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• Established 1950 by the Norwegian Institute of Technology. 

• The largest independent research organisation in 
Scandinavia. 

• A non-profit organisation.  

• Motto: “Technology for a better society”. 

• Key Figures* 

• 2100 Employees from 70 different countries. 

• 73% of employees are researchers. 

• 3 billion NOK in turnover  
(about 360 million EUR /  490 million USD). 

• 9000 projects for 3000 customers. 

• Offices in Norway, USA, Brazil,  
Chile, and Denmark. 

[Map CC-BY-SA 3.0 based on work by Hayden120 and NuclearVacuum, Wikipedia] 
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• Motivation for exascale 

• Multi- and many-core architectures 

• Computing π on a massively parallel machine 

• Leveraging domain specific languages 

• Summary 

Outline 
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Motivation exascale 
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What is Exascale? 
Graphic: http://edition.cnn.com/2012/03/29/tech/super-computer-exa-flop/ 
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• More accurate weather forecasts. 

• Extreme weather we can predict today, was impossible to foresee as little 
as ten years ago. 

 

• Simulation of a human  brain. 

• Is estimated to run on the order of one Exaflop. 

 

• More accurate CFD simulations. 

• Design of supersonic aircraft, missiles, and space shuttles. 

 

• New unforeseen simulation strategies and application areas enabled by 
Exascale. 

Why do we need Exascale? 
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• Same type of hardware for 
supercomputers and laptops. 

 

• The key to increasing performance, is 
to consider the full algorithm and 
architecture interaction. 

 

• A good knowledge of both the 
algorithm and the computer 
architecture is required.  

Why care about "exascale hardware"? 

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008 
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History lesson: development of the microprocessor 1/2 

1942: Digital Electric Computer 
  (Atanasoff and Berry) 

1971: Microprocessor 
  (Hoff, Faggin, Mazor) 

1947: Transistor  
  (Shockley, Bardeen, and Brattain) 

1956 

1958: Integrated Circuit  
  (Kilby) 

2000 

1971- Exponential growth 
 (Moore, 1965) 
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1971: 4004,  
2300 trans, 740 KHz 

1982: 80286,  
134 thousand trans, 8 MHz 

1993: Pentium P5,  
1.18 mill. trans, 66 MHz 

2000: Pentium 4,  
42 mill. trans, 1.5 GHz 

2010: Nehalem 
2.3 bill. Trans, 8 cores, 2.66 GHz 

History lesson: development of the microprocessor 2/2 
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• 1970-2004: Frequency doubles every 34 months (Moore’s law for performance) 

• 1999-2014: Parallelism doubles every 30 months 

End of frequency scaling 

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

1

10

100

1000

10000

Desktop processor performance (SP) 

1999-2014: 
Parallelism doubles 
every ~30 months 

1971-2004: 
Frequency doubles  
every ~34 months 

2004-2014: 
Frequency  
constant 

SSE (4x) 

Hyper-Treading (2x) 

Multi-core (2-6x) 

AVX (2x) 
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• Heat density approaching that of nuclear reactor core: Power wall 

• Traditional cooling solutions (heat sink + fan) insufficient 

What happened in 2004? 

Original graph by G. Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS’09 
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Why Parallelism? 

100% 

100% 

100% 

85% 

90% 90% 

100% 

Frequency 

Performance 

Power 

Single-core Dual-core 

The power density of microprocessors  
is proportional to the clock frequency cubed:1 

1 Brodtkorb et al. State-of-the-art in heterogeneous computing, 2010 
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Multi- and many-core architectures 



Technology for a better society 14 

• 6-60 processors per chip 

• 8 to 32-wide SIMD instructions 

• Heterogeneous cores (e.g., CPU+GPU on single chip) 

Multi- and many-core processor designs 

Multi-core CPUs: 
x86, SPARC, Power 7 

Accelerators: 
GPUs, Xeon Phi 

Heterogeneous chips: 
Intel Haswell, AMD APU 
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• A single core 

• L1 and L2 caches 

• 8-wide SIMD units (AVX, single precision) 

• 2-way Hyper-threading (hardware threads) 
When thread 0 is waiting for data,  
thread 1 is given access to SIMD units 

• Most transistors used for cache and logic 

 

• Optimal number of FLOPS per clock cycle: 

• 8x: 8-way SIMD 

• 6x: 6 cores 

• 2x: Dual issue (fused mul-add / two ports) 

• Sum: 96! 

