
Parallel Computing Towards Exascale

André R. Brodtkorb
Visual Computing Forum #30

September 19, 2014

• Established 1950 by the Norwegian Institute of Technology.

• The largest independent research organisation in
Scandinavia.

• A non-profit organisation.

• Motto: “Technology for a better society”.

• Key Figures*

• 2100 Employees from 70 different countries.

• 73% of employees are researchers.

• 3 billion NOK in turnover
(about 360 million EUR / 490 million USD).

• 9000 projects for 3000 customers.

• Offices in Norway, USA, Brazil,
Chile, and Denmark.

[Map CC-BY-SA 3.0 based on work by Hayden120 and NuclearVacuum, Wikipedia]

Technology for a better society 3

• Motivation for exascale

• Multi- and many-core architectures

• Computing π on a massively parallel machine

• Leveraging domain specific languages

• Summary

Outline

Technology for a better society 4

Motivation exascale

Technology for a better society 5

What is Exascale?
Graphic: http://edition.cnn.com/2012/03/29/tech/super-computer-exa-flop/

Technology for a better society 6

• More accurate weather forecasts.

• Extreme weather we can predict today, was impossible to foresee as little
as ten years ago.

• Simulation of a human brain.

• Is estimated to run on the order of one Exaflop.

• More accurate CFD simulations.

• Design of supersonic aircraft, missiles, and space shuttles.

• New unforeseen simulation strategies and application areas enabled by
Exascale.

Why do we need Exascale?

Technology for a better society 7

• Same type of hardware for
supercomputers and laptops.

• The key to increasing performance, is
to consider the full algorithm and
architecture interaction.

• A good knowledge of both the
algorithm and the computer
architecture is required.

Why care about "exascale hardware"?

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008

Technology for a better society 8

History lesson: development of the microprocessor 1/2

1942: Digital Electric Computer
 (Atanasoff and Berry)

1971: Microprocessor
 (Hoff, Faggin, Mazor)

1947: Transistor
 (Shockley, Bardeen, and Brattain)

1956

1958: Integrated Circuit
 (Kilby)

2000

1971- Exponential growth
 (Moore, 1965)

Technology for a better society 9

1971: 4004,
2300 trans, 740 KHz

1982: 80286,
134 thousand trans, 8 MHz

1993: Pentium P5,
1.18 mill. trans, 66 MHz

2000: Pentium 4,
42 mill. trans, 1.5 GHz

2010: Nehalem
2.3 bill. Trans, 8 cores, 2.66 GHz

History lesson: development of the microprocessor 2/2

Technology for a better society 10

• 1970-2004: Frequency doubles every 34 months (Moore’s law for performance)

• 1999-2014: Parallelism doubles every 30 months

End of frequency scaling

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

1

10

100

1000

10000

Desktop processor performance (SP)

1999-2014:
Parallelism doubles
every ~30 months

1971-2004:
Frequency doubles
every ~34 months

2004-2014:
Frequency
constant

SSE (4x)

Hyper-Treading (2x)

Multi-core (2-6x)

AVX (2x)

Technology for a better society 11

• Heat density approaching that of nuclear reactor core: Power wall

• Traditional cooling solutions (heat sink + fan) insufficient

What happened in 2004?

Original graph by G. Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS’09

W
 /

 c
m

2

Critical dimension (um)

Technology for a better society 12

Why Parallelism?

100%

100%

100%

85%

90% 90%

100%

Frequency

Performance

Power

Single-core Dual-core

The power density of microprocessors
is proportional to the clock frequency cubed:1

1 Brodtkorb et al. State-of-the-art in heterogeneous computing, 2010

Technology for a better society 13

Multi- and many-core architectures

Technology for a better society 14

• 6-60 processors per chip

• 8 to 32-wide SIMD instructions

• Heterogeneous cores (e.g., CPU+GPU on single chip)

Multi- and many-core processor designs

Multi-core CPUs:
x86, SPARC, Power 7

Accelerators:
GPUs, Xeon Phi

Heterogeneous chips:
Intel Haswell, AMD APU

Technology for a better society 15

• A single core

• L1 and L2 caches

• 8-wide SIMD units (AVX, single precision)

• 2-way Hyper-threading (hardware threads)
When thread 0 is waiting for data,
thread 1 is given access to SIMD units

• Most transistors used for cache and logic

• Optimal number of FLOPS per clock cycle:

• 8x: 8-way SIMD

• 6x: 6 cores

• 2x: Dual issue (fused mul-add / two ports)

• Sum: 96!

