

Visual Computing Forum

AGING COGNITION, BRAIN IMAGING AND GENETICS

VELLOW

ORAN

Astri J. Lundervold

BERGEN, 2013/03/01

COGNITIVE AGING

GENETIC VARIATION & BRAIN MAINTENECE

- Sexual reproduction has the potential to produce tremendous genetic variation in offspring.
- This variation is due to independent assortment and crossing-over during meiosis, and random union of gametes during fertilization.

Lars Nyberg , Martin Lövdén , Katrine Riklund , Ulman Lindenberger , Lars Bäckman

A conceptual model of the scaffolding theory of aging and cognition (STAC).

Figure 1

Cross-sectional aging data adapted from Park et al. (2002) showing behavioral performance on measures of speed of processing, working memory, long-term memory, and world knowledge. Almost all measures of cognitive function show decline with age, except world knowledge, which may even show some improvement.

Figure 2 Illustration of variability in memory aging. The graph shows the results of a Q-mode factor analysis that sorted individuals into high versus low cognitive performers (each circle denotes the average score of an individual). Although a n...

Lars Nyberg, Martin Lövdén, Katrine Riklund, Ulman Lindenberger, Lars Bäckman

Memory aging and brain maintenance

Trends in Cognitive Sciences Volume 16, Issue 5 2012 292 - 305

http://dx.doi.org/10.1016/j.tics.2012.04.005

Figure 1 Illustration of assessment of age-related episodic-memory change with cross-sectional Cross-sectional data reveal early onset of decline. (b) Longitudinal data indicate a positive gradie

Lars Nyberg, Martin Lövdén, Katrine Riklund, Ulman Lindenberger, Lars Bäckman

Memory aging and brain maintenance

Trends in Cognitive Sciences Volume 16, Issue 5 2012 292 - 305

http://dx.doi.org/10.1016/j.tics.2012.04.005

Aging – cognition, imaging and genetics OSLO and BERGEN

Sensory and motor function Attention/executive function **Memory function** Language function Visual Cognition Self-reports of cognitive problems; depression and sleep

Structural and functional connections using series 2, 3, 4 & 5

Arvid Lundervold

Astri J. Lundervold

Genotyping: Stephanie LeHellard, Thomas Espeset et al.

Genome wide scans (using Illumina 610 quad CHIP) for 600k SNPs. Used in international collaborations.

Participants

- WAVE-1 (2004/2005)
 - Neuropsychological test results n = 165
 - MRI n = 120
 - Blood samples
- WAVE-2 (2008/2009)
 - Neuropsychological test results n = 134
 - MRI n = 118
- WAVE-3 (2011/2012)
 - Neuropsychological test results n n=109
 - MRI n = 94

Fra Baars & Gage: Cognition, Brain, and Consciousness (2010) p.587

- * To understand the relation between behavior and the underlying neural systems.
- * Even simple cognitive tasks are dependent on a neural network involving different brain areas.
- * Each network represents a specific subfunction

Posner, M. (1988). Structures and function of selective attention. I T. Boll & B.K. Bryant (red) Clinical neuropsychology and brain functions. Washington DC, APA, s. 173-202).

Neuropsychological function

Sensori-motor function

Perception, tempo, coordination

Cognitive function

Attention, psychomotor tempo, memory function, language, visual cognition, executive function

Emotional function

Behavior, self-perception, regulation, emotions

Clinical Neuropsychology

'Graphing' the functional resting state network in subj651

BLUE GREEN	RED BLUE	YELLOW PURPLE	ORANGE RED
PURPLE	YELLOW	RED	BLUE
ORANGE	BLUE	YELLOW	RED
RED	GREEN	ORANGE	BLUE
PURPLE	YELLOW	BLUE	ORANGE

0.1%

Aging, Neuropsychology, and Cognition Publication details, including instructions for authors and subscription information:

Eike Wehling

http://www.tandfonline.com/loi/nanc20

Familiarity, Cued and Free Odor Identification and Their Association with Cognitive Functioning in Middle Aged and Older Adults

