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Preface

The following text is a collection of ten selected papers which all have been published by Helwig Hauser (together
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Helwig Hauser which contains seven further selected papers from the same time-span. In the Habilitationsschrift
relations to other papers by Helwig Hauser (not themselves contained in the Habil) are discussed – most of these
papers referred to are contained in this collection. Below the publication information is given for all ten papers.

The first paper (“TimeHistograms for Large, Time-Dependent Data” by Robert Kosara, Fabian Bendix, and
Helwig Hauser) is currently (April 2004) accepted for publication in the Proceedings of the 6th Joint IEEE
TCVG – Eurographics Symposium on Visualization (VisSym 2004), May 19-21, 2004, in Konstanz, Germany.
The paper within this collection is the paper version which will show up in the proceedings.

The second paper (“High-Quality Two-Level Volume Rendering of Segmented Data Sets on Consumer Graph-
ics Hardware” by Markus Hadwiger, Christoph Berger, and Helwig Hauser) is published in the Proceedings of
IEEE Visualization 2003 (Vis 2003), Oct. 19-24, 2003, in Seattle, Washington, pp. 301-308. The paper is related
to Helwig Hauser’s Habil and especially to “Two-Level Volume Rendering” (Helwig Hauser et al., TVCG 2001).

The third paper (“Image Space Based Visualization of Unsteady Flow on Surfaces” by Robert S. Laramee,
Bruno Jobard, Helwig Hauser) is also published in the Proceedings of IEEE Visualization 2003 (Vis 2003), Oct.
19-24, 2003, in Seattle, Washington, pp. 131-138. A follow-up paper (together with Jack van Wijk) is accepted
for publication in TVCG 2004.

The fourth paper (“Interactive 3D Visualization Of Rigid Body Systems” by Zoltan Konyha, Krešimir
Matković, and Helwig Hauser) is also published in the Proceedings of IEEE Visualization 2003 (Vis 2003),
Oct. 19-24, 2003, in Seattle, Washington, pp. 539-546.

The fifth paper (“Interactive Feature Specification for Focus+Context Visualization of Complex Simulation
Data” by Helmut Doleisch, Martin Gasser, and Helwig Hauser) is published in the Proceedings of the 5th Joint
IEEE TCVG - Eurographics Symposium on Visualization (VisSym 2003), May 26-28, 2003, in Grenoble,
France, pp. 239-248. This paper is strongly related to Helwig Hauser’s Habil.

The sixth paper (“Useful Properties of Semantic Depth of Field for Better F+C Visualization” by Robert
Kosara, Silvia Miksch, Helwig Hauser, Johann Schrammel, Verena Giller, and Manfred Tscheligi) is published
in the Proceedings of the 4th Joint IEEE TCVG - Eurographics Symposium on Visualization (VisSym 2002),
May 27-29, 2002, in Barcelona, Spain, pp. 205-210. This paper is also related to Helwig Hauser’s Habil and
especially to “Semantic Depth of Field” (Kosara, Miksch, Hauser; InfoVis 2001).

The seventh paper (“Smooth Brushing for Focus+Context Visualization of Simulation Data in 3D” by Helmut
Doleisch and Helwig Hauser) is published in the Proceedings of The 10-th International Conference in Central
Europe on Computer Graphics, Visualization and Interactive Digital Media 2002 (WSCG 2002), Feb. 4-8, 2002,
in Plzen, Czech Republic, pp. 147-154. This paper is strongly related to Helwig Hauser’s Habil.

The eighth paper (“RTVR – a Flexible Java Library for Interactive Volume Rendering” by Lukas Mroz and
Helwig Hauser) is published in the Proceedings of IEEE Visualization 2001 (Vis 2001), Oct. 21-26, 2001, in San
Diego, CA, pp. 279-286. This paper is strongly related to Helwig Hauser’s Habil and especially to “Two-Level
Volume Rendering” (Helwig Hauser et al., TVCG 2001).

The nineth paper (“Space-Efficient Boundary Representation of Volumetric Objects” by Lukas Mroz and
Helwig Hauser) is published in the Proceedings of the 3rd Joint IEEE TCVG - Eurographics Symposium on
Visualization (VisSym 2001), May 28-30, 2001, in Ascona, Switzerland, pp. 193-202. This paper is also related
to the Helwig Hauser’s Habil.

The tenth paper (“Interactive High-Quality Maximum Intensity Projection” by Lukas Mroz, Helwig Hauser,
and Eduard Gröller) is published in the Proceedings of Eurographics 2000 (EG 2000), Aug. 20-25, in Interlaken,
Switzerland, pp. C-341-C-350. This paper is also related to the Habil.
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Abstract
Histograms are a very useful tool for data analysis, because they show the distribution of values over a data
dimension. Many data sets in engineering (like computational fluid dynamics, CFD), however, are time-dependent.
While standard histograms can certainly show such data sets, they do not account for the special role time plays
in physical processes and our perception of the world.
We present TimeHistograms, which are an extension to standard histograms that take time into account. In several
2D and 3D views, the data is presented in different ways that allow the user to understand different aspects of the
temporal development of a dimension. A number of interaction techniques are also provided to make best use of
the display, and to allow the user to brush in the histograms.

1. Introduction

While time is just another dimension in many data sets in
terms of data organization, the way we perceive it and also its
influence on physical phenomena is quite unique. Therefore,
special methods are needed for time-dependent data.

Getting an overview of data – the major trends and the
outliers – is very important in trying to understand the data.
This is even more important for data that changes over time.
One very popular method for getting such an overview are
histograms. Standard histograms, however, provide little in-
teraction and are also of little use for time-varying data.

The context of this work is computational fluid dynamics
(CFD). Typical data sets in our experience are usually in the
order of magnitude of about 100,000 cells for 100 time steps,
or 1,000,000 cells for 10 time steps. Each cell has about 15
to 20 data attributes for each time step.

For dealing with such amounts of data, SimVis [2] was
developed (see also Section 5). SimVis provides a number
of different views, most of which use methods that are tradi-
tionally used in information visualization (InfoVis). Exam-
ples for such methods are scatterplots, parallel coordinates,
and histograms. These views not only show the data, they
also provide the user with the means to interact with the data
and specify interesting features by means of brushing (i.e.,
selecting parts of the data and showing the selection in all
views, thus making it possible to see connections).

1.1. Histograms and Time

A histogram is a bar chart, where the number of bars is
usually selected by the user. Each bar corresponds to a bin,
which is a value range on the selected axis. All values in the
data set are compared to the bin boundaries, the values that
fall into each bin are counted. The height of each bar then
represents the number of values in each bin (Figure 1).

We distinguish two types of dimension in the discussion
of time-dependent histograms: the data dimension and the
display dimension (Figure 1). The traditional histogram is
one-dimensional in its data (the bins are defined along one
dimension) and drawn in two dimensions. It is of course also
possible to draw a standard histogram using 3D graphics.
But the more interesting case is that of two data dimensions,
one of which is the time. Such a two-dimensional histogram
(in terms of data) can be quite easily understood if drawn
in 3D, because the user can imagine it being made up of
a number of one-data-dimension histograms, one for each
time step. Such a two-dimensional histogram can also be
drawn in 2D, however, by projecting it into the plane along
the count axis (Sections 4.2 and 4.3).

Time is handled in SimVis by means of time steps, which
do not have to be equally spaced. Data for each point is only
available for these time steps – therefore, they can be con-
sidered event time (meaning that the time axis is shaped by
the occuring data, not in a continuous way). A time-related
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Figure 1: 2D and 3D visualizations of 1D and 2D histograms.
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Figure 2: A time slab. The sliders define a time slab from
time step 58 to 74 (both are included in the slab).

concept that plays a big role in SimVis is the definition of a
time range, called a time slab (Figure 2). The current time
slab can include one or more time steps, and is important
because actions such as brushing apply only to these time
steps. Time slabs can be defined as any interval in the total
time range of the data set, there is no hierarhical time struc-
ture (e.g., combining seconds into minutes). Time slabs are
always defined in terms of full time steps in the data set.

1.2. Motivation for Improvements, Goals

For the data described above, standard histograms were of
little use. While it was possible to change the time step dis-
played by the standard histogram, the static image always
only showed one time step. This proved to be too little infor-
mation to be useful in practice.

At the same time, the standard histogram provided a good
basis to start from because of its visual simplicity, but also
because of its familiarity and ubiquity.

TimeHistograms are an extension of standard histograms
which take time into account. Our goals in the design of
TimeHistograms were the following:

• Give an overview over complex, time-varying data. His-
tograms are very useful for looking at all the data at once,
but doing this in a way that is abstract enough not to over-
whelm the user with details.

• Show temporal information in static images. While inter-
action is a very important part of TimeHistograms, the

user needs to be able to look at static images to get a better
impression of what is going on. This is also important for
documentation, where static images are needed.

• Retain the easy readability of the standard histogram.
Make the additional information as easy to read as possi-
ble, and always provide the user with simpler information
within the same image to fall back on.

• Support linking and brushing. Besides view-related inter-
action, the histogram also has to show brushed data, and
also allow brushing in both 2D and 3D views.

1.3. Data Set

The data set used in the illustrations in this paper comes from
the simulation of gas flow through a T-junction section join-
ing two pipes. There is cold air flowing through the junction
from one pipe, when a stream of hot air starts to enter from
the other. The two air streams mix until an equilibrium state
is reached. The data set consists of about 33,000 cells with
16 dimensions at 100 time steps.