Multi-core CPU architecture 

∙∙∙ 

L3 cache 

Simplified schematic of CPU design 
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• A single core (Called streaming multiprocessor, SMX) 

• L1 cache, Read only cache, texture units 

• Six 32-wide SIMD units (192 total, single precision) 

• Up-to 64 warps simultaneously (hardware warps) 
Like hyper-threading, but a warp is 32-wide SIMD 

• Most transistors used for floating point operations 

 

• Optimal number of FLOPS per clock cycle: 

• 32x: 32-way SIMD  

• 2x: Fused multiply add 

• 6x: Six SIMD units per core 

• 15x: 15 cores 

• Sum: 5760! 

Many-core GPU architecture 

∙∙∙ 

L2 cache 

Simplified schematic of GPU design 
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• Discrete GPUs are connected to the CPU 
via the PCI-express bus 

• Slow: 15.75 GB/s each direction 

• On-chip GPUs use main memory as 
graphics memory 

 

• Device memory is limited but fast 

• Typically up-to 6 GB 

• Up-to 340 GB/s! 

• Fixed size, and cannot be expanded 
with new dimm’s (like CPUs) 

 

Heterogeneous Architectures 

Multi-core CPU GPU 

Main CPU memory (up-to 64 GB) Device Memory (up-to 6 GB) 

~30 GB/s 

~340 GB/s ~60 GB/s 
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Parallel algorithm design 
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• Most algorithms are like baking recipies, 
Tailored for a single person / processor: 

• First, do A, 

• Then do B, 

• Continue with C, 

• And finally complete by doing D. 

 

• How can we utilize an army of chefs? 

Parallel computing 

Picture: Daily Mail Reporter , www.dailymail.co.uk 
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• Data parallelism performs the same operation  
for a set of different input data 

 

• Scales well with the data size:  
The larger the problem, the more processors you can utilize 

 

• Trivial example:  
Element-wise multiplication of two vectors: 

• c[i] = a[i] * b[i]     i=0…N 

• Processor i multiplies elements i of vectors a and b. 

Data parallel workloads 
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• Task parallelism divides a problem into subtasks which can be solved individually 

 

• Scales well for a large number of tasks: 
The more parallel tasks, the more processors you can use 

 

• Example: A simulation application: 

 

 

 

 

 

 

• Note that not all tasks will be able to fully utilize the processor 

Task parallel workloads 1/3 

Processor 4 

Processor 1 

Processor 2 

Processor 3 

Simulate physics 

Calculate statistics 

Write statistics to disk 

Render GUI 



Technology for a better society 22 

• Another way of using task parallelism is  
to execute dependent tasks on different processors 

 

• Scales well with a large number of tasks, but performance limited by slowest stage 

 

• Example: Pipelining dependent operations  

 

 

 

 

 

• Note that the gray boxes represent idling: wasted clock cycles! 

Task parallel workloads 2/3 

Processor 4 

Processor 1 

Processor 2 

Processor 3 

Read data 

Compute statistics  

Write data 

Process statistics 

Read data 

Compute statistics  

Process statistics 

Write data Write data 

Read data 

Compute statistics  

Process statistics 
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• A third way of using task parallelism is  
to represent tasks in a directed acyclic graph (DAG) 

 

• Scales well for millions of tasks, as long as the overhead of executing each task is low 

 

• Example: Cholesky inversion  

 

 

 

 

 

 

• “Gray boxes” are minimized 

Task parallel workloads 3/3 

Time Time 

Example from Dongarra, On the Future of High Performance 
Computing: How to Think for Peta and Exascale Computing, 2012 
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• Total performance is the product of 
algorithmic and numerical performance 

• Your mileage may vary: algorithmic 
performance is highly problem 
dependent 

 

• Many algorithms have low numerical 
performance 

• Only able to utilize a fraction of the 
capabilities of processors, and often 
worse in parallel 

 

• Need to consider both the algorithm and 
the architecture for maximum performance 

Algorithmic and numerical performance 
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Algorithmic performance 
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Computing PI in parallel 
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• There are many ways of estimating Pi. One way is to 
estimate the area of a circle.  