Eike Ines Wehling $^{\rm a}$, Steven Nordin $^{\rm b}$, Thomas Espeseth $^{\rm c}$, Ivar Reinvang $^{\rm c}$ & Astri J. Lundervold $^{\rm a}$

Neurobiology of Aging

Volume 31, Issue 4, April 2010, Pages 567-577

Odor identification impairment in carriers of ApoE- ε 4 is independent of clinical dementia

Jonas K. Olofsson^{a, b, c,} 📥 📽, Steven Nordin^{a, d}, Stefan Wiens^{b, c}, Margareta Hedner^{b, c}, Lars-Göran Nilsson^{b, c}, Maria Larsson^{b, c}

Full Text (HTML)

Unawareness of Olfactory Dysfunction and its Association with Cognitive Functioning in Middle Aged and Old Adults

Arch Clin Neuropsychol (2011) 26(3): 260-269 first published online April 6, 2011

Cognitive tests/questionnaires

Test	Wave 1	Wave 2	Wave 3
WASI (2 subtests, IQ est.)	Х	Х	Х
Odour identification (SOIT)	X	Х	Х
Trail Making Test	Х	Х	Х
Coding	Х	Х	Х
Stroop (D-KEFS)	Х	Х	Х
FAS (D-KEFS)	Х	Х	Х
CVLT-II	Х	Х	Х
Rey Complex Figure		Х	Х
Letter-number		Х	Х
PASAT	Х	-	Х
CDP and memory (exp.)	Х	Х	
Grooved Pegboard		Х	Х
Benton/Dichotic listening	Х	-	-
Self-reports (depression, memory, sleep)	Х	Х	Х