Multi-core CPU architecture

∙∙∙

L3 cache

Simplified schematic of CPU design

Core 1

ALU+FPU

Th
read

 0

L1 cache

L2 cache

Th
read

 1

Registers

Core 6

ALU+FPU

Th
read

 0

L1 cache

L2 cache

Th
read

 1

Registers

Technology for a better society 16

• A single core (Called streaming multiprocessor, SMX)

• L1 cache, Read only cache, texture units

• Six 32-wide SIMD units (192 total, single precision)

• Up-to 64 warps simultaneously (hardware warps)
Like hyper-threading, but a warp is 32-wide SIMD

• Most transistors used for floating point operations

• Optimal number of FLOPS per clock cycle:

• 32x: 32-way SIMD

• 2x: Fused multiply add

• 6x: Six SIMD units per core

• 15x: 15 cores

• Sum: 5760!

Many-core GPU architecture

∙∙∙

L2 cache

Simplified schematic of GPU design

SMX 1
ALU+FPU

Th
read

 0

L1 cache

RO cache

Th
read

 M

Registers

∙∙∙

Tex units

SMX 15
ALU+FPU

Th
read

 0

L1 cache

RO cache

Th
read

 M

Registers

∙∙∙

Tex units

Technology for a better society 17

• Discrete GPUs are connected to the CPU
via the PCI-express bus

• Slow: 15.75 GB/s each direction

• On-chip GPUs use main memory as
graphics memory

• Device memory is limited but fast

• Typically up-to 6 GB

• Up-to 340 GB/s!

• Fixed size, and cannot be expanded
with new dimm’s (like CPUs)

Heterogeneous Architectures

Multi-core CPU GPU

Main CPU memory (up-to 64 GB) Device Memory (up-to 6 GB)

~30 GB/s

~340 GB/s ~60 GB/s

Technology for a better society 18

Parallel algorithm design

Technology for a better society 19

• Most algorithms are like baking recipies,
Tailored for a single person / processor:

• First, do A,

• Then do B,

• Continue with C,

• And finally complete by doing D.

• How can we utilize an army of chefs?

Parallel computing

Picture: Daily Mail Reporter , www.dailymail.co.uk

Technology for a better society 20

• Data parallelism performs the same operation
for a set of different input data

• Scales well with the data size:
The larger the problem, the more processors you can utilize

• Trivial example:
Element-wise multiplication of two vectors:

• c[i] = a[i] * b[i] i=0…N

• Processor i multiplies elements i of vectors a and b.

Data parallel workloads

Technology for a better society 21

• Task parallelism divides a problem into subtasks which can be solved individually

• Scales well for a large number of tasks:
The more parallel tasks, the more processors you can use

• Example: A simulation application:

• Note that not all tasks will be able to fully utilize the processor

Task parallel workloads 1/3

Processor 4

Processor 1

Processor 2

Processor 3

Simulate physics

Calculate statistics

Write statistics to disk

Render GUI

Technology for a better society 22

• Another way of using task parallelism is
to execute dependent tasks on different processors

• Scales well with a large number of tasks, but performance limited by slowest stage

• Example: Pipelining dependent operations

• Note that the gray boxes represent idling: wasted clock cycles!

