Parallel Computing Towards Exascale

André R. Brodtkorb Visual Computing Forum #30 September 19, 2014

- Established 1950 by the Norwegian Institute of Technology.
- The largest independent research organisation in Scandinavia.
- A non-profit organisation.
- Motto: "Technology for a better society".
- Key Figures*
 - 2100 Employees from 70 different countries.
 - 73% of employees are researchers.
 - 3 billion NOK in turnover (about 360 million EUR / 490 million USD).
 - 9000 projects for 3000 customers.
 - Offices in Norway, USA, Brazil, Chile, and Denmark.

Outline

- Motivation for exascale
- Multi- and many-core architectures
- Computing π on a massively parallel machine
- Leveraging domain specific languages
- Summary

Motivation exascale

What is Exascale?

Graphic: http://edition.cnn.com/2012/03/29/tech/super-computer-exa-flop/

1,000,000,000,000,000,000

AN EXASCALE COMPUTER WILL PERFORM ONE QUINTILLION OPERATIONS PER SECOND.

An exascale computer can perform as many calculations per second as about 50 MILLION LAPTOPS.

of a football field.

Current projections for power consumption of exascale computers is put at 100 MEGAWATTS - the same amount of power as ONE MILLION 100-WATT lightbulbs.

2018?

Scientists hope to build an exascale computer by 2018 with the Europe, China, Japan and the U.S. all investing hundreds of millions of \$\$\$.

The processing power will transform sciences such as astrophysics and biology as well as improving climate modelling and national security.

Why do we need Exascale?

- More accurate weather forecasts.
 - Extreme weather we can predict today, was impossible to foresee as little as ten years ago.
- Simulation of a human brain.
 - Is estimated to run on the order of one Exaflop.
- More accurate CFD simulations.
 - Design of supersonic aircraft, missiles, and space shuttles.
- New unforeseen simulation strategies and application areas enabled by Exascale.

Why care about "exascale hardware"?

- Same type of hardware for supercomputers and laptops.
- The key to increasing performance, is to consider the full algorithm and architecture interaction.
- A good knowledge of <u>both</u> the algorithm <u>and</u> the computer architecture is required.

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008

History lesson: development of the microprocessor 1/2

1942: Digital Electric Computer

(Atanasoff and Berry)

(Shockley, Bardeen, and Brattain)

1958: Integrated Circuit

(Kilby)

Fig. 2 Number of components per Integrated function for minimum cost per component extrapolated ve time.

1971: Microprocessor

(Hoff, Faggin, Mazor)

1971- Exponential growth

(Moore, 1965)

History lesson: development of the microprocessor 2/2

1971: 4004, 2300 trans, 740 KHz

1982: 80286, 134 thousand trans, 8 MHz

1993: Pentium P5, 1.18 mill. trans, 66 MHz

2000: Pentium 4, 42 mill. trans, 1.5 GHz

2010: Nehalem

2.3 bill. Trans, 8 cores, 2.66 GHz

End of frequency scaling

Desktop processor performance (SP)

- 1970-2004: Frequency doubles every 34 months (Moore's law for performance)
- 1999-2014: Parallelism doubles every 30 months

What happened in 2004?

- Heat density approaching that of nuclear reactor core: Power wall
- Traditional cooling solutions (heat sink + fan) insufficient

Original graph by G. Taylor, "Energy Efficient Circuit Design and the Future of Power Delivery" EPEPS'09

Why Parallelism?

The power density of microprocessors is proportional to the clock frequency cubed:¹

$$P_d \propto f^3$$

Single-core

¹ Brodtkorb et al. State-of-the-art in heterogeneous computing, 2010

Multi- and many-core architectures

Multi- and many-core processor designs

- 6-60 processors per chip
- 8 to 32-wide SIMD instructions
- Heterogeneous cores (e.g., CPU+GPU on single chip)

Multi-core CPU architecture

- A single core
 - L1 and L2 caches
 - 8-wide SIMD units (AVX, single precision)
 - 2-way Hyper-threading (<u>hardware</u> threads)
 When thread 0 is waiting for data,
 thread 1 is given access to SIMD units
 - Most transistors used for cache and logic
- Optimal number of FLOPS per clock cycle:
 - 8x: 8-way SIMD
 - 6x: 6 cores
 - 2x: Dual issue (fused mul-add / two ports)
 - Sum: 96!