2. Related Work

Histograms are used in both information and scientific vi-
sualization applications. This section gives a brief overview
over a few uses of histograms that provide some interactiv-
ity (other than the selection of the axis). While there are
certainly many more examples of histograms implemented
in different applications, very little seems to get published
about them – at least in the visualization and information
visualization literature.

The influence explorer [10] allows the user to explore de-
pendencies in situations where input as well as output values
are multi-dimensional. It uses histograms for both the speci-
fication of input variables and the display of the results. The
user can change the input value ranges on one set of his-
tograms to see the results displayed on the other.

In a similar way, histograms can be brushed to answer
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questions in a geographical data application [6], where the
histograms act purely as a visualization of input data, which
can be brushed to see the output on a map.

Parallel bargrams [11] are histograms with bars rotated by
90 degrees, and put end to end. This way, bargrams show the
distribution of values on axes with few different values, and
allow the user to select values by simply clicking on them.

A different kind of histogram are adjacency matrices that
are used for the display of telecom call information [1]. Each
cell in such a matrix is colored by the number of items in
it, thus effectively creating a 2D histogram. Similar 2D his-
tograms can be found in fields such as sound processing
(time-frequency charts).

Histograms are not restricted to information visualization,
however, but are also used for transfer function specification
in volume rendering [4]. They show first and second deriva-
tives of the data, and this way allow the user to directly select
boundaries between materials – which usually are the most
interesting features.

3. Early Approaches to TimeHistograms

Designing good histograms proved to be much more difficult
than initially anticipated. This section describes two early at-
tempts that did not lead to useful time-dependent histograms.

One of the developed techniques was to simply exchange
the normal bars with History Bars [8], which is shown in Fig-
ure 3a. There is an outline of the current histogram and for
each bin, multiple lines are drawn at various heights. These
lines represent bars at different time steps and they are dis-
criminated by their width, opacity and color.

History Bars had good user feedback when used in pro-
cess visualization, but proved to be problematic in our con-
text. Due to the visual similarity and proximity of the bars,
it is very easy to perceive bars from different bins and time
steps as one unit (appearing as slightly curved lines in Fig-
ure 3a). However, this impression of trends is totally wrong.

Because of that there was the need for a shape that is more
self-contained and that forms a better contrast to the rect-
angular histogram. The resulting mode which is described
below in detail is called the Point Mode (Section 4.3.2).

Another unsuccessful idea was to display the next and the
previous time step in a normal histogram fashion, but as a
smaller “sub-chart” (Figure 3b). Visually separating the two
levels proved to be impossible, however, and when moving
the time slider, it was impossible to understand the changes.
The line mode (Section 4.3.3) is a better solution following
a similar idea.

4. TimeHistograms

One of the goals in the development of TimeHistograms was
to retain the simplicity and ease of understanding of the stan-

a) History Bars – different time steps per histogram bar are
encoded as the length of the line. Proximity, however, is a
stronger cue, so curved lines appear that do not represent
real data.

b) Inner History – the sub-charts cannot be separated easily,
therefore the bars blend into one confusing plot.

Figure 3: Early unsuccessful, abandoned approaches.

dard histogram as much as possible (Section 1.2). The tradi-
tional histogram is still visible in all the views, and is dis-
tinguished visually from the additional information. So the
user can always look at the simple histogram of the currently
selected time step and ignore all other information.

The discussion in this section is structured by the display
dimensionality, not the dimensionality of the data (see the
discussion in Section 1.1). The 3D histogram is described
first, because it provides a good basis for the 2D histograms
that are explained later. The 2D time context also is practi-
cally a projection of the 3D histogram (Figure 4).

4.1. TimeHistograms in 3D

While a 3D depiction is generally more complicated and re-
quires more interaction, we have found it to be easier to un-

c© The Eurographics Association 2004.

3

helwig
Rectangle

helwig
Rectangle



Kosara, Bendix, Hauser / TimeHistograms for Large, Time-Dependent Data

a) TimeHistogram in 3D, showing the development of pres-
sure over time. One can see where the values change a lot
and where a stable condition is reached.

b) 2D time context, showing the same data. This is a pro-
jection of the 3D histogram onto the background of the 2D
histogram. The green frame marks the current time step on
the time axis of the time context display (right).

Figure 4: TimeHistograms in 3D and 2D time context (see also Colorplate 1).

derstand for time-dependent histograms, and also to provide
a better overview than the 2D views.

The concept of the 3D Timehistogram is quite simple:
draw the histogram for each time step as a row of cuboids
rather than rectangles, and arrange them one behind the other
along the time dimension (Figures 1, 4, and 7).

The 3D display is made up of shaded cuboids that give a
very good 3D impression. The user can very easily navigate
around the histogram. Rotation is done in an object-centered
way, and restricted to two axes: a vertical one for rotating
the histogram to see it from different sides, and a horizon-
tal one to change the height of the virtual camera over the
ground plane. When the height is changed, the axis labels
are rotated so that they face the user as much as possible. To
see the direction of the axes, a simple indication is added to
the labels that shows in which direction the values get larger
(they follow the direction indicated by the ‘>’ signs).

It is also possible to zoom in and out (this is done using the
mouse wheel), and to pan the display (by grabbing the his-
togram with the right mouse button and moving it around).

The described interaction is very powerful, yet easy to
learn for the user. In addition, this view also implements the
common interactions described in Section 4.4.

Another important interaction method is the control of the
global height of the histogram bars. This control is simply a
magnification of the height dimension, and can be changed
in a rather large range. This is important in 2D as well as
3D displays, because there is no way for the program to tell
which information the user is interested in. If the user is in-
terested in the large bars, their height might lead to smaller
bars not being visible anymore due to the dynamic range of
the data.

4.2. Projected 3D Histograms as 2D Context

In addition to the standard histogram, a time context display
can be put onto the background of the histogram (Figure 4b).
This context overview is conceptually a projection of the 3D
histogram along the height dimension: its value axis is par-
allel to the value axis of the histogram, and the time axis is
parallel to the height axis of the 2D histogram.

The height values of the 3D histogram projection in the
background are mapped to the opacity of rectangles repre-
senting the histogram bins. This mapping is linear and can
be influenced by the user with a simple slider, which changes
the slope of the mapping. This way, the user can select if
he or she wants to see more details in the small or in the
large values. Providing more parameters (e.g., which map-
ping, an offset) was considered but not done in order not to
overwhelm the user with too many degrees of freedom.

The goal of the 2D context display is not to show exact
values, but trends. It is possible to see if the values increase
or decrease over time, or if they stay (approximately) con-
stant. This view shows this information without the need for
interaction and without any occlusion.

On the time axis (which is displayed on the right of the
display, see Figure 4b), the current time step or time slab is
marked with a green rectangle. This connects the time slider
with the depiction and also allows the user to compare his-
togram bar heights with shades of blue, and thus makes it
possible to tell which approximate heights bars have that
are represented only in the overview (from other time steps).
Additionally, the user can select the time step or slab to be
displayed directly by clicking on this time axis. This pro-
vides a more direct means for navigating to interesting time
steps than using the standard time control (Figure 2) would.

The 2D overview is not a mode of the display, but rather
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additional information that can be combined with any of the
other 2D modes. It is most useful with standard and point
mode, however.

The data dimension shown in Figure 4b is the relative
pressure, which shows an interesting pattern. After a rela-
tively steady increase, it very quickly settles down into an
almost constant pattern after about half of the total time. An
interesting “overshooting” can also be seen right before the
settling down begins.

4.3. TimeHistograms in 2D

Another way of showing changes over time in a standard
histogram is the integration of the time axis into the normal
2D histogram. Here the screen space limits the possibilities
of displaying the temporal data distribution.

All extensions presented in this section are based on the
standard histogram display. The user can always look at the
display and see the original histogram for the current time
step. The remaining time steps are then visualized according
to the used mode. Each mode augments the visualization in
a different way and provides different kinds of information.

4.3.1. Standard Mode

In addition to simply displaying the histogram for an axis,
the user can move the currently displayed time step, and this
way see the differences. It is also possible to switch on ad-
ditional context, which is the sum of all histograms in the
current time slab. This provides information about a range
of time steps and is comparable to the arithmetic mean, be-
cause the height of the bars can be scaled arbitrarily and re-
mains proportional (i.e., the display acts as if the sum was
then divided by a number close to the number of time steps
in the time slab).

Getting information about the temporal aspects of the his-
togram requires interaction in this mode. With a slider, the
user can move the time slab or time step and this way tra-
verse all time steps. If the differences between two succes-
sive displays are too big, this traditional histogram will not
provide enough temporal context to make it possible for the
user to envision the temporal data distribution – which is
where the other modes come in.

One very simple but quite important feature of the 2D
view in TimeHistograms is that the zero on the value axis is
marked with a turquoise line (e.g., Figure 4b and Figure 5c,
right). This provides very important context to the engineer
that is also much easier to read than the numbers giving the
limits on the value scale.

4.3.2. Point Mode

In addition to the bars showing the histogram, this mode
shows the immediate temporal neighborhood for each bar
using small disks or “points” (Figure 5a). The points are

a) Point Mode. The colored disks/points represent the past
and future of each bar (see below).

b) Line Mode. Every line chart shows the temporal devel-
opment of the counts in one bin. The white bars show the
current histogram, their tips point to the current values in
the graphs.

c) Details of point and line mode. Left: The larger the point,
the closer it is to the current time step. Blue points represent
the past, yellow points the future. Right: The grey box con-
tains the whole graph, therefore a vertical offset of the box
tells the user that the count in this bin is never zero.