	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	id	Numeric	4	0	Project ID	None	None	8	🧱 Right	🧳 Scale	📏 Input
2	cvlt_tri_1_r	Numeric	8	2	CVLT-II - Immediate Recall - Trial 1 - Number Correct - raw score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
3	cvlt_tri_1_s	Numeric	8	2	CVLT-II - Immediate Recall - Trial 1 - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
4	cvlt_tri_2_r	Numeric	8	2	CVLT-II - Immediate Recall - Trial 2 - Number Correct - raw score	None	None	8	🗮 Right	🔗 Scale	🔪 Input
5	cvlt_tri_2_s	Numeric	8	2	CVLT-II - Immediate Recall - Trial 2 - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
6	cvlt_tri_3_r	Numeric	8	2	CVLT-II - Immediate Recall - Trial 3 - Number Correct - raw score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
7	cvlt_tri_3_s	Numeric	8	2	CVLT-II - Immediate Recall - Trial 3 - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🔪 Input
8	cvlt_tri_4_r	Numeric	8	2	CVLT-II - Immediate Recall - Trial 4 - Number Correct - raw score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
9	cvlt_tri_4_s	Numeric	8	2	CVLT-II - Immediate Recall - Trial 4 - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🔪 Input
10	cvlt_tri_5_r	Numeric	8	2	CVLT-II - Immediate Recall - Trial 5 - Number Correct - raw score	None	None	8	🗮 Right	🛷 Scale	🔪 Input
11	cvlt_tri_5_s	Numeric	8	2	CVLT-II - Immediate Recall - Trial 5 - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🔪 Input
12	cvlt_tri_tot_r	Numeric	8	2	CVLT-II - Immediate Recall - Trial 1-5 Total - Number Correct - raw score	None	None	8	🗮 Right	🛷 Scale	🔪 Input
13	cvlt_tri_tot_t	Numeric	8	2	CVLT-II - Immediate Recall - Trial 1-5 Total - Number Correct - t-score	None	None	8	🗮 Right	🖋 Scale	🦒 Input
14	cvlt_tri_b_r	Numeric	8	2	CVLT-II – Immediate Recall – Trial B – Number Correct – raw score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
15	cvlt_tri_b_s	Numeric	8	2	CVLT-II - Immediate Recall - Trial B - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
16	cvlt_sd_fr_r	Numeric	8	2	CVLT-II - Delayed Recall - Short Delay Free Recall - Number Correct - raw score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
17	cvlt_sd_fr_s	Numeric	8	2	CVLT-II - Delayed Recall - Short Delay Free Recall - Number Correct - standard score	None	None	8	🗮 Right	🖋 Scale	🦒 Input
18	cvlt_sd_cr_r	Numeric	8	2	CVLT-II - Delayed Recall - Short Delay Cued Recall - Number Correct - raw score	None	None	8	🗮 Right	🔗 Scale	🔪 Input
19	cvlt_sd_cr_s	Numeric	8	2	CVLT-II - Delayed Recall - Short Delay Cued Recall - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
20	cvlt_ld_fr_r	Numeric	8	2	CVLT-II – Delayed Recall – Long Delay Free Recall – Number Correct – raw score	None	None	8	🗮 Right	🖋 Scale	🔪 Input
21	cvlt_ld_fr_s	Numeric	8	2	CVLT-II – Delayed Recall – Long Delay Free Recall – Number Correct – standard score	None	None	8	🗮 Right	🛷 Scale	🔪 Input
22	cvlt_ld_cr_r	Numeric	8	2	CVLT-II - Delayed Recall - Long Delay Cued Recall - Number Correct - raw score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
23	cvlt_ld_cr_s	Numeric	8	2	CVLT-II - Delayed Recall - Long Delay Cued Recall - Number Correct - standard score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
24	cvlt_sem_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Semantic Clustering - raw score	None	None	8	🧮 Right	🧳 Scale	🦒 Input
25	cvlt_sem_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Semantic Clustering - scaled score	None	None	8	🧮 Right	🔗 Scale	🦒 Input
26	cvlt_ser_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Serial Clustering Bidirectional- raw score	None	None	8	🗮 Right	🔗 Scale	🦒 Input
27	cvlt_ser_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Serial Clustering Bidirectional - scaled score	None	None	8	🗮 Right	🧳 Scale	🦒 Input
28	cvlt_sub_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Subjective Clustering Bidirectional- raw score	None	None	8	🗮 Right	🧳 Scale	🦒 Input
29	cvlt_sub_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Subjective Clustering Bidirectional - scaled score	None	None	8	🗮 Right	🧳 Scale	🦒 Input
30	cvlt_prim_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - % Recall from Primacy - raw score	None	None	8	🗮 Right	🛷 Scale	🦒 Input
31	cvlt_prim_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - % Recall from Primacy - scaled score	None	None	8	🧮 Right	🛷 Scale	🦒 Input
32	cvlt_mid_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - % Recall from Middle - raw score	None	None	8	🧮 Right	🔗 Scale	🦒 Input
33	cvlt_mid_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - % Recall from Middle - scaled score	None	None	8	🧮 Right	🔗 Scale	🦒 Input
34	cvlt_recen_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - % Recall from Recency - raw score	None	None	8	🧮 Right	🔗 Scale	🦒 Input
35	cvlt_recen_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - % Recall from Recency - scaled score	None	None	8	🧮 Right	🛷 Scale	🦒 Input
36	cvlt_slope_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Total Learning Slope Trials 1-5 - raw score	None	None	8	🧮 Right	🧳 Scale	🦒 Input
37	cvlt_slope_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Total Learning Slope Trials 1-5 - scaled score	None	None	8	🧮 Right	🔗 Scale	🦒 Input
38	cvlt_consis_r	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Across-Trial Recall Consistency - raw score	None	None	8	🧮 Right	🧳 Scale	🦒 Input
39	cvlt_consis_s	Numeric	8	2	CVLT-II - Learning Characteristics, Trials 1-5 Total - Across-Trial Recall Consistency - scaled score	None	None	8	🧮 Right	🧳 Scale	🦒 Input
40	cvlt_interf	Numeric	8	2	CVLT-II - Recall Contrast Measures - Proactive Interference - List B vs. Trial 1 - %	None	None	8	🧮 Right	🧳 Scale	🦒 Input
41	cvlt_interf_s	Numeric	8	2	CVLT-II - Recall Contrast Measures - Proactive Interference - List B vs. Trial 1 - scaled score	None	None	8	🧮 Right	🧳 Scale	🦒 Input
42	cvlt_sd_ret	Numeric	8	2	CVLT-II - Recall Contrast Measures - Short-Delay Retention/Retroactive Interference - Short Delay Free Recall vs. Trial 5 - %	None	None	8	🧮 Right	🧳 Scale	🦒 Input
43	cvlt_sd_ret_s	Numeric	8	2	CVLT-II - Recall Contrast Measures - Short-Delay Retention/Retroactive Interference - Short Delay Free Recall vs. Trial 5 - scale	None	None	8	🧮 Right	🧳 Scale	🦒 Input
44	cvlt_ld_ret	Numeric	8	2	CVLT-II - Recall Contrast Measures - Long-Delay Retention - Long Delay Free Recall vs. Short Delay Free Recall - %	None	None	8	🧮 Right	🔗 Scale	🦒 Input