 

• Sample random points within one quadrant 

• Find the ratio of points inside to outside the circle 

• Area of quarter circle: Ac = πr2/4 
Area of square: As = r2 

• π = 4 Ac/As ≈ 4 #points inside / #points outside 

• Increase accuracy by sampling more points 

• Increase speed by using more nodes 

 

• This is a data-parallel workload: 
All processors perform the same operation. 

Estimating π (3.14159...) in parallel 

pi=3.1345 pi=3.1305 pi=3.1597 

Distributed: 
pi=3.14157 Disclaimer: this is a naïve way of calculating PI, only used as an example of parallel execution 
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Serial CPU code (C/C++) 

float computePi(int n_points) {  
 int n_inside = 0;  
 for (int i=0; i<n_points; ++i) {  
  //Generate coordinate  
  float x = generateRandomNumber();  
  float y = generateRandomNumber();  
  //Compute distance 
  float r = sqrt(x*x + y*y);  
  //Check if within circle  
  if (r < 1.0f) { n_inside = n_inside + 1; }  
 }  
 //Estimate Pi  
 float pi = 4.0f * n_inside / static_cast<float>(n_points);  
 return pi;  
} 
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float computePi(int n_points) {  
 int n_inside = 0;  
 #pragma omp parallel for reduction(+:n_inside)  
 for (int i=0; i<n_points; ++i) {  
  //Generate coordinate  
  float x = generateRandomNumber();  
  float y = generateRandomNumber();  
  //Compute distance 
  float r = sqrt(x*x + y*y);  
  //Check if within circle  
  if (r <= 1.0f) { n_inside = n_inside + 1; }  
 }  
 //Estimate Pi  
 float pi = 4.0f * n_inside / static_cast<float>(n_points);  
 return pi;  
} 

Parallel CPU code (C/C++ with OpenMP) 

Make sure that every 
expression involving 
n_inside modifies the 
global variable using 
the + operator 

Run for loop in parallel 
using multiple threads 
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• Parallel: 3.8 seconds @ 100% CPU 

 

 

 

 

 

• Serial: 30 seconds @ 10% CPU 

Performance 
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GPU function __global__ void computePiKernel1(unsigned int* output) {  
 //Generate coordinate 
  float x = generateRandomNumber(); 
  float y = generateRandomNumber();  
 
 //Compute radius 
  float r = sqrt(x*x + y*y);  
 
 //Check if within circle  
 if (r <= 1.0f) {  
  output[blockIdx.x] = 1;  
 } else {  
  output[blockIdx.x] = 0;  
 }   
} 

Parallel GPU version 1 (CUDA) 1/3 

*Random numbers on GPUs can be a slightly tricky, see cuRAND for more information 
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float computePi(int n_points) { 
 dim3 grid = dim3(n_points, 1, 1); 
 dim3 block = dim3(1, 1, 1); 
  
 //Allocate data on graphics card for output 
 cudaMalloc((void**)&gpu_data, gpu_data_size); 
 
 //Execute function on GPU (“lauch the kernel”) 
  computePiKernel1<<<grid, block>>>(gpu_data); 
 
 //Copy results from GPU to CPU 
 cudaMemcpy(&cpu_data[0], gpu_data, gpu_data_size, cudaMemcpyDeviceToHost); 
  
 //Estimate Pi 
 for (int i=0; i<cpu_data.size(); ++i) { 
  n_inside += cpu_data[i]; 
 } 
 return pi = 4.0f * n_inside / n_points; 
} 

Parallel GPU version 1 (CUDA) 2/3 
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• Unable to run more than 
65535 sample points 

 

• Barely faster than single 
threaded CPU version for 
largest size! 

 

• Kernel launch overhead 
appears to dominate runtime 

 

• The fit between algorithm 
and architecture is poor: 

• 1 thread per block: 
Utilizes at most 1/32 of 
computational power. 