Figure 5: The different modes of 2D TimeHistograms.
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drawn next to each bar, and represent past and future val-
ues for a small number of time steps. Points representing the
past are colored blue and appear to the left of the bar, points
showing future values are yellow and are drawn to the right
of the bar (consistent with the time axis on the time slider).
Their size also differs as a function of their distance from the
current time step. The closest points are the largest, and they
get smaller the farther back or ahead in time they are.

Because it is not easy to compare sizes of points that are
far away from each other, small triangles are drawn into the
points if they are farther than two diameters away from each
other. They point to the next point, telling the user where
to look for the next point, while retaining a smoother image
when the points are close to each other (the sizes are then
easy to compare and the sequence quite obvious). In addi-
tion, the points representing the time steps immediately pre-
ceding and following the current one, respectively, are also
drawn with a purple outline, so that the user can find them
quickly. What sounds complicated in the textual description
is visually quite simple and relatively easy to follow. Usu-
ally, the size change (which is immediately visible) is also
sufficient to see the temporal development – the additional
information is only there for very complex cases.

The design for this mode built on the lessons learned from
the failed attempt (Section 3) to make use of an idea from
process visualization of real-time data [8], where values are
displayed so that they leave a ‘trail’ that shows their history.
The round points form a nice contrast to the rectangular bars,
and are therefore easy to distinguish. It is also possible to
‘switch’ between looking at the bars or looking at the points
easily.

In order to directly compare histograms from two differ-
ent time steps, the user can activate a tooltip mode (Fig-
ure 6d). In this mode, if the user hits a point with the mouse,
a polyline is drawn for the histogram of the time step that this
point belongs to. This display is more effective to compare
entire histograms, while the points are sufficient for telling
the direction for a single bar or a small number of bars.

When using the F+C distortion (Section 4.4.1) to zoom
into parts of the histogram, bars are drawn for the immediate
temporal neighborhood, and points are then drawn for some
more time steps ahead and back (Figure 6c). This adds to
the information present in the display, without using much
more space. At the same time, the points and bars’ heights
are visually so similar, that there is almost no discontinuity
between them, and it is very easy to tell the shape of the bars
that are scrolled in when moving the time slider from the
points.

The same dimension (relative pressure) is used in Fig-
ure 5a as in the description of the 2D overview (Section 4.2).
The little overshooting can also be told in this mode, even
though it is not that obvious. The histogram for the current
time step can be read much more precisely, though.

4.3.3. Line Mode

A different 2D representation of the time-dependent his-
togram uses a more familiar metaphor. A simple line graph
is drawn inside each box, showing the temporal development
for that bin (Figure 5b). Inside the box, the time axis is par-
allel to the value axis of the histogram (this is similar to the
idea of dimensional stacking [5]). A small ‘pointer’ is drawn
on top of each bar of the histogram which points to the cur-
rent position on the graph.

The whole line graph for each bar is contained in a gray
box. This box shows the user the minimum and maximum
values for each of the bars. If the value count in the bin is
never zero, the user will notice this because the box will not
touch the base line in this case.

Since there is usually not enough screen space to prop-
erly see the time line, Focus+Context distortion (Section 4.4)
makes it possible to see a small set of bars in detail.

But even without interaction, this mode provides two lev-
els of information. When looking at the global structure
(white on dark), one sees the histogram for the current time
step. When looking at the details (black on grey), one can
read the development of each bar over time.

4.4. Common Interactions

Independently of the view, there are a few interactions that
are always possible. They are implemented in slightly differ-
ent ways, but are conceptually the same.

Perhaps the most important one is the zooming into the
data. The user can specify ranges, in both the value and the
time dimensions (the time slab). In the 2D views, only the
data within these regions are displayed. Time is treated a
bit differently here, because the user can not only change
the upper and lower limit of the time slab to be displayed,
but can also move the complete slab. This has proved to be
useful in the other SimVis views, and seems to be a rather
natural way of working with time for complex data.

4.4.1. Focus+Context (F+C)

In the 2D views, a classical focus+context method is imple-
mented that is similar to the perspective wall [7]. The user
selects a region that can then be enlarged, while the rest of
the display is compressed (Figure 6c). This distortion is not
binary like the TableLens [9], but changes from the center
of interest to the outer parts. The same distortion is applied
to a whole bin, however. The distortion is not only visible in
the bars and the background, but there are also two scales at
the bottom of the display: one shows the undistorted scale,
and one the distorted one. This provides the user not only
with the possibility to get more space for the display, but
also different information can be displayed in the additional
space (e.g., in point mode, bars are shown for the immedi-
ate temporal neighborhood). The enlarged region can also be
moved, to explore the data with the current settings.

c© The Eurographics Association 2004.
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a) Brushing in 2D – the user has selected the values between
the two vertical green lines. Brushed bins are now drawn in
red. The turquoise line shows where zero is on the value axis.

b) Brushing in 3D – all bins whose counts lie between the
two horizontal planes are brushed (displayed in red).

c) Table lens-like Focus+Context (F+C) – parts of the dis-
play can be zoomed in to show more information, like more
time-steps as a bar chart.

d) Tooltip mode – a tooltip is shown that gives the user in-
formation about the bin (current time step, data point count,
value range) as well as a second histogram (in red) for the
point the mouse is currently pointing at. Differences (right)
as well as similarities (left) are visible.

Figure 6: Interaction in TimeHistograms (see also Colorplate 2)

In 3D, the F+C display is different. The bars represent-
ing the values are not only pushed out of the cube repre-
senting the current value range, but their footprint is also
made smaller, and they are drawn translucently. This pro-
vides a very clear metaphor for the F+C display (the user
can see what happens while moving the sliders), and also
makes it possible to see through large occluding structures
(Figure 7). Such large structures are often found at the bor-
der of the value range, because they represent values from
start or boundary conditions.

4.4.2. Brushing

Brushing in the histogram is done in terms of bins, both in
the 2D and 3D views. When the user makes a selection in
2D (Figure 6a), all bins that are touched by the selection are
completely selected (and the selection is expanded). Because
the user does not know the distribution of values inside the

bin, partially brushing bins does not appear to be sensible. In
the temporal dimension, only the points in the current time
slab are brushed.

In 3D, brushing works in a different dimension than in
2D, namely in terms of the value count in the bins. The user
can drag two horizontal planes inside the box of the 3D his-
togram in the height direction, so that the planes intersect
with some or all of the cuboids. Each of the planes repre-
sents a certain count value. All data values are selected that
belong to bins which have a height in the range defined by
the two selection planes (Figure 6b). This selection only ap-
plies to the bins in the focus, i.e., those that have not been
pushed out into the context region.

Arguably, brushing by bin count rather than by bin could
work in a very similar way in 2D, but has not yet been im-
plemented. This is planned for the future, though.

c© The Eurographics Association 2004.
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Figure 7: Getting rid of large occluders near the borders. The occluder at the far end of the left image would block the view from
the other side. Pushing a few rows of the histogram into the context allows the user to see the data from another perspective,
and even to get an idea of the context data.

4.4.3. Scaling

The program also provides the possibility to automatically
scale the value and the height axis. The user can request
each of the axes separately to be either scaled to the cur-
rent time slab or the complete data set. Scaling the value
range such that empty bins at the lower and upper end of
the scale are left out can cause problems with understanding
change. When the time slab is moved and the data mostly
moves along the value axis, the user must keep track of the
numeric values that give the locations of the boundaries. But
for quickly zooming into the currently relevant values, this
mode is very useful.

Scaling in the height dimension, as mundane as it may
sound, is a very important interaction in TimeHistograms.
Automatic scaling of this axis is very difficult, because of
the extreme dynamic range of the values (one bar might rep-
resent 200,000 data items, while another might only have a
count of 50). Therefore, the user must be able to change the
scaling to change the focus to large or small bars. In the 2D
view, if a bar gets taller than can be displayed in the window,
a small arrow is drawn onto it, showing the user that the bar
actually extends beyond that border. In 3D, this is not neces-
sary, because the user better understands that he/she is only
looking through a “window” at the data, and it is also easier
to see the full extent of the bar (by changing the viewpoint).

4.4.4. Number of Bins, Tooltip

Another very simple interaction is the definition of the num-
ber of bins. At the moment, the user can select between 16,
32, 64, 128, 256, 512, and 1024 bins. The reason for using
powers of two is an implementation detail (calculations for
display distortions are easier this way), but it would be very
easy to change this to allow arbitrary numbers. From our
experience, the numbers 32 and 64 are the most common
choices, and there seems to be no need for an intermediate
number of bins. Choosing the right bin size is usually con-
sidered a very important question for histograms, but for this

application domain, we have found it to not be very critical.
The data is relatively smoothly distributed, and the values
are never precisely the same, so they tend to “leak” to neigh-
bouring bins. The histograms at different resolutions there-
fore look very similar and hold few surprises for the user.

The tooltip, while available in all modes, is especially use-
ful in point context mode. For each bar, the tooltip shows the
time step, the number of values in the bin, and the precise
bin boundaries. The time step is interesting because in point
context mode, the tooltip can also display an alternative his-
togram in addition to the current one (Section 4.3.2).

4.4.5. Using A Different Second Dimension

Instead of time, a different dimension can be selected as the
second dimension (Figure 8). The resulting histogram shows
the distribution of values into bins defined by the two dimen-
sions. There is a very simple duality between this display and
a scatterplot: Seen from above, the histogram looks like a
scatterplot (if a sufficient number of bins is selected). This is
similar to the 2D overview (Section 4.2). But the scatterplot
does not show how many values were plotted onto the same
pixel – this information can only be seen in the histogram.