Task parallel workloads 2/3

Processor 4

Processor 1

Processor 2

Processor 3

Read data

Compute statistics

Write data

Process statistics

Read data

Compute statistics

Process statistics

Write data Write data

Read data

Compute statistics

Process statistics

Technology for a better society 23

• A third way of using task parallelism is
to represent tasks in a directed acyclic graph (DAG)

• Scales well for millions of tasks, as long as the overhead of executing each task is low

• Example: Cholesky inversion

• “Gray boxes” are minimized

Task parallel workloads 3/3

Time Time

Example from Dongarra, On the Future of High Performance
Computing: How to Think for Peta and Exascale Computing, 2012

Technology for a better society 24

• Total performance is the product of
algorithmic and numerical performance

• Your mileage may vary: algorithmic
performance is highly problem
dependent

• Many algorithms have low numerical
performance

• Only able to utilize a fraction of the
capabilities of processors, and often
worse in parallel

• Need to consider both the algorithm and
the architecture for maximum performance

Algorithmic and numerical performance

N
u

m
er

ic
al

 p
er

fo
rm

an
ce

Algorithmic performance

Technology for a better society 25

Computing PI in parallel

Technology for a better society 26

• There are many ways of estimating Pi. One way is to
estimate the area of a circle.

• Sample random points within one quadrant

• Find the ratio of points inside to outside the circle

• Area of quarter circle: Ac = πr2/4
Area of square: As = r2

• π = 4 Ac/As ≈ 4 #points inside / #points outside

• Increase accuracy by sampling more points

• Increase speed by using more nodes

• This is a data-parallel workload:
All processors perform the same operation.

Estimating π (3.14159...) in parallel

pi=3.1345 pi=3.1305 pi=3.1597

Distributed:
pi=3.14157 Disclaimer: this is a naïve way of calculating PI, only used as an example of parallel execution

Technology for a better society 27

Serial CPU code (C/C++)

float computePi(int n_points) {
 int n_inside = 0;
 for (int i=0; i<n_points; ++i) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();
 //Compute distance
 float r = sqrt(x*x + y*y);
 //Check if within circle
 if (r < 1.0f) { n_inside = n_inside + 1; }
 }
 //Estimate Pi
 float pi = 4.0f * n_inside / static_cast<float>(n_points);
 return pi;
}

Technology for a better society 28

float computePi(int n_points) {
 int n_inside = 0;
 #pragma omp parallel for reduction(+:n_inside)
 for (int i=0; i<n_points; ++i) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();
 //Compute distance
 float r = sqrt(x*x + y*y);
 //Check if within circle
 if (r <= 1.0f) { n_inside = n_inside + 1; }
 }
 //Estimate Pi
 float pi = 4.0f * n_inside / static_cast<float>(n_points);
 return pi;
}

Parallel CPU code (C/C++ with OpenMP)

Make sure that every
expression involving
n_inside modifies the
global variable using
the + operator

Run for loop in parallel
using multiple threads

Technology for a better society 29

• Parallel: 3.8 seconds @ 100% CPU

• Serial: 30 seconds @ 10% CPU

Performance

Technology for a better society 30

GPU function __global__ void computePiKernel1(unsigned int* output) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();

 //Compute radius
 float r = sqrt(x*x + y*y);

 //Check if within circle
 if (r <= 1.0f) {
 output[blockIdx.x] = 1;
 } else {
 output[blockIdx.x] = 0;
 }
}

Parallel GPU version 1 (CUDA) 1/3

*Random numbers on GPUs can be a slightly tricky, see cuRAND for more information

Technology for a better society 31

float computePi(int n_points) {
 dim3 grid = dim3(n_points, 1, 1);
 dim3 block = dim3(1, 1, 1);

 //Allocate data on graphics card for output
 cudaMalloc((void**)&gpu_data, gpu_data_size);

 //Execute function on GPU (“lauch the kernel”)
 computePiKernel1<<<grid, block>>>(gpu_data);

 //Copy results from GPU to CPU
 cudaMemcpy(&cpu_data[0], gpu_data, gpu_data_size, cudaMemcpyDeviceToHost);

 //Estimate Pi
 for (int i=0; i<cpu_data.size(); ++i) {
 n_inside += cpu_data[i];
 }
 return pi = 4.0f * n_inside / n_points;
}

Parallel GPU version 1 (CUDA) 2/3

Technology for a better society 32

• Unable to run more than
65535 sample points

• Barely faster than single
threaded CPU version for
largest size!

• Kernel launch overhead
appears to dominate runtime

• The fit between algorithm
and architecture is poor:

• 1 thread per block:
Utilizes at most 1/32 of
computational power.

