Applied Visualization & Modeling For Environment and Geology

Overview of projects VIRCOLA, DECOFF, Geolliustrator

V. Solteszova S. Tavakoli CMR Computing

Visualization for Cross-Discipline Collaboration VIRCOLA

Saman Tavakoli, Daniel Patel, Tor Langeland CMR Computing

In this presentation you will see:

Part 1: CCS and activities in Longyearbyen CO2 lab (Svalbard)

Part 2: An overview of the activities in the VIRCOLA project

Part 1. CCS and activities in Longyearbyen CO2 lab (Svalbard)

Why is Carbon Capture and Storage (CCS) importnat?

Intergovernmental Panel on Climate Change (IPCC):

"global greenhouse gas (GHG) emissions must be reduced by 50- 80% by 2050 to avoid dramatic consequences of global warming"

Emissions of greenhouse gasses (present rate) will increase the average global temperature by 1.1 - 6.4 °C by the end of the 21st century

A global warming of more than 2 °C increase in average temperature will lead to serious consequences (next page)

Potentials for reducing CO2 emissions are limited

Some of the consequences that global warming will bring:

More floods

Polar ice caps melting

Spread of disease

Warmer waters and more hurricanes

Increased intensity of droughts and heat waves

Economic consequences

Wildfires

Destructive storms

Desertification

Tsunamis

Increased volcanic activity

Loss of biodiversity and animal extinction

Animal attacks

Migration, conflict and wars

How does a CCS system work?

dataWithGradientE4*(x +

Overview of geological storage options

CO2 storage in Svalbard?

www.cmr.no

Storage type: Deep saline aquifer
64,000 tons/year CO2 emission
Suitable reservoir capacity
Ideal distance: emission source - storage sites
Suitable caprock, good reservoir conditions

High arctic location: symbolic case to warn about global warming

Part 2. The Virtual CO2 Laboratory (VIRCOLA Project)

What is VIRCOLA, what is its vision?

Stands for Virtual CO2 Laboratory

Initial case study: Longyearbyen, Svalbard

Vision: Develop a data platform and methodology for co-visualization and visual analysis of multi-disciplinary data. **Why?** to facilitate dialogue and communication between researchers whose research deals with CO2 storage in Norway.

Motivation and challenges?!

Diverse geographical locations

Multi-disciplinary data

Multi-disciplinary research

More

Covisualizations

dataWithGradientE4*(x + v*nx

Collected data

Core lithology descriptions

Core images

Geology-topography map

Digital geology maps...

High resolution geology maps

Horizons

Evaluation of the selected visualization tools

Weak (-) Acceptable (o) Good/very good (+)

3D programs	Import/export	Scripts	Cost	Communication	Visualization functionality
Petrel	0	0	+	+	+
GOCAD/SKUA	+	0	0	0	+
Encom PA	0	-	-	0	+

2D programs	Import/export	Scripts	Cost	Communication	Visualization functionality
ArcMap	+	+	+	+	0
MapInfo	+	0	0	0	0

Examples of VIRCOLA's approach

1. Establishing a 'data index' for VIRCOLA

We created an index file through which available data in the VIRCOLA project (with their details) are accessible. The <u>data index</u> includes following information:

2. Advancing visualization techniques:

(a) Exported as Grid+ cropped GlobalMapper **SKUA** 1- (a) was projected on (b) **GeoTIFF** 2- Scripted to adjust the image

(b) Higher resolution

geology image-much

larger coverage

Example: Geology map projected on DEM model of Svalbard

3. Improving the initial understanding by covisualizing data (MT vs. Seismic)

4. Regional to local-scale (multi-scale) visualization

dataWithGradientE4*(x

Modelling/visualization

5. Visualizing the interior of the models

6. Tools for remote collaboration (visualization, interpretation, discussion)

Share the results with any number of partners all around the world

Possibile to run/control the software remotely

Other potential case studies

> Snøhvit

> Sleipner

Snøhvit

The way forward.....