5. Integration in SimVis

SimVis (described briefly in the introduction) is a frame-
work for interactive specification of features in simulation
data. The definition of such features is modeled as a tree of
brushes, which are selections of data. These selections can
be combined using logical operations to define more com-
plex features (e.g., regions where the flow is slow, the tem-
perature is high, and where the rate of change was small in a
certain time period).

The framework makes use of multiple, linked views from
information as well as scientific visualization. The result of
the feature specification is linked to all views and can be seen
in various views. The TimeHistogram is one of these views.

c© The Eurographics Association 2004.
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Figure 8: Using the TimeHistogram to plot two dimensions against each other – both plots show the same dimensions. In
contrast to the scatterplot, the histogram shows the extreme clustering of a lot of values around very distinct structures.

TimeHistograms can both show brushed data and allow
the user to brush directly in the histogram. In SimVis, two
different levels of brushing are distinguished: brushes that
were done in the current view, and the globally defined brush
(which is the combination of all the brushes, so the points in
this brush might not contain any of the points brushed in
a particular view). The color of the bars changes gradually
from white to red (or yellow) the more brushed data points
they contain.

All modes of TimeHistograms run at interactive frame
rates for the data sets described in the introduction.

6. Discussion and Experiences

TimeHistograms have not been the subject of a formal user
study yet, but they have been presented to CFD experts who
are working with the SimVis application. The results of this
rather informal evaluation are described here, along with
a few examples of how interaction works in practice with
TimeHistograms.

We found to our surprise that the 3D display is much more
intuitive and accessible than the 2D modes. Users could
relate to it better and also understand the meaning of the
graphical display more easily. The occlusion problems that
we normally associate (occlusion, difficult navigation, etc.)
were no real issue.

At this point, we also found a problem in the initial point
mode design, which did not have the marks for the first time
step and the small arrows pointing to the next or previous
time step. We found that we needed this additional informa-
tion so that users would not overlook points or not be able to
tell which came first (the size difference can be hard to see
when the points are far apart).

TimeHistograms were also used in a recent case study on

a Diesel exhaust system [3], where they mainly served to
tell when the chemical processes (burning of the soot) had
settled down. To do this, one needs to look at the histogram
and to tell when the changes between time steps become so
small that they can be ignored. The TimeHistogram proved
to be very valuable for this purpose.

When implementing a 2D and a 3D view of essentially the
same data, the question of which performs better comes to
mind. While we found that 3D provided a much better intro-
duction to time-dependent histograms for the novice users,
we also found some problems with it. One is certainly oc-
clusion, which is a problem inherent in 3D. It is much easier
to miss a feature in the 3D histogram than when using the
2D overview, for example (Figure 9). But the 2D modes also
bear the possibility of ”temporal occlusiont’t’, due to the lim-
ited amount of time steps they can display at once.

Concluding, the combination of both 2D and 3D views on
the same data offers a lot of ways to gain insight into the data
by depicting its different aspects.

7. Conclusions

TimeHistograms are an extension of the well-known his-
tograms for time-dependent data. They are a useful addition
that provides additional insight, particularly for large and
complex data sets. The presented techniques provide differ-
ent views on the data in 2D and 3D, which require interac-
tion, but also provide a lot of additional information.

While the 3D view was originally anticipated to be prob-
lematic due to the usual perception problems, we found it to
be very useful and easy to understand for our audience, and
even to serve as an introduction to the more demanding 2D
views.

TimeHistograms were demonstrated with scientific data
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Figure 9: Working around occlusion using interaction: Seeing the small interesting detail marked in the left image requires
quite some interaction to be clearly visible in the 3D view on the right. In such a case, the 2D view reveals details at one glance
that could have easily been missed in 3D.

in this paper, but they are certainly also useful for time-
varying data that is not bound to a physical object.

Future work includes more in-depth evaluation of the
technique with users, as well as more work on the 3D view.
Brushing in that view should be made more flexible, and
also the separation of different time steps and labeling of
histograms in 3D requires some more work. More flexible
brushing in both 2D and 3D modes will also be another in-
teresting topic to work on.
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a) TimeHistogram in 3D, showing the development of pres-
sure over time. One can see where the values change a lot
and where a stable condition is reached.

b) 2D time context, showing the same data. This is a pro-
jection of the 3D histogram onto the background of the 2D
histogram. The green frame marks the current time step on
the time axis of the time context display (right).

Colorplate 1: TimeHistograms in 3D and 2D time context.

a) Brushing in 2D – the user has selected the values between
the two vertical green lines. Brushed bins are now drawn in
red. The turquoise line shows where zero is on the value axis.

b) Brushing in 3D – all bins whose counts lie between the
two horizontal planes are brushed (displayed in red).

c) Table lens-like Focus+Context (F+C) – parts of the dis-
play can be zoomed in to show more information, like more
time-steps as a bar chart.

d) Tooltip mode – a tooltip is shown that gives the user in-
formation about the bin (current time step, data point count,
value range) as well as a second histogram (in red) for the
point the mouse is currently pointing at. Differences (right)
as well as similarities (left) are visible.

Colorplate 2: Interaction in TimeHistograms.
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High-Quality Two-Level Volume Rendering of Segmented Data Sets
on Consumer Graphics Hardware

Markus Hadwiger Christoph Berger Helwig Hauser∗

VRVis Research Center, Austria

Figure 1: Segmented hand data set (256x128x256) with three objects: skin, blood vessels, and bone. Two-level volume rendering integrates
different transfer functions, rendering and compositing modes: (left) all objects rendered with shaded DVR; the skin partially obscures the
bone; (center) skin rendered with non-photorealistic contour rendering and MIP compositing, bones rendered with DVR, vessels with tone
shading; (right) skin rendered with MIP, bones with tone shading, and vessels with shaded iso-surfacing; the skin merely provides context.

Abstract
One of the most important goals in volume rendering is to be able to
visually separate and selectively enable specific objects of interest
contained in a single volumetric data set, which can be approached
by using explicit segmentation information. We show how seg-
mented data sets can be rendered interactively on current consumer
graphics hardware with high image quality and pixel-resolution fil-
tering of object boundaries. In order to enhance object perception,
we employ different levels of object distinction. First, each object
can be assigned an individual transfer function, multiple of which
can be applied in a single rendering pass. Second, different render-
ing modes such as direct volume rendering, iso-surfacing, and non-
photorealistic techniques can be selected for each object. A mini-
mal number of rendering passes is achieved by processing sets of
objects that share the same rendering mode in a single pass. Third,
local compositing modes such as alpha blending and MIP can be
selected for each object in addition to a single global mode, thus
enabling high-quality two-level volume rendering on GPUs.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Color, shading, shadowing, and texture

Keywords: volume rendering, segmentation, non-photorealistic
rendering, consumer graphics hardware

∗mailto: {Hadwiger |Berger |Hauser }@VRVis.at ,
http://www.VRVis.at/vis/

1 Introduction
In many volume rendering methods, all voxels contained in a vol-
umetric data set are treated in an identical manner, i.e., without us-
ing any a priori information that specifies object membership on a
per-voxel basis. In that case, visual distinction of objects is usu-
ally achieved by either using multiple semi-transparent iso-surfaces
or, more commonly, with direct volume rendering and an appropri-
ate transfer function. In the latter case, multi-dimensional transfer
functions [Kindlmann and Durkin 1998; Kniss et al. 2001] have
proven to be especially powerful in facilitating the perception of
different objects. In recent years, non-photorealistic volume render-
ing approaches [Ebert and Rheingans 2000; Csebfalvi et al. 2001;
Lu et al. 2002] have also been used successfully for improving the
perception of distinct objects embedded in a single volume.

However, it is also often the case that a single rendering method
or transfer function does not suffice in order to distinguish multi-
ple objects of interest according to a user’s specific needs. A very
powerful approach to tackling this problem is to create explicit ob-
ject membership information via segmentation [Udupa and Herman
1999], which usually yields one binary segmentation mask for each
object of interest, or an object ID for each of the volume’s voxels.

Unfortunately, integrating segmentation information and multi-
ple rendering modes with different sets of parameters into a fast
high-quality volume renderer is not a trivial problem, especially in
the case of consumer hardware volume rendering, which tends to
only be fast when all or most voxels can be treated identically. On
such hardware, one would also like to use a single segmentation
mask volume in order to use a minimal amount of texture mem-
ory. Graphics hardware cannot easily interpolate between voxels
belonging to different objects, however, and using the segmenta-
tion mask without filtering gives rise to artifacts. Thus, one of the
major obstacles in such a scenario is filtering object boundaries in
order to attain high quality in conjunction with consistent fragment
assignment and without introducing non-existent object IDs.

In this paper, we show how segmented volumetric data sets can
be rendered efficiently and with high quality on current consumer
graphics hardware. The segmentation information for object dis-

13



tinction can be used at multiple levels of sophistication, and we de-
scribe how all of these different possibilities can be integrated into
a single coherent hardware volume rendering framework.

First, different objects can be rendered with the same rendering
technique (e.g., DVR), but with different transfer functions. Sep-
arate per-object transfer functions can be applied in a single ren-
dering pass even when object boundaries are filtered during render-
ing. On an ATI Radeon 9700, up to eight transfer functions can be
folded into a single rendering pass with linear boundary filtering.
If boundaries are only point-sampled, e.g., during interaction, an
arbitrary number of transfer functions can be used in a single pass.
However, the number of transfer functions with boundary filtering
in a single pass is no conceptual limitation and increases trivially on
architectures that allow more instructions in the fragment shader.