Parallel GPU version 1 (CUDA) 3/3

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

Technology for a better society 33

• CPU scalar: 1 thread, 1 operand on 1 data element

• CPU SSE/AVX: 1 thread, 1 operand on 2-8 data elements

• GPU Warp: 32 threads, 32 operands on 32 data elements

• Exposed as individual threads

• Actually runs the same instruction

• Divergence implies serialization and masking

GPU Vector Execution Model

Scalar operation SSE/AVX operation Warp operation

Technology for a better society 34

3
2

 t
h

re
ad

s
p

er
 b

lo
ck

N

ew

 in
d

ex
in

g

__global__ void computePiKernel2(unsigned int* output) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();

 //Compute radius
 float r = sqrt(x*x + y*y);

 //Check if within circle
 if (r <= 1.0f) {
 output[blockIdx.x*blockDim.x + threadIdx.x] = 1;
 } else {
 output[blockIdx.x*blockDim.x + threadIdx.x] = 0;
 }
}

float computePi(int n_points) {
 dim3 grid = dim3(n_points/32, 1, 1);
 dim3 block = dim3(32, 1, 1);
 …
 //Execute function on GPU (“lauch the kernel”)
 computePiKernel1<<<grid, block>>>(gpu_data);
 …
}

Parallel GPU version 2 (CUDA) 1/2

Technology for a better society 35

• Unable to run more than
32*65535 sample points

• Works well with 32-wide SIMD

• Able to keep up with multi-
threaded version at maximum
size!

• We perform roughly 16
operations per 4 bytes written
(1 int): memory bound kernel!
Optimal is 60 operations!

Parallel GPU version 2 (CUDA) 2/2

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

Technology for a better society 36

__global__ void computePiKernel3(unsigned int* output, unsigned int seed) {
 __shared__ int inside[32];

 //Generate coordinate
 //Compute radius
 …

 //Check if within circle
 if (r <= 1.0f) {
 inside[threadIdx.x] = 1;
 } else {
 inside[threadIdx.x] = 0;
 }

 … //Use shared memory reduction to find number of inside per block

Parallel GPU version 3 (CUDA) 1/3

Shared memory: a kind of “programmable cache”
We have 32 threads: One entry per thread

Technology for a better society 37

 … //Continued from previous slide

 //Use shared memory reduction to find number of inside per block
 //Remember: 32 threads is one warp, which execute synchronously
 if (threadIdx.x < 16) {
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+16];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+8];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+4];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+2];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+1];
 }

 if (threadIdx.x == 0) {
 output[blockIdx.x] = inside[threadIdx.x];
 }
}

Parallel GPU version 3 (CUDA) 2/3

Technology for a better society 38

• Memory bandwidth use reduced
by factor 32!

• Good speed-up over
multithreaded CPU!

• Maximum size is still limited to
65535*32.

• Two ways of increasing size:

• Increase number of threads

• Make each thread do more
work

Parallel GPU version 3 (CUDA) 3/3

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

GPU 3

Technology for a better society 39

__global__ void computePiKernel4(unsigned int* output) {
 int n_inside = 0;

 //Shared memory: All threads can access this
 __shared__ int inside[32];
 inside[threadIdx.x] = 0;

 for (unsigned int i=0; i<iters_per_thread; ++i) {
 //Generate coordinate
 //Compute radius
 //Check if within circle
 if (r <= 1.0f) { ++inside[threadIdx.x]; }
 }

 //Communicate with other threads to find sum per block
 //Write out to main GPU memory
 }

Parallel GPU version 4 (CUDA) 1/2

Technology for a better society 40

• Overheads appears to dominate
runtime up-to 10.000.000 points:

• Memory allocation

• Kernel launch

• Memory copy

• Estimated GFLOPS: ~450
Thoretical peak: ~4000

• Things to investigate further:

• Profile-driven development*!

• Check number of threads,
memory access patterns,
instruction stalls, bank conflicts, ...