Association study

Tests whether the presence of a specific genetic variant (e.g. SNP allele) is correlated to a particular disease status or trait value.

cases

Andrea Christoforou

absence of disease or condition."

General fluid-type intelligence is related to indices of white matter integrity in middle-aged and old adults

White matter structure of general fluid-type intelligence

Judit Haász^{*1, 2, 3}, Erling T. Westlye^{*2}, Thomas Espeseth^{1, 4, 5}, Arvid Lundervold^{2, 6}, Astri J. Lundervold^{1, 7}

30.9% of skeleto

2 scores measuring general cognition

(1)G PCA = G fluid

"Fluid intelligence or *fluid reasoning* is the capacity to think logically and solve problems in novel situations, independent of acquired knowledge." (Wikipedia)

(2) WASI V = G crystalized

"Crystallized intelligence is the ability to use skills, knowledge, and experience. It should not be equated with memory or knowledge, but it does rely on accessing information from longterm memory." (Wikipedia)

A, In red-yellow to the left is the DMN comprising three components from the gICA.

Westlye E T et al. J. Neurosci. 2011;31:7775-7783

Neurobiology of Disease

Increased Hippocampal Default Mode Synchronization during Rest in Middle-Aged and Elderly APOE ε4 Carriers: Relationships with Memory Performance

Erling T. Westlye¹, Arvid Lundervold^{1,2}, Helge Rootwelt³, Astri J. Lundervold^{4,5}, and Lars T. Westlye⁶

NeuroImage

Volume 63, Issue 1, 15 October 2012, Pages 507-516

Episodic memory of APOE ϵ 4 carriers is correlated with fractional anisotropy, but not cortical thickness, in the medial temporal lobe \star

Erling Tjelta Westlye^{a,} ^A, ^M, Erlend Hodneland^{a, b}, Judit Haász^a, Thomas Espeseth^{c, d, e}, Arvid Lundervold^{a, f}, Astri J. Lundervold^{d, g}

Age-related disconnection of resting state networks in

individuals at genetic risk for Alzheimer's disease

Erling T. Westlye ^{1*} Erik A. Hanson ² Astri J. Lundervold ^{3, 4} Arvid Lundervold ^{1, 5}

Hypothesis Generation through Interactive Visual Analysis of Heterogeneous Medical Data

Cagatay Turkay¹, Arvid Lundervold² Astri Johansen Lundervold³, and Helwig Hauser¹

Fig. 2. a) MDS is applied on the *test score* dimensions, where related dimensions are placed closer. Two groups for the test scores show up in the results. b) Each group is represented through an application of PCA and first components for each of the groups are the axes for the scatterplot. A group of participants, who are better in learning and attentive functions is selected c) Some brain regions are smaller for this subgroup, i.e., have smaller *median* value. d) When one of these dimensions is observed closely, we saw that there is really a negative correlation with one of the test scores from the first group (*learning*).

Interactive Visual Analysis of Heterogeneous Cohort Study Data

Aggregated Data delivery

Fig. 2. Simplified illustration of the proposed model. User interactions are colored in red, automatic transparent operations are green, information sources are blue, and in black the components necessary to implement the model.