Second, different objects can be rendered using different hard-
ware fragment shaders. This allows easy integration of methods as
diverse as non-photorealistic and direct volume rendering, for in-
stance. Although each distinct fragment shader requires a separate
rendering pass, multiple objects using the same fragment shader
with different rendering parameters can effectively be combined
into a single pass. When multiple passes cannot be avoided, the
cost of individual passes is reduced drastically by executing expen-
sive fragment shaders only for those fragments active in a given
pass. These two properties allow highly interactive rendering of
segmented data sets, since even for data sets with many objects usu-
ally only a couple of different rendering modes are employed. We
have implemented direct volume rendering with post-classification,
pre-integrated classification [Engel et al. 2001], different shading
modes, non-polygonal iso-surfaces, and maximum intensity pro-
jection. See figures 1 and 2 for example images. In addition
to non-photorealistic contour enhancement [Csebfalvi et al. 2001]
(figure 1, center; figure 2, skull), we have also used a volumetric
adaptation of tone shading [Gooch et al. 1998] (figure 1, right),
which improves depth perception in contrast to standard shading.

Finally, different objects can also be rendered with different
compositing modes, e.g., alpha blending and maximum intensity
projection (MIP), for their contribution to a given pixel. These
per-object compositing modes are object-local and can be speci-
fied independently for each object. The individual contributions of
different objects to a single pixel can be combined via a separate
global compositing mode. This two-level approach to object com-
positing [Hauser et al. 2001] has proven to be very useful in order
to improve perception of individual objects.

In summary, the major novel contributions of this paper are:

• A systematic approach to minimizing both the number of ren-
dering passes and the performance cost of individual passes
when rendering segmented volume data with high quality on
current GPUs. Both filtering of object boundaries and the use
of different rendering parameters such as transfer functions do
not prevent using a single rendering pass for multiple objects.
Even so, each pass avoids execution of the corresponding po-
tentially expensive fragment shader for irrelevant fragments
by exploiting the early z-test. This reduces the performance
impact of the number of rendering passes drastically.

• An efficient method for mapping a single object ID volume
to and from a domain where filtering produces correct results
even when three or more objects are present in the volume.
The method is based on simple 1D texture lookups and able
to map and filter blocks of four objects simultaneously.

• An efficient object-order algorithm based on simple depth and
stencil buffer operations that achieves correct compositing of
objects with different per-object compositing modes and an
additional global compositing mode. The result is conceptu-
ally identical to being able to switch compositing modes for
any given group of samples along the ray for any given pixel.

Figure 2: Segmented head and neck data set (256x256x333) with
six different enabled objects. The skin and teeth are rendered as
MIP with different intensity ramps, the blood vessels and eyes are
rendered as shaded DVR, the skull uses contour rendering, and the
vertebrae use a gradient magnitude-weighted transfer function with
shaded DVR. A clipping plane has been applied to the skin object.

Related work

The framework presented in this paper is based on re-sampling and
rendering a volume via a stack of textured slices that are blended on
top of each other in either back-to-front or front-to-back order. For
this purpose, either view-aligned slices through 3D textures [Cullip
and Neumann 1993; Cabral et al. 1994; Westermann and Ertl 1998],
or object-aligned slices with 2D textures can be used. In the latter
case, intermediate slices can also be interpolated on-the-fly during
rendering in order to attain tri-linear interpolation [Rezk-Salama
et al. 2000]. The number of slices necessary for high-quality results
can be reduced drastically by considering two adjacent slices as
constituting a single slab and compensating for non-linear transfer
function changes within each slab via a lookup into a pre-integrated
transfer function table [Engel et al. 2001]. Multi-dimensional trans-
fer functions [Kindlmann and Durkin 1998] are a very important
tool for distinguishing different objects contained in a volume, es-
pecially when combined with an intuitive and interactive interface
for specifying them [Kniss et al. 2001]. In recent years, there also
has been a remarkable interest in non-photorealistic rendering tech-
niques such as tone shading [Gooch et al. 1998] that are increas-
ingly being applied to volumes [Ebert and Rheingans 2000; Cseb-
falvi et al. 2001; Lu et al. 2002]. If no segmentation information is
present, multiple rendering passes with one transfer function each
and non-photorealistic shading can be used in order to enhance per-
ception of individual objects [Lum and Ma 2002].

The idea of using two conceptual levels for compositing volu-
metric objects has first been described in the context of a fast soft-
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Figure 3: A single ray corresponding to a given image pixel is al-
lowed to pierce objects that use their own object-local compositing
mode. The contributions of different objects along a ray are com-
bined with a single global compositing mode. Rendering a seg-
mented data set with these two conceptual levels of compositing
(local and global) is known astwo-level volume rendering.

ware two-level volume renderer [Hauser et al. 2001], and we refer
to this earlier work for detailed suggestions on when and how differ-
ent rendering and compositing modes together with appropriately
specified transfer functions can facilitate object perception.

The topic of image and volume segmentation is a huge area on its
own [Udupa and Herman 1999], and we simply treat the segmen-
tation information as additional a priori input data that are already
available for a given data set. In order to achieve high rendering
quality, it is necessary to distinguish individual objects with sub-
voxel precision [Tiede et al. 1998], i.e., what we refer to as pixel-
resolution boundary filtering. Even linear filtering of segmentation
data is not directly possible on graphics hardware when more than
two objects have been segmented, since object IDs cannot be in-
terpolated directly. Ultimately, rendering segmented data sets can
be viewed as being composed of multiple individual volumetric
clipping problems. Recent work has shown how to achieve high-
quality clipping in graphics hardware [Weiskopf et al. 2003], which
can also be combined with pre-integrated classification by adjusting
the lookup into the pre-integration table accordingly [Röttger et al.
2003]. However, it is not trivial to apply clipping approaches to the
rendering of segmented data as soon as the volume contains more
than two objects and high quality results and a minimal number of
rendering passes are desired. Excluding individual fragments from
processing by an expensive fragment shader via the early z-test is
also crucial in the context of GPU-based ray casting in order to be
able to terminate rays individually [Krüger and Westermann 2003].

2 Rendering segmented data sets
For rendering purposes, we simply assume that in addition to the
usual data such as a density and an optional gradient volume, a
segmentation mask volumeis also available. If embedded objects
are represented as separate masks, we combine all of these masks
into a single volume that contains a single object ID for each voxel.
Hence we will also be calling this segmentation mask volume the
object ID volume. IDs are simply enumerated consecutively starting
with one, i.e., we do not assign individual bits to specific objects.
ID zero is reserved (see later sections). The object ID volume con-
sumes one byte per voxel and is either stored in its own 3D texture
in the case of view-aligned slicing, or in additional 2D slice textures
for all three slice stacks in the case of object-aligned slicing. With
respect to resolution, we have used the same resolution as the origi-
nal volume data, but all of the approaches we describe could easily
be used for volume and segmentation data of different resolutions.

In order to render a segmented data set, we determine object
membership of individual fragments by filtering object boundaries

Figure 4: Detecting changes in compositing mode for each indi-
vidual sample along a ray can be done exactly using two rendering
buffers (left), or approximately using only a single buffer (right).

in the hardware fragment shader (section 3). Object membership
determines which transfer function, rendering, and compositing
modes should be used for a given fragment. We render the vol-
ume in a number of rendering passes that is basically independent
of the number of contained objects. It most of all depends on the
required number of different hardware configurations that cannot
be changed during a single pass, i.e., the fragment shader and com-
positing mode. Objects that can share a given configuration can
be rendered in a single pass. This also extends to the application of
multiple per-object transfer functions (section 4) and thus the actual
number of rendering passes is usually much lower than the number
of objects or transfer functions. It depends on several major factors:

Enabled objects.If all the objects rendered in a given pass have
been disabled by the user, the entire rendering pass can be skipped.
If only some of the objects are disabled, the number of passes stays
the same, independent of the order of object IDs. Objects are dis-
abled by changing a single entry of a 1D lookup texture. Addi-
tionally, per-object clipping planes can be enabled. In this case, all
objects rendered in the same pass are clipped identically, however.

Rendering modes.The rendering mode, implemented as an ac-
tual hardware fragment shader, determines what and how volume
data is re-sampled and shaded. Since it cannot be changed during
a single rendering pass, another pass must be used if a different
fragment shader is required. However, many objects often use the
same basic rendering mode and thus fragment shader, e.g., DVR
and iso-surfacing are usually used for a large number of objects.

Transfer functions. Much more often than the basic rendering
mode, a change of the transfer function is required. For instance,
all objects rendered with DVR usually have their own individual
transfer functions. In order to avoid an excessive number of ren-
dering passes due to simple transfer function changes, we apply
multiple transfer functions to different objects in a single rendering
pass while still retaining adequate filtering quality (section 4).

Compositing modes. Although usually considered a part of
the rendering mode, compositing is a totally separate operation in
graphics hardware. Where the basic rendering mode is determined
by the fragment shader, the compositing mode is specified as blend
function and equation in OpenGL, for instance. Changing the com-
positing mode happens even more infrequently than changing the
basic rendering mode, e.g., alpha blending is used in conjunction
with both DVR and tone shading.

Different compositing modes per object also imply that the (con-
ceptual) ray corresponding to a single pixel must be able to com-
bine the contribution of these different modes (figure 3). Especially
in the context of texture-based hardware volume rendering, where
no actual rays exist and we want to obtain the same result with an
object-order approach instead, we have to use special care when
compositing. In order to ensure correct compositing, we are using
two render buffers and track the current compositing mode for each
pixel. Whenever the compositing mode changes for a given pixel,
the already composited part is transferred from thelocal composit-
ing buffer into theglobal compositing buffer. Section 5 shows that
this can actually be done very efficiently without explicitly consid-
ering individual pixels, while still achieving the same compositing
behavior as a ray-oriented image-order approach, which is crucial
for achieving high quality. For faster rendering we allow falling
back to single-buffer compositing during interaction (figure 4).
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2.1 Basic rendering loop
We will now outline the basic rendering loop that we are using for
each frame. Table 1 gives a high-level overview.