Parallel GPU version 4 (CUDA) 2/2

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
 (

se
co

n
d

s)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

GPU 3

GPU 4

*See e.g., Brodtkorb, Sætra, Hagen,
GPU Programming Strategies and Trends in GPU Computing, JPDC, 2013

Technology for a better society 41

• Previous slide indicates speedup of

• 100x versus OpenMP version

• 1000x versus single threaded version

• Theoretical performance gap is 10x: why so fast?

• Reasons why the comparison is fair:

• Same generation CPU (Core i7 3930K) and GPU (GTX 780)

• Code available on Github: you can test it yourself!

• Reasons why the comparison is unfair:

• Optimized GPU code, unoptimized CPU code.

• I do not show how much of CPU/GPU resources I actually use (profiling)

• I cheat with the random function (I use a simple linear congruential generator).

Comparing performance

Technology for a better society 42

Leveraging Domain Specific Languages

Slides based on "Simulators that write themselves",
Atgeirr Flø Rasmussen, Dune user group meeting, 2013.

Technology for a better society 43

Simulation is hard

• Writing a parallel simulator and running
a simulation is notoriously difficult!

• Deep knowledge is required in multiple
fields: Mathematics, Physics, Chemistry,
Biology, Informatics, …

• Most simulator writing teams consist of
one person: typically a single Ph.D.
student.

• Most people are proficient in at most
one and a half of the required levels.

Application
(Equations, Physics)

Numerics
(Discretization, Gridding)

Implementation
(C++, Parallelization)

Technology for a better society 44

Using domain specific languages

Technology for a better society 45

Fool proof code using Equelle

• SINTEF has designed Equelle, http://www.equelle.org/

– Other similar languages: Liszt, Halide.

• Domain specific language

– Will never support "everything"

– Designed for safely writing finite-volume codes on (complex) grids

– Currently takes Equelle programs as input, and generates C++ code

• Still early prototype

http://www.equelle.org/

Technology for a better society 46

Benefits of Equelle

• Designed to prevent typical errors when writing simulators

– All "off-by-one" and indexing errors: grid access is not handled explicitly.

– Adding incompatible values: e.g., a face-value and a cell-value.

– Easy to generate serial, OpenMP, CUDA*, or MPI codes.

– Each project participant can work on the part he/she is most familiar!

*Master thesis work of Håvard Heitlo Holm, 2014

Technology for a better society 47

Current results

• Prototype up and running:
Check it out yourself on http://equelle.org/ (open source!)

• The compiler found bugs in an existing simulator we had written.
The code had been manually checked, and it required an effort to see
that the compiler was right

• No optimization of abstract syntax tree performed yet:
some performance loss is to be expected

• CUDA backend in progress for higher performance

http://equelle.org/

Technology for a better society 48

Summary

Technology for a better society 49

• All current processors are parallel:

• You cannot ignore parallelization and expect high performance

• Serial programs utilize roughly 1% of potential!

• Getting started coding in parallel has never been easier:

• OpenMP is at your fingertips (C/C++/Fortran)

• Nvidia CUDA tightly integrated into Visual Studio

• Excellent profiling tools available with toolkit

• Domain specific languages can aid development

• Can be expensive to design language first time

• Easier to write and maintain code

Summary

Technology for a better society 50

• Code examples available online: http://github.com/babrodtk

• NVIDIA CUDA website: https://developer.nvidia.com/cuda-zone

• Equelle website: http://www.equelle.org/

• Brodtkorb, Hagen, Schulz and Hasle, GPU Computing in Discrete Optimization Part I:
Introduction to the GPU, EURO Journal on Transportation and Logistics, 2013.

• Brodtkorb, Sætra and Hagen, GPU Programming Strategies and Trends in GPU
Computing, Journal of Parallel and Distributed Computing, 2013.

Some references

http://github.com/babrodtk
http://github.com/babrodtk
http://github.com/babrodtk
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
http://www.equelle.org/

Technology for a better society 51

Thank you for your attention!

André R. Brodtkorb
Email:
Andre.Brodtkorb@sintef.no
Homepage:
http://babrodtk.at.ifi.uio.no/

SINTEF webpages:
http://www.sintef.no/math/

mailto:Andre.Brodtkorb@sintef.no
http://babrodtk.at.ifi.uio.no/
http://www.sintef.no/math/