Constantly update the database

Identity and advance visualization techniques

Continue to identify gaps in between different research disciplines

Fill in the identified gaps by linking the researchers from diverse research background

Decision support for installation of offshore wind turbines **DECOFF**

With contribution from: Yngve Heggelund, Birgitte Furevik, Sigrid Ringdalen Vatne, Angus Graham, Idar Barstad, John Dalsgaard Sørensen, Joachim Reuder, Rune Yttervik

Motivating problem

The cost of installing offshore wind turbines must be distinctly reduced

Waiting for weather windows is a significant cost contributor

Criteria to commence installation operations are related to simple parameters

Significant wave height Average wind velocity at reference height

The physical limitation are however related to response parameters

Motions Accelerations Forces

Uncertainties are currently not properly taken into account in the decision making

General project idea

Couple weather forecast models to an advanced dynamical model (SIMO) to obtain response parameters

Improve local weather forecasts by utilizing local measurements

Calibrate forecast models

Provide estimates of uncertainty

Use statistical models to capture uncertainty of response characteristics

Integrate the above into an online risk based decision support system

Clear and informed view of the risks and potential costs of carrying out an operation in a given timeframe

dataWithGradientE4*(x

Research proposal

Title: "Decision support for installation of offshore wind turbines"

Research partners: CMR, met.no, Uni Research, UiB, AAU, Marintek, UiS, UiA.

Industry partner: Statoil.

Associated partners: Reinertsen Engineering, Fred. Olsen Windcarrier.

Project is embedded in FME NORCOWE

Proposal for competence building project was submitted to the MAROFF program in the Research Council of Norway September 5th 2012.

Total budget: 8.4 MNOK over 3 years (80% by RCN, 20% by Statoil).

Project management by CMR.

Consortium agreement signed August 15th 2013.

Installation test case 1

Integrated installation of offshore wind turbines of gravity-base type

> Reduce installation cost by reducing offshore heavy-lifting activities

Complete, or partly complete structure transported to site (integrated installation operation)

Operating phases:

Tow out

Mooring and positioning on site Lowering of foundation to sea-floor Setting foundation down into sea floor

Installation test case 2

Installation of wind turbine rotor by floating crane vessel

Installation of one piece at a time on site

Operating phases:

Transportation of rotor to site

Mooring and positioning on site

Lifting the rotor from the deck of the transportation vessel

Placing the rotor onto the pre-installed nacelle

SIMO: Equipment response simulator

SIMO (Simulation of Marine Operations) developed and owned by Marintek

Non-linear time domain simulation of motions and station keeping of multibody systems

Used in the oil and gas industry:

Offshore crane operations
Subsea installation
Jacket installation and removal

Decision support system for operation planning

Map visualization

Of weather variables (with uncertainty)

Of response characteristics (with uncertainty?)

Plan and optimize the transportation route

Decision support system for operation planning (cont.)

Compute and visualize below critical time intervals for operational phases

User defined probability of being below a critical level

User evaluation of presentation and interaction

Establish a representative user group of potential end-users

Task the user group with testing, and collect feedback

Compare existing methods to the proposed method

Challenges

Cross discipline project between institutions with little or no prior project cooperation

Do we speak the same language? Do we understand each other?

Choice of project test case site

ECMWF ensembles are not stored in full in the archives, making it difficult to use a historical test case like Sheringham Shoal

Dudgeon will probably not be scheduled until after project completion (virtual test case?)

FINO3?

Summary

Provide an objective foundation for decision support taking into account

The real physical limitations of the equipment being used

The uncertainties in the weather-dependent data

Challenge existing practice of using simple parameters such as significant wave height and average wind velocity

Enable evaluating different installation procedures

Ideas and principles can also be applied to the operational phase

Main goal: Reduce the cost of installing offshore wind turbines

Illustrative Visualization for Geology **Geolllustrator**

With contribution from: Daniel Patel, Tor Langeland

The Geoillustrator initiative goes back to 2005

- Established collaboration with Vienna University of Technology (TUW)
- Very strong competence within visualization.
- Worked with illustrative visualization ("importance driven rendering")

Importance driven (Viola et. al, 2004)

Exploded views (Bruckner and Grøller, 2006)

Cut aways (Viola et. al 2004)

Illustrative Visualization

Illustration

Understanding Earth, Grotzinger et. al.

- Abstracted data
- Shows essential aspects

PhD: "Expressive Visualization and Rapid Interpretation of Seismic Volumes"

CMR scientist Daniel Patel

The Geoillustrator project

Vision

Create a leading research group with focus on computer generated geoscience illustrations for exploration and production in the oil & gas industry

Project Startup Statoil 2009
PETROMAKS KMB application granted for 2010 – 2013

Collaboration

University of Calgary

Technische Universitat Wien

4 PhD's

New knowledge

Publications

Geoillustrator prototype

The Geoillustrator prototype

Fast and intuitive digital sketching of geology

(No data – sparse data scenarios)

- Layers
 - Freehand drawing on scalable bounding box
 - Or planar surfaces
- Abutting surfaces
- Layer textures
- Simple river tool
- Water level
- Simple and intuitive GUI improved in close dialog with Statoil geologists
- Under implementation
 - Faults
 - Folding

Thank you for your attention!

Credits: Yngve Heggelund, Daniel Patel