Although the user is dealing with individual objects, we automat-
ically collect all objects that can be processed in the same rendering
pass into anobject setat the beginning of each frame. For each ob-
ject set, we generate anobject set membership texture, which is a
1D lookup table that determines the objects belonging to the set. In
order to further distinguish different transfer functions in a single
object set, we also generate 1Dtransfer function assignment tex-
tures. Both of these types of textures are shown in figure 5 and
described in sections 2.3, 3, and 4. After this setup, the entire slice
stack is rendered. Each slice must be rendered for every object set
containing an object that intersects the slice, which is determined in
a pre-process. If there is more than a single object set for the cur-
rent slice, we optionally render all object set IDs of the slice into the
depth buffer before rendering any actual slice data. This enables us
to exploit the early z-test during all subsequent passes for each ob-
ject set, see below. For performance reasons, we never use object
ID filtering in this pass, which allows only conservative fragment
culling via the depth test. Exact fragment rejection is done in the
fragment shader. Before a slice can be rendered for any object set,
the fragment shader and compositing mode corresponding to this
set must be activated. Using the two types of textures mentioned
above, the fragment shader filters boundaries, rejects fragments not
corresponding to the current pass, and applies the correct transfer
function. In order to attain two compositing levels, slices are ren-
dered into a local buffer, as already outlined above. Before render-
ing the current slice, those pixels where the local compositing mode
differs from the previous slice are transferred from the local into the
global buffer using the global compositing mode. After this trans-
fer, the transferred pixels are cleared in the local buffer to ensure
correct local compositing for subsequent pixels. In the case when
only a single compositing buffer is used for approximate composit-
ing, the local to global buffer transfer and clear are not executed.

2.2 Conservative fragment culling via early z-test
On current graphics hardware, it is possible to avoid execution of
the fragment shader for fragments where the depth test fails as long
as the shader does not modify the depth value of the fragment. This
early z-test is crucial to improving performance when multiple ren-
dering passes have to be performed for each slice. If the current
slice’s object set IDs have been written into the depth buffer before,
see above, we conservatively reject fragments not belonging to the
current object set even before the corresponding fragment shader is
started. In order to do this, we use a depth test ofGL EQUALand
configure the vertex shader to generate a constant depth value for
each fragment that exactly matches the current object set ID.

DetermineObjectSets();
CreateObjectSetMembershipTextures();
CreateTFAssignmentTextures();
FOReach sliceDO

TransferLocalBufferIntoGlobalBuffer();
ClearTransferredPixelsInLocalBuffer();
RenderObjectIdDepthImageForEarlyZTest();
FOReach object set with an object in sliceDO

SetupObjectSetFragmentRejection();
SetupObjectSetTFAssignment();
ActivateObjectSetFragmentShader();
ActivateObjectSetCompositingMode();
RenderSliceIntoLocalBuffer();

Table 1: The basic rendering loop that we are using. Object set
membership can change every time an object’s rendering or com-
positing mode is changed, or an object is enabled or disabled.

2.3 Fragment shader operations
Most of the work in volume renderers for consumer graphics hard-
ware is done in the fragment shader, i.e., at the granularity of indi-
vidual fragments and, ultimately, pixels. In contrast to approaches
using lookup tables, i.e., paletted textures, we are performing all
shading operations procedurally in the fragment shader. Section 6
contains details about the actual volume shading models we are us-
ing. However, we are most of all interested in the operations that are
required for rendering segmented data. The two basic operations in
the fragment shader with respect to the segmentation mask are frag-
ment rejection and per-fragment application of transfer functions:

Fragment rejection. Fragments corresponding to object IDs
that cannot be rendered in the current rendering pass, e.g., because
they need a different fragment shader or compositing mode, have to
be rejected. They, in turn, will be rendered in another pass, which
uses an appropriately adjusted rejection comparison. For fragment
rejection, we do not compare object IDs individually, but use 1D
lookup textures that contain a binary membership status for each
object (figure 5, left). All objects that can be rendered in the same
pass belong to the same object set, and the corresponding object
set membership texture contains ones at exactly those texture co-
ordinates corresponding to the IDs of these objects, and zeros ev-
erywhere else. The re-generation of these textures at the beginning
of each frame, which is negligible in terms of performance, also
makes turning individual objects on and off trivial. Exactly one ob-
ject set membership texture is active for a given rendering pass and
makes the task of fragment rejection trivial if the object ID volume
is point-sampled. When object IDs are filtered, it is also crucial to
map individual IDs to zero or one before actually filtering them.
Details are given in section 3, but basically we are using object set
membership textures to do a binary classification of input IDs to
the filter, and interpolate after this mapping. The result can then be
mapped back to zero or one for fragment rejection.

Per-fragment transfer function application. Since we apply
different transfer functions to multiple objects in a single rendering
pass, the transfer function must be applied to individual fragments
based on their density value and corresponding object ID. Instead of
sampling multiple one-dimensional transfer function textures, we
sample a single global two-dimensional transfer function texture
(figure 6). This texture is not only shared between all objects of an
object set, but also between all object sets. It is indexed with one
texture coordinate corresponding to the object ID, the other one to
the actual density. Because we would like to filter linearly along the
axis of the actual transfer function, but use point-sampling along the
axis of object IDs, we store each transfer function twice at adjacent
locations in order to guarantee point-sampling for IDs, while we are
using linear interpolation for the entire texture. We have applied

Figure 5: Object set membership textures (left; three 1D intensity
textures for three sets containing three, two, and one object, re-
spectively) contain a binary membership status for each object in a
set that can be used for filtering object IDs and culling fragments.
Transfer function assignment textures (right; one 1D RGBA tex-
ture for distinction of four transfer functions) are used to filter four
object boundaries simultaneously and determine the corresponding
transfer function via a simple dot product.

16



this scheme only to 1D transfer functions, but general 2D transfer
functions could also be implemented via 3D textures of just a few
layers in depth, i.e., the number of different transfer functions.

We are using an extended version of the pixel-resolution filter
that we employ for fragment rejection in order to determine which
of multiple transfer functions in the same rendering pass a frag-
ment should actually use. Basically, the fragment shader uses mul-
tiple RGBA transfer function assignment textures (figure 5, right)
for both determining the transfer function and rejecting fragments,
instead of a single object set membership texture with only a single
color channel. Each one of these textures allows filtering the object
ID volume with respect to four object boundaries simultaneously.
A single lookup yields binary membership classification of a frag-
ment with respect to four objects. The resulting RGBA member-
ship vectors can then be interpolated directly. The main operation
for mapping back the result to an object ID is a simple dot product
with a constant vector of object IDs. If the result is the non-existent
object ID of zero, the fragment needs to be rejected. The details
are described in section 4. This concept can be extended trivially
to objects sharing transfer functions by using transfer function IDs
instead of object IDs. The following two sections will now describe
filtering of object boundaries at sub-voxel precision in more detail.

3 Pixel-resolution boundaries
One of the most crucial parts of rendering segmented volumes with
high quality is that the object boundaries must be calculated dur-
ing rendering at the pixel resolution of the output image, instead
of the voxel resolution of the segmentation volume. Figure 7 (left)
shows that simply point-sampling the object ID texture leads to ob-
ject boundaries that are easily discernible as individual voxels. That
is, simply retrieving the object ID for a given fragment from the seg-
mentation volume is trivial, but causes artifacts. Instead, the object
ID must be determined via filtering for each fragment individually,
thus achieving pixel-resolution boundaries.

Unfortunately, filtering of object boundaries cannot be done di-
rectly using the hardware-native linear interpolation, since direct
interpolation of numerical object IDs leads to incorrectly interpo-
lated intermediate values when more than two different objects are
present. When filtering object IDs, a threshold valuest must be
chosen that determines which object a given fragment belongs to,
which is essentially an iso-surfacing problem. However, this can-
not be done if three or more objects are contained in the volume,
which is illustrated in the top row of figure 8. In that case, it is
not possible to choose a singlest for the entire volume. The cru-
cial observation to make in order to solve this problem is that the
segmentation volume must be filtered as a successive series of bi-
nary volumes in order to achieve proper filtering [Tiede et al. 1998],
which is shown in the second row of figure 8. Mapping all object
IDs of the current object set to1.0 and all other IDs to0.0 allows
using a global threshold valuest of 0.5. We of course do not want
to store these binary volumes explicitly, but perform this mapping
on-the-fly in the fragment shader by indexing theobject set mem-
bership texturethat is active in the current rendering pass. Filtering

Figure 6: Instead of multiple one-dimensional transfer functions
for different objects, we are using a single global two-dimensional
transfer function texture. After determining the object ID for the
current fragment via filtering, the fragment shader appropriately
samples this texture with(density, object id) texture coordinates.

Figure 7: Object boundaries with voxel resolution (left) vs. object
boundaries determined per-fragment with linear filtering (right).

in the other passes simply uses an alternate binary mapping, i.e.,
other object set membership textures. One problem with respect to
a hardware implementation of this approach is that texture filtering
happens before the sampled values can be altered in the fragment
shader. Therefore, we perform filtering of object IDs directly in the
fragment shader. Note that our approach could in part also be imple-
mented using texture palettes and hardware-native linear interpola-
tion, with the restriction that not more than four transfer functions
can be applied in a single rendering pass (section 4). However, we
have chosen to perform all filtering in the fragment shader in order
to create a coherent framework with a potentially unlimited number
of transfer functions in a single rendering pass and prepare for the
possible use of cubic boundary filtering in the future.

