.

[12] B. Meini, Matrix Equations and Structures: E:cient Solution of Special Discrete Algebraic Riccati Equations, in:
Second Conference on Numerical Analysis and Applications, Lecture Notes in Computer Science 1988, Springer,
Berlin, 2000, pp. 578–585. http://link.springer.de/link/service/series/0558/tocs/t1988.htm

[13] J. Rissanen, Solution of linear equations with Hancel and Toeplitz matrices, Numer. Math. 22 (1974) 361–366.
[14] O. Rojo, A new method for solving symmetric circulant tridiagonal systems of linear equations, Comput. Math.

Appl. 20 (1990) 61–67.
[15] X. Zhan, Computing the extremal positive de9nite solutions of a matrix equation, SIAM J. Sci. Comput. 17 (1996)

1167–1174.

http://link.springer.de/link/service/series/0558/tocs/t1988.htm

	Some algorithms for solving special tridiagonal block Toeplitz linear systems
	Introduction
	Methods for solving special block tridiagonal Toeplitz linear system
	Block LU factorization
	Block Cholesky factorization
	Block cyclic reduction
	A modification of LU factorization

	Algorithms for solving special block tridiagonal linear systems
	Algorithm LU
	Algorithm CHOL
	Algorithm CR (cyclic reduction)
	Algorithm CRM (cyclic reduction-modification)
	Algorithm alpha(beta)

	Numerical experiments
	Conclusions
	Acknowledgements
	References