Parallel GPU version 1 (CUDA) 3/3 
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• CPU scalar: 1 thread, 1 operand on 1 data element 

• CPU SSE/AVX: 1 thread, 1 operand on 2-8 data elements 

• GPU Warp: 32 threads, 32 operands on 32 data elements 

• Exposed as individual threads 

• Actually runs the same instruction 

• Divergence implies serialization and masking 

GPU Vector Execution Model 

Scalar operation SSE/AVX operation Warp operation 
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__global__ void computePiKernel2(unsigned int* output) {  
 //Generate coordinate 
  float x = generateRandomNumber(); 
  float y = generateRandomNumber();  
 
 //Compute radius 
  float r = sqrt(x*x + y*y);  
 
 //Check if within circle  
 if (r <= 1.0f) {  
  output[blockIdx.x*blockDim.x + threadIdx.x] = 1;  
 } else {  
  output[blockIdx.x*blockDim.x + threadIdx.x] = 0;  
 }   
} 
 
float computePi(int n_points) { 
 dim3 grid = dim3(n_points/32, 1, 1); 
 dim3 block = dim3(32, 1, 1); 
 … 
 //Execute function on GPU (“lauch the kernel”) 
  computePiKernel1<<<grid, block>>>(gpu_data); 
 … 
} 
 

Parallel GPU version 2 (CUDA) 1/2 
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• Unable to run more than 
32*65535 sample points 

 

• Works well with 32-wide SIMD 

 

• Able to keep up with multi-
threaded version at maximum 
size! 

 

• We perform roughly 16 
operations per 4 bytes written 
(1 int): memory bound kernel! 
Optimal is 60 operations! 

Parallel GPU version 2 (CUDA) 2/2 
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__global__ void computePiKernel3(unsigned int* output, unsigned int seed) { 
 __shared__ int inside[32];  
 
 //Generate coordinate  
 //Compute radius  
 … 
 
 //Check if within circle  
 if (r <= 1.0f) {  
  inside[threadIdx.x] = 1;  
 } else {  
  inside[threadIdx.x] = 0;  
 }  
 
 … //Use shared memory reduction to find number of inside per block 

Parallel GPU version 3 (CUDA) 1/3 

Shared memory: a kind of “programmable cache” 
We have 32 threads: One entry per thread 



Technology for a better society 37 

 … //Continued from previous slide  
  
 //Use shared memory reduction to find number of inside per block  
 //Remember: 32 threads is one warp, which execute synchronously 
 if (threadIdx.x < 16) {  
  p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+16]; 
  p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+8]; 
  p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+4]; 
   p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+2]; 
   p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+1];  
 }  
  
 if (threadIdx.x == 0) {  
  output[blockIdx.x] = inside[threadIdx.x]; 
 } 
} 

Parallel GPU version 3 (CUDA) 2/3 
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• Memory bandwidth use reduced 
by factor 32! 

 

• Good speed-up over 
multithreaded CPU! 

 

• Maximum size is still limited to 
65535*32.  

 

• Two ways of increasing size: 

• Increase number of threads 

• Make each thread do more 
work 

Parallel GPU version 3 (CUDA) 3/3 
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__global__ void computePiKernel4(unsigned int* output) {  
 int n_inside = 0;  
 
  //Shared memory: All threads can access this 
 __shared__ int inside[32];  
 inside[threadIdx.x] = 0;  
 
 for (unsigned int i=0; i<iters_per_thread; ++i) {  
  //Generate coordinate  
  //Compute radius  
  //Check if within circle  
  if (r <= 1.0f) { ++inside[threadIdx.x]; }  
 }  
 
 //Communicate with other threads to find sum per block 
 //Write out to main GPU memory 
 }  

Parallel GPU version 4 (CUDA) 1/2 



Technology for a better society 40 

• Overheads appears to dominate  
runtime up-to 10.000.000 points: 

• Memory allocation 

• Kernel launch 

• Memory copy 

 

• Estimated GFLOPS: ~450 
Thoretical peak: ~4000 

 

• Things to investigate further: 

• Profile-driven development*! 

• Check number of threads,  
memory access patterns,  
instruction stalls, bank conflicts, ... 