After filtering yields values in the range[0.0, 1.0], we once again
come to a binary decision whether a given fragment belongs to the
current object set by comparing with a threshold value of0.5 and
rejecting fragments with an interpolated value below this threshold
(figure 8, third row). Actual rejection of fragments is done using
theKIL instruction of the hardware fragment shader.

Linear boundary filtering. For object-aligned volume slices,
bi-linear interpolation is done by setting the hardware filtering
mode for the object ID texture to nearest-neighbor and sampling
it four times with offsets of whole texels in order to get access to
the four ID values needed for interpolation. Before actual inter-
polation takes place, the four object IDs are individually mapped
to 0.0 or 1.0, respectively, using the current object set member-
ship texture. We perform the actual interpolation using a variant of
texture-based filtering [Hadwiger et al. 2001], which proved to be
both faster and use fewer instructions than usingLRP instructions.
With this approach, bi-linear weight calculation and interpolation
can be reduced to just one texture fetch and one dot product. When
intermediate slices are interpolated on-the-fly [Rezk-Salama et al.
2000], or view-aligned slices are used, eight instead of four input
IDs have to be used in order to perform tri-linear interpolation.

Figure 8: Each fragment must be assigned an exactly defined object
ID after filtering. Here, IDs 3, 4, and 5 are interpolated, yielding the
values shown in blue. Top row: choosing a single threshold value
st that works everywhere is not possible for three or more objects.
Second row: object IDs must be converted to0.0 or 1.0 in the frag-
ment shader before interpolation, which allows using a globalst of
0.5. After thresholding, fragments can be culled accordingly (third
row; see section 3), or mapped back to an object ID in order to apply
the corresponding transfer function (fourth row; see section 4).
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Figure 9: Selecting the transfer function on a per-fragment basis.
In the left image, point-sampling of the object ID volume has been
used, whereas in the right image procedural linear interpolation in
the fragment shader achieves results of much better quality.

Combination with pre-integration. The combination of pre-
integration [Engel et al. 2001] and high-quality clipping has been
described recently [R̈ottger et al. 2003]. Since our filtering method
effectively reduces the segmentation problem to a clipping problem
on-the-fly, we are using the same approach after we have mapped
object IDs to0.0 or 1.0, respectively. In this case, the interpolated
binary values must be used for adjusting the pre-integration lookup.

4 Multiple per-object transfer functions
in a single rendering pass

In addition to simply determining whether a given fragment be-
longs to a currently active object or not, which has been described
in the previous section, this filtering approach can be extended to
the application of multiple transfer functions in a single rendering
pass without sacrificing filtering quality. Figure 9 shows the differ-
ence in quality for two objects with different transfer functions (one
entirely red, the other entirely yellow for illustration purposes).

In this case, we perform several almost identical filtering steps in
the fragment shader, where each of these steps simultaneously fil-
ters the object boundaries of four different objects. After the frag-
ment’s object ID has been determined via filtering, it can be used to
access the global transfer function table as described in section 2.3
and illustrated in figure 6. For multiple simultaneous transfer func-
tions, we do not use object set membership textures but the similar
extended concept oftransfer function assignment textures, which is
illustrated in the right image of figure 5. Each of these textures can
be used for filtering the object ID volume with respect to four dif-
ferent object IDs at the same time by using the four channels of an
RGBA texture in order to perform four simultaneous binary classi-
fication operations. In order to create these textures, each object set
membership texture is converted into

⌈
#objects/4

⌉
transfer func-

tion assignment textures, where#objects denotes the number of
objects with different transfer functions in a given object set. All
values of1.0 corresponding to the first transfer function are stored
into the red channel of this texture, those corresponding to the sec-
ond transfer function into the green channel, and so on.

In the fragment shader, bi-linear interpolation must index this
texture at four different locations given by the object IDs of the
four input values to interpolate. This classifies the four input object
IDs with respect to four objects with just four 1D texture sampling
operations. A single linear interpolation step yields the linear in-
terpolation of these four object classifications, which can then be
compared against a threshold of(0.5, 0.5, 0.5, 0.5), also requiring
only a single operation for four objects. Interpolation and thresh-
olding yields a vector with at most one component of1.0, the other
components set to0.0. In order for this to be true, we require that
interpolated and thresholded repeated binary classifications never
overlap, which is not guaranteed for all types of filter kernels. In

the case of bi-linear or tri-linear interpolation, however, overlaps
can never occur [Tiede et al. 1998]. The final step that has to be
performed is mapping the binary classification to the desired object
ID. We do this via a single dot product with a vector containing the
four object IDs corresponding to the four channels of the transfer
function assignment texture (figure 5, right). By calculating this dot
product, we multiply exactly the object ID that should be assigned
to the final fragment by1.0. The other object IDs are multiplied by
0.0 and thus do not change the result. If the result of the dot prod-
uct is0.0, the fragment does not belong to any of the objects under
consideration and can be culled. Note that exactly for this reason,
we do not use object IDs of zero. For the application of more than
four transfer functions in a single rendering pass, the steps outlined
above can be executed multiple times in the fragment shader. The
results of the individual dot products are simply summed up, once
again yielding the ID of the object that the current fragment be-
longs to. Note that the calculation of filter weights is only required
once, irrespective of the number of simultaneous transfer functions,
which is also true for sampling the original object ID textures.

Equation 1 gives the major fragment shader resource require-
ments of our filtering and binary classification approach for the case
of bi-linear interpolation withLRP instructions:

4TEX 2D + 4
⌈

#objects

4

⌉
TEX 1D + 3

⌈
#objects

4

⌉
LRP, (1)

in addition to one dot product and one thresholding operation (e.g.,
DP4 andSGEinstructions, respectively) for every

⌈
#objects/4

⌉
transfer functions evaluated in a single pass. Similarly to the alter-
native linear interpolation using texture-based filtering that we have
outlined in section 3, procedural weight calculation and theLRP in-
structions can once again also be substituted by texture fetches and
a few cheaper ALU instructions. On the Radeon 9700, we are cur-
rently able to combine high-quality shading with up to eight transfer
functions in the same fragment shader, i.e., we are using up to two
transfer function assignment textures in a single rendering pass.

5 Separation of compositing modes
The final component of our framework with respect to the separa-
tion of different objects is the possibility to use individual object-
local compositing modes, as well as a single global compositing
mode. The local compositing modes that can currently be selected
are alpha blending (e.g., for DVR or tone shading), maximum in-
tensity projection (e.g., for MIP or contour enhancement), and iso-
surface rendering. Global compositing can either be done by alpha
blending, MIP, or a simple add of all contributions.

Although the basic concept is best explained using an image-
order approach, i.e., individual rays (figure 3), in the context of
texture-based volume rendering we have to implement it in object-
order. As described in section 2, we are using two separate render-
ing buffers, a local and a global compositing buffer, respectively.
Actual volume slices are only rendered into the local buffer, using

TransferLocalBufferIntoGlobalBuffer() {
ActivateContextGlobalBuffer();
DepthTest( NOT EQUAL );
StencilTest( RENDER ALWAYS, SETONE );
RenderSliceCompositingIds( DEPTH BUFFER );
DepthTest( DISABLE );
StencilTest( RENDER WHEREONE, SET ZERO );
RenderLocalBufferImage( COLOR BUFFER );

}

Table 2: Detecting for all pixels simultaneously where the com-
positing mode changes from one slice to the next, and transferring
those pixels from the local into the global compositing buffer.
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the appropriate local compositing mode. When a new fragment has
a different local compositing mode than the pixel that is currently
stored in the local buffer, that pixel has to be transferred into the
global buffer using the global compositing mode. Afterward, these
transferred pixels have to be cleared in the local buffer before the
corresponding new fragment is rendered. Naturally, it is important
that both the detection of a change in compositing mode and the
transfer and clear of pixels is done for all pixels simultaneously.

In order to do this, we are using the depth buffer of both the local
and the global compositing buffer to track the current local com-
positing mode of each pixel, and the stencil buffer to selectively
enable pixels where the mode changes from one slice to the next.
Before actually rendering a slice (see table 1), we render IDs corre-
sponding to the local compositing mode into both the local and the
global buffer’s depth buffer. During these passes, the stencil buffer
is set to one where the ID already stored in the depth buffer (from
previous passes) differs from the ID that is currently being rendered.
This gives us both an updated ID image in the depth buffer, and a
stencil buffer that identifies exactly those pixels where a change in
compositing mode has been detected. We then render the image of
the local buffer into the global buffer. Due to the stencil test, pix-
els will only be rendered where the compositing mode has actually
changed. Table 2 gives pseudo code for what is happening in the
global buffer. Clearing the just transferred pixels in the local buffer
works almost identically. The only difference is that in this case we
do not render the image of another buffer, but simply a quad with
all pixels set to zero. Due to the stencil test, pixels will only be
cleared where the compositing mode has actually changed.

Note that all these additional rendering passes are much faster
than the passes actually rendering and shading volume slices. They
are independent of the number of objects and use extremely sim-
ple fragment shaders. However, the buffer/context switching over-
head is quite noticeable, and thus correct separation of composit-
ing modes can be turned off during interaction. Figure 4 shows
a comparison between approximate and correct compositing with
one and two compositing buffers, respectively. Performance num-
bers can be found in table 3. When only a single buffer is used,
the compositing mode is simply switched according to each new
fragment without avoiding interference with the previous contents
of the frame buffer. The visual difference depends highly on the
combination of compositing modes and spatial locations of objects.
The example in figure 4 uses MIP and DVR compositing in order
to highlight the potential differences. However, using approximate
compositing is very useful for faster rendering, and often exhibits
little or no loss in quality. Also, it is possible to get an almost seam-
less performance/quality trade-off between the two, by performing
the buffer transfer only everyn slices instead of every slice.