Simplified schematic of CPU design

Many-core GPU architecture

- A single core (Called streaming multiprocessor, SMX)
 - L1 cache, Read only cache, texture units
 - Six 32-wide SIMD units (192 total, single precision)
 - Up-to 64 warps simultaneously (<u>hardware</u> warps)
 Like hyper-threading, but a warp is 32-wide SIMD
 - Most transistors used for floating point operations
- Optimal number of FLOPS per clock cycle:
 - 32x: 32-way SIMD
 - 2x: Fused multiply add
 - 6x: Six SIMD units per core
 - 15x: 15 cores
 - Sum: 5760!

Simplified schematic of GPU design

Heterogeneous Architectures

- Discrete GPUs are connected to the CPU via the PCI-express bus
 - Slow: 15.75 GB/s each direction
 - On-chip GPUs use main memory as graphics memory
- Device memory is limited but fast
 - Typically up-to 6 GB
 - Up-to 340 GB/s!
 - Fixed size, and cannot be expanded with new dimm's (like CPUs)

Parallel algorithm design

Parallel computing

- Most algorithms are like baking recipies,
 Tailored for a single person / processor:
 - First, do A,
 - Then do B,
 - Continue with C,
 - And finally complete by doing D.
- How can we utilize an army of chefs?

Picture: Daily Mail Reporter , www.dailymail.co.uk

Data parallel workloads

 Data parallelism performs the same operation for a set of different input data

- Scales well with the data size:
 The larger the problem, the more processors you can utilize
- Trivial example:
 Element-wise multiplication of two vectors:
 - c[i] = a[i] * b[i] i=0...N
 - Processor i multiplies elements i of vectors a and b.

Task parallel workloads 1/3

- Task parallelism divides a problem into subtasks which can be solved individually
- Scales well for a large number of tasks:
 The more parallel tasks, the more processors you can use
- Example: A simulation application:

Processor 1	Render GUI
Processor 2	Simulate physics
Processor 3	Calculate statistics
Processor 4	Write statistics to disk

Note that not all tasks will be able to fully utilize the processor

Task parallel workloads 2/3

- Another way of using task parallelism is to execute dependent tasks on different processors
- Scales well with a large number of tasks, but performance limited by slowest stage
- Example: Pipelining dependent operations

Note that the gray boxes represent idling: wasted clock cycles!

Task parallel workloads 3/3

- A third way of using task parallelism is to represent tasks in a directed acyclic graph (DAG)
- Scales well for millions of tasks, as long as the overhead of executing each task is low
- Example: Cholesky inversion

"Gray boxes" are minimized

Example from Dongarra, On the Future of High Performance Computing: How to Think for Peta and Exascale Computing, 2012

Algorithmic and numerical performance

- Total performance is the product of algorithmic and numerical performance
 - Your mileage may vary: algorithmic performance is highly problem dependent
- Many algorithms have low numerical performance
 - Only able to utilize a fraction of the capabilities of processors, and often worse in parallel
- Need to consider both the algorithm and the architecture for maximum performance

Computing PI in parallel

Estimating π (3.14159...) in parallel

- There are many ways of estimating Pi. One way is to estimate the area of a circle.
- Sample random points within one quadrant
- Find the ratio of points inside to outside the circle
 - Area of quarter circle: $A_c = \pi r^2/4$ Area of square: $A_s = r^2$
 - $\pi = 4 A_c/A_s \approx 4 \text{ #points inside / #points outside}$
- Increase accuracy by sampling more points
- Increase speed by using more nodes
- This is a data-parallel workload:
 All processors perform the same operation.

Disclaimer: this is a naïve way of calculating PI, only used as an example of parallel execution

pi=3.1415**7**

Serial CPU code (C/C++)

```
float computePi(int n points) {
       int n inside = 0;
       for (int i=0; i<n points; ++i) {</pre>
           //Generate coordinate
           float x = generateRandomNumber();
           float y = generateRandomNumber();
           //Compute distance
           float r = sqrt(x*x + y*y);
           //Check if within circle
           if (r < 1.0f) { n inside = n inside + 1; }
       //Estimate Pi
       float pi = 4.0f * n_inside / static_cast<float>(n_points);
       return pi;
```

Parallel CPU code (C/C++ with OpenMP)

```
Run for loop in parallel
                                                                  using multiple threads
float computePi(int n pdints) {
       int n inside = 0:
       #pragma'omp parallel for'reduction(+:n inside)
       for (int i=0; i< n points; ++i) {
           //Generate coordinate
           float x = generateRandomNumber();
           float y = generateRandomNumber();
           //Compute distance
           float r = sqrt(x*x + y*y);
           //Check if within circle
           if (r \le 1.0f) \{ n \text{ inside} = n \text{ inside} + 1; \}
                                                                             Make sure that every
                                                                             expression involving
       //Estimate Pi
                                                                             n inside modifies the
       float pi = 4.0f * n inside / static cast<float>(n points);
                                                                             global variable using
       return pi;
                                                                             the + operator
```

Performance

Parallel: 3.8 seconds @ 100% CPU

Please enter number of iterations: 1000000000 Estimated Pi to be: 3.141476 in 3.799772 seconds.