Parallel GPU version 4 (CUDA) 2/2 
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*See e.g., Brodtkorb, Sætra, Hagen,  
GPU Programming Strategies and Trends in GPU Computing, JPDC, 2013 
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• Previous slide indicates speedup of  

• 100x versus OpenMP version 

• 1000x versus single threaded version 

• Theoretical performance gap is 10x: why so fast? 

 

• Reasons why the comparison is fair: 

• Same generation CPU (Core i7 3930K) and GPU (GTX 780) 

• Code available on Github: you can test it yourself! 

 

• Reasons why the comparison is unfair: 

• Optimized GPU code, unoptimized CPU code. 

• I do not show how much of CPU/GPU resources I actually use (profiling) 

• I cheat with the random function (I use a simple linear congruential generator). 

Comparing performance 



Technology for a better society 42 

Leveraging Domain Specific Languages 

Slides based on "Simulators that write themselves", 
Atgeirr Flø Rasmussen, Dune user group meeting, 2013. 
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Simulation is hard 

• Writing a parallel simulator and running 
a simulation is notoriously difficult! 

 

• Deep knowledge is required in multiple 
fields: Mathematics, Physics, Chemistry, 
Biology, Informatics, … 

 

• Most simulator writing teams consist of 
one person: typically a single Ph.D. 
student. 

 

• Most people are proficient in at most 
one and a half of the required levels. 

Application  
(Equations, Physics) 

Numerics  
(Discretization, Gridding) 

Implementation  
(C++, Parallelization) 
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Using domain specific languages 
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Fool proof code using Equelle 

• SINTEF has designed Equelle, http://www.equelle.org/ 

– Other similar languages: Liszt, Halide. 

 

• Domain specific language 

– Will never support "everything" 

– Designed for safely writing finite-volume codes on (complex) grids 

– Currently takes Equelle programs as input, and generates C++ code 

 

• Still early prototype 

http://www.equelle.org/
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Benefits of Equelle 

• Designed to prevent typical errors when writing simulators 

– All "off-by-one" and indexing errors: grid access is not handled explicitly. 

– Adding incompatible values: e.g., a face-value and a cell-value. 

– Easy to generate serial, OpenMP, CUDA*, or MPI codes. 

– Each project participant can work on the part he/she is most familiar! 

*Master thesis work of Håvard Heitlo Holm, 2014 
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Current results 

• Prototype up and running:  
Check it out yourself on http://equelle.org/ (open source!) 
 

• The compiler found bugs in an existing simulator we had written.  
The code had been manually checked, and it required an effort to see 
that the compiler was right 
 

• No optimization of abstract syntax tree performed yet: 
some performance loss is to be expected 
 

• CUDA backend in progress for higher performance 

http://equelle.org/
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Summary 
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• All current processors are parallel:  

• You cannot ignore parallelization and expect high performance 

• Serial programs utilize roughly 1% of potential! 

 

• Getting started coding in parallel has never been easier: 

• OpenMP is at your fingertips (C/C++/Fortran) 

• Nvidia CUDA tightly integrated into Visual Studio 

• Excellent profiling tools available with toolkit 

 

• Domain specific languages can aid development 

• Can be expensive to design language first time 

• Easier to write and maintain code 

Summary 
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• Code examples available online: http://github.com/babrodtk    

• NVIDIA CUDA website: https://developer.nvidia.com/cuda-zone  

• Equelle website: http://www.equelle.org/  

• Brodtkorb, Hagen, Schulz and Hasle, GPU Computing in Discrete Optimization Part I: 
Introduction to the GPU, EURO Journal on Transportation and Logistics, 2013.  

• Brodtkorb, Sætra and Hagen, GPU Programming Strategies and Trends in GPU 
Computing, Journal of Parallel and Distributed Computing, 2013. 

Some references 

http://github.com/babrodtk
http://github.com/babrodtk
http://github.com/babrodtk
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://www.equelle.org/


Technology for a better society 51 

Thank you for your attention! 

André R. Brodtkorb 
Email:  
Andre.Brodtkorb@sintef.no  
Homepage: 
http://babrodtk.at.ifi.uio.no/ 
 
SINTEF webpages: 
http://www.sintef.no/math/ 

mailto:Andre.Brodtkorb@sintef.no
http://babrodtk.at.ifi.uio.no/
http://www.sintef.no/math/