Serial: 30 seconds @ 10% CPU

Please enter number of iterations: 1000000000 Estimated Pi to be: 3.141495 in 29.883573 seconds.

Parallel GPU version 1 (CUDA) 1/3

*Random numbers on GPUs can be a slightly tricky, see cuRAND for more information

Parallel GPU version 1 (CUDA) 2/3

```
float computePi(int n points) {
      dim3 grid = dim3(n_points, 1, 1);
      dim3 block = dim3(1, 1, 1);
      //Allocate data on graphics card for output
cudaMalloc((void**)&gpu_data, gpu_data_size);
      //Execute function on GPU ("lauch the kernel")
      computePiKernel1<<<grid, block>>>(gpu data);
      //Copy results from GPU to CPU
      cudaMemcpy(&cpu_data[0], gpu_data, gpu_data_size, cudaMemcpyDeviceToHost);
      //Estimate Pi
      for (int i=0; i<cpu_data.size(); ++i) {</pre>
             n inside += cpu_data[i];
      return pi = 4.0f * n_inside / n points;
```

Parallel GPU version 1 (CUDA) 3/3

- Unable to run more than 65535 sample points
- <u>Barely</u> faster than single threaded CPU version for largest size!
- Kernel launch overhead appears to dominate runtime
- The fit between algorithm and architecture is poor:
 - 1 thread per block:
 Utilizes <u>at most</u> 1/32 of computational power.

GPU Vector Execution Model

- **CPU scalar:** 1 thread, 1 operand on 1 data element
- **CPU SSE/AVX:** 1 thread, 1 operand on 2-8 data elements
- **GPU Warp:** 32 threads, 32 operands on 32 data elements
 - Exposed as individual threads
 - Actually runs the same instruction
 - Divergence implies serialization and masking

Parallel GPU version 2 (CUDA) 1/2

```
global void computePiKernel2(unsigned int* output) {
         //Generate coordinate
         float x = generateRandomNumber();
         float y = generateRandomNumber();
         //Compute radius
         float r = sqrt(x*x + y*y);
         //Check if within circle
                                                                                indexing
         if (r <= 1.0f) {
                                                                              New
                   output[blockIdx.x*blockDim.x + threadIdx.x] = 1;
         } else {
                   output[blockIdx.x*blockDim.x + threadIdx.x] = 0;
float computePi(int n_points) {
      dim3 grid = dim3(n_points/32, 1, 1);
                                                                              32 threads
      dim3 \ block = dim3(32, 1, 1);
      //Execute function on GPU ("lauch the kernel")
      computePiKernel1<<<grid, block>>>(gpu_data);
```

Parallel GPU version 2 (CUDA) 2/2

- Unable to run more than 32*65535 sample points
- Works well with 32-wide SIMD
- Able to keep up with multithreaded version at maximum size!
- We perform roughly 16
 operations per 4 bytes written
 (1 int): memory bound kernel!
 <u>Optimal is 60 operations!</u>

Parallel GPU version 3 (CUDA) 1/3

```
void computePiKernel3(unsigned int* output, unsigned int seed) {
global
         shared int inside[32]; 

←
       //Generate coordinate
                                   Shared memory: a kind of "programmable cache"
       //Compute radius
                                   We have 32 threads: One entry per thread
       //Check if within circle
       if (r <= 1.0f) {
                inside[threadIdx.x] = 1;
                inside[threadIdx.x] = 0;
       } else {
```

... //Use shared memory reduction to find number of inside per block

Parallel GPU version 3 (CUDA) 2/3

... //Continued from previous slide

```
//Use shared memory reduction to find number of inside per block
//Remember: 32 threads is one warp, which execute synchronously
if (threadIdx.x < 16) {
          p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+16];
          p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+8];
          p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+4];
          p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+2];
          p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+1];
if (threadIdx.x == 0) {
          output[blockIdx.x] = inside[threadIdx.x];
```

Parallel GPU version 3 (CUDA) 3/3

- Memory bandwidth use reduced by factor 32!
- Good speed-up over multithreaded CPU!
- Maximum size is still limited to 65535*32.
- Two ways of increasing size:
 - Increase number of threads
 - Make each thread do more work

Parallel GPU version 4 (CUDA) 1/2

```
global void computePiKernel4(unsigned int* output) {
        int n inside = 0;
         //Shared memory: All threads can access this
           shared int inside[32];
        inside[threadIdx.x] = 0;
        for (unsigned int i=0; i<iters_per_thread; ++i) {</pre>
                  //Generate coordinate
                  //Compute radius
                  //Check if within circle
                  if (r <= 1.0f) { ++inside[threadIdx.x]; }</pre>
        //Communicate with other threads to find sum per block
        //Write out to main GPU memory
```

Parallel GPU version 4 (CUDA) 2/2

- Overheads appears to dominate runtime up-to 10.000.000 points:
 - Memory allocation
 - Kernel launch
 - Memory copy
- Estimated GFLOPS: ~450
 Thoretical peak: ~4000
- Things to investigate further:
 - Profile-driven development*!
 - Check number of threads, memory access patterns, instruction stalls, bank conflicts, ...

*See e.g., Brodtkorb, Sætra, Hagen, GPU Programming Strategies and Trends in GPU Computing, JPDC, 2013

Comparing performance

- Previous slide indicates speedup of
 - 100x versus OpenMP version
 - 1000x versus single threaded version
 - Theoretical performance gap is 10x: why so fast?
- Reasons why the comparison is <u>fair</u>:
 - Same generation CPU (Core i7 3930K) and GPU (GTX 780)
 - Code available on Github: you can test it yourself!
- Reasons why the comparison is <u>unfair</u>:
 - Optimized GPU code, unoptimized CPU code.
 - I do not show how much of CPU/GPU resources I actually use (profiling)
 - I cheat with the random function (I use a simple linear congruential generator).

Leveraging Domain Specific Languages

Slides based on "Simulators that write themselves", Atgeirr Flø Rasmussen, Dune user group meeting, 2013.

Simulation is hard

- Writing a parallel simulator and running a simulation is notoriously difficult!
- Deep knowledge is required in multiple fields: Mathematics, Physics, Chemistry, Biology, Informatics, ...
- Most simulator writing teams consist of one person: typically a single Ph.D. student.
- Most people are proficient in at most one and a half of the required levels.

Application (Equations, Physics)

Numerics (Discretization, Gridding)

Implementation (C++, Parallelization)

Using domain specific languages

Figure from "Designing the Language Liszt" by DeVito, Joubert, Lemire, Hanrahan

Fool proof code using Equelle

- SINTEF has designed Equelle, http://www.equelle.org/
 - Other similar languages: Liszt, Halide.
- Domain specific language
 - Will never support "everything"
 - Designed for safely writing finite-volume codes on (complex) grids
 - Currently takes Equelle programs as input, and generates C++ code
- Still early prototype

Benefits of Equelle

- Designed to prevent typical errors when writing simulators
 - All "off-by-one" and indexing errors: grid access is not handled explicitly.
 - Adding incompatible values: e.g., a face-value and a cell-value.
 - Easy to generate serial, OpenMP, CUDA*, or MPI codes.
 - Each project participant can work on the part he/she is most familiar!

Current results

- Prototype up and running:
 Check it out yourself on http://equelle.org/ (open source!)
- The compiler found bugs in an existing simulator we had written.
 The code had been manually checked, and it required an effort to see that the compiler was right
- No optimization of abstract syntax tree performed yet: some performance loss is to be expected
- CUDA backend in progress for higher performance

Summary

Summary

- All current processors are parallel:
 - You cannot ignore parallelization and expect high performance
 - Serial programs utilize roughly 1% of potential!
- Getting started coding in parallel has never been easier:
 - OpenMP is at your fingertips (C/C++/Fortran)
 - Nvidia CUDA tightly integrated into Visual Studio
 - Excellent profiling tools available with toolkit
- Domain specific languages can aid development
 - Can be expensive to design language first time
 - Easier to write and maintain code

Some references

- Code examples available online: http://github.com/babrodtk
- NVIDIA CUDA website: https://developer.nvidia.com/cuda-zone
- Equelle website: http://www.equelle.org/
- Brodtkorb, Hagen, Schulz and Hasle, GPU Computing in Discrete Optimization Part I: Introduction to the GPU, EURO Journal on Transportation and Logistics, 2013.
- Brodtkorb, Sætra and Hagen, GPU Programming Strategies and Trends in GPU
 Computing, Journal of Parallel and Distributed Computing, 2013.

Thank you for your attention!

André R. Brodtkorb Email:

Andre.Brodtkorb@sintef.no

Homepage:

http://babrodtk.at.ifi.uio.no/

SINTEF webpages:

http://www.sintef.no/math/