6 Rendering modes, performance
This section provides details on the actual rendering modes we
are supporting, as well as some performance figures. We can use
object-aligned slices with 2D textures, possibly with slice interpo-
lation [Rezk-Salama et al. 2000], view-aligned slices with 3D tex-
tures, and slab instead of slice rendering for pre-integration [Engel
et al. 2001]. Gradients can be pre-computed either via central dif-
ferencing or a 3x3x3 Sobel operator, and are stored into a RGB
texture in normalized form for sampling by the fragment shader.

Direct volume rendering. We have implemented both post-
classification and pre-integrated classification [Engel et al. 2001].
Both of these modes can either be unshaded or shaded, optionally
weighted with gradient magnitude [Levoy 1988].

Iso-surfacing. We support rendering of non-polygonal shaded
iso-surfaces via the OpenGL alpha test [Westermann and Ertl 1998]
and pre-integrated iso-surfaces [Engel et al. 2001], respectively.

Maximum intensity projection. The maximum intensity of all
fragments corresponding to a given pixel can be retained in the

Figure 10: Segmented head and neck data set (256x256x333) with
eight different enabled objects – brain: tone shading; skin: contour
enhancement with clipping plane; eyes and spine: shaded DVR;
skull, teeth, and vertebrae: unshaded DVR; trachea: MIP.

frame buffer by using theGL MAXcompositing mode. Prior to this,
the volume density is mapped through a monochrome transfer func-
tion and afterward multiplied by a constant color.

Contour enhancement.As one of two non-photorealistic ren-
dering modes, we have adopted a contour shading model [Csebfalvi
et al. 2001]. The intensity of a fragment is determined procedurally
in the fragment shader by evaluating equation 2:

I = g
(
|∇|

)
·
(
1 − |V · ∇|

)8
, (2)

whereV is the viewing vector,∇ denotes the gradient of a given
voxel, andg() is a windowing function for the gradient magnitude.
We specifyg() through the usual transfer function interface, where
the alpha component is the weighting factor for the view-dependent
part, and the RGB components are simply neglected. The fragment
intensity can be multiplied by a constant contour color; fragment
alpha is set equal toI. The compositing mode for contours is MIP.

Tone shading.In order to enhance depth perception, we are also
using tone shading [Gooch et al. 1998] adapted to volumes:

I =

(
1 + L · ∇

2

)
ka +

(
1 − 1 + L · ∇

2

)
kb, (3)

whereL denotes the light vector. The two colors to interpolate,
ka andkb, are derived from two constant colorskcool andkwarm

and the color from the transfer functionkt, using two user-specified
factorsα andβ that determine the additive contribution ofkt:

ka = kcool + αkt (4)

kb = kwarm + βkt (5)
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#slices #obj composit. single multi+ztest multi

128 3 one buff. 48 (16.2) 29.2 (15.4) 19.3 (6.8)

128 3 two buff. 7 (3.9) 6.2 (3.2) 5 (1.9)

128 8 one buff. 48 (11.3) 15.5 (10) 7 (2.1)

128 8 two buff. 7 (3.2) 5.4 (3) 2.5 (0.7)

256 3 one buff. 29 (9.1) 15.6 (8.2) 11 (3.4)

256 3 two buff. 3.5 (2) 3.2 (1.8) 2.5 (1.1)

256 8 one buff. 29 (5.3) 8.2 (5.2) 3.7 (1.1)

256 8 two buff. 3.5 (1.7) 3.1 (1.6) 1.2 (0.4)

Table 3: Performance on ATI Radeon 9700; 512x512 viewport;
256x128x256 data set; three and eight enabled objects, respectively.
Numbers are in frames per second. Compositing is done with ei-
ther one or two buffers, respectively. Themulti column with early
z-testing turned off is only shown for comparison purposes.

Performance. Actual rendering performance depends on a lot of
different factors, so table 3 shows only some example figures. In or-
der to concentrate on performance of rendering segmented data, all
rates have been measured with unshaded DVR. Slices were object-
aligned; objects were rendered all in a single pass (single) or in one
pass per object (multi+ztest). Compositing performance is indepen-
dent of the rendering mode, i.e., can also be measured with DVR for
all objects. Frame rates in parentheses are with linear boundary fil-
tering enabled, other rates are for point-sampling during interaction.
Note that in the unfiltered case with a single rendering pass for all
objects, the performance is independent of the number of objects. If
more complex fragment shaders than unshaded DVR are used, the
relative performance speed-up ofmulti+ztestversusmulti increases
further towardsingleperformance, i.e., the additional overhead of
writing object set IDs into the depth buffer becomes negligible.

7 Conclusions and future work
We have shown how segmented volumes can be rendered at interac-
tive rates with high quality on current consumer graphics hardware
such as the ATI Radeon 9700. The segmentation mask is filtered
on-the-fly in the fragment shader, which provides greater flexibility
and facilitates using higher-order filtering in the future. In general,
we are expecting a move toward programmable filtering via proce-
dural or texture-based filter kernels for a lot of applications in the
near future. This has just become possible on the most recent archi-
tectures, but as instruction count limits in the fragment shader rise
or are even removed, these approaches are rapidly becoming fea-
sible. All the algorithms we have presented are meant to take the
possibilities of future hardware into account. The current restric-
tion to eight simultaneous transfer functions with object ID filtering
is solely due to the instruction count limit of our target hardware,
and increases trivially with more instructions. In general, we en-
sure a minimal number of rendering passes by only falling back to
individual passes for changes of the hardware configuration where
an on-the-fly adaptation is currently impossible, i.e., the fragment
shader and compositing mode. When fragment shader adaptation
on a per-pixel basis becomes possible, our framework will require
only minor changes. In the future, we would like to incorporate cu-
bic boundary filtering [Hadwiger et al. 2001], and extend the com-
bination with pre-integrated classification [Röttger et al. 2003] for
application of multiple pre-integrated transfer functions in a single
rendering pass. In addition or as an alternative to the early z-test,
texture hulls [Li and Kaufman 2002] could be used to minimize the
number of fragments that are rendered without any contribution.
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Figure 1: Visualization of flow on the surface of an intake mani-
fold. The ideal intake manifold distributes flow evenly to the piston
valves.

Abstract

We present a novel technique for direct visualization of unsteady
flow on surfaces from computational fluid dynamics. The method
generates dense representations of time-dependent vector fields
with high spatio-temporal correlation using both Lagrangian-
Eulerian Advection and Image Based Flow Visualization as
its foundation. While the 3D vector fields are associated with
arbitrary triangular surface meshes, the generation and advection
of texture properties is confined to image space. Frame rates of up
to 20 frames per second are realized by exploiting graphics card
hardware. We apply this algorithm to unsteady flow on boundary
surfaces of, large, complex meshes from computational fluid
dynamics composed of more than 250,000 polygons, dynamic
meshes with time-dependent geometry and topology, as well as
medical data.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism–Color, shading, shadowing, and texture; [Simulation
and Modeling]: Simulation Output Analysis

Keywords: Unsteady flow visualization, computational fluid
dynamics (CFD), surface representation, texture mapping

Figure 2: Visualization of flow at the complex surface of a cooling
jacket -a composite of over 250,000 polygons.

1 Introduction

Dense, texture-based, unsteady flow visualization on surfaces has
remained an elusive problem since the introduction of texture-
based flow visualization algorithms themselves. The class of fluid
flow visualization techniques that generate dense representations
based on textures started with the Spot Noise [van Wijk 1991] and
LIC [Cabral and Leedom 1993]. The main advantage of this class
of algorithms is their complete depiction of the flow field while their
primary drawback is, in general, the computational time required to
generate the results.

Recently, two new algorithms, namely Lagrangian-Eulerian Ad-
vection (LEA) [Jobard et al. 2001] and Image Based Flow Visual-
ization (IBFV) [van Wijk 2002], have been introduced that over-
come the computation time hurdle by generating two-dimensional
flow visualization at interactive frame rates, even for unsteady flow.
This paves the way for the introduction of new algorithms that
overcome the same problems on boundary surfaces and in three
dimensions. In this paper we present a new algorithm that gener-
ates dense representations of arbitrary fluid flow on complex, non-
parameterized surfaces, more specifically, surfaces from compu-
tational fluid dynamics (CFD). However, the algorithm is general
enough to apply to other vector field data associated with a surface
such as blood vessel flow.

Traditional visualization of boundary flow using texture mapping
first maps one or more 2D textures to a surface geometry defined in
3D space. The textured geometry is then rendered to image space.
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Here, we alter the classic order of operations. First we project the
surface geometry to image space and then apply texturing. In other
words, conceptually texture properties are advected on boundary
surfaces in 3D but in fact our algorithm realizes texture advection
solely in image space. The result is a versatile visualization tech-
nique with the following characteristics:

• generates a dense representation of unsteady flow on surfaces

• visualizes flow on complex surfaces composed of polygons
whose number is on the order of 200,000 or more

• visualizes flow on dynamic meshes with time-dependent ge-
ometry and topology

• visualizes flow independent of the surface mesh’s complexity
and resolution

• supports user-interaction such as rotation, translation, and
zooming always maintaining a constant, high spatial resolu-
tion

• the technique is fast, realizing up to 20 frames per second

The performance is due, among other reasons, to the exploitation
of graphics hardware features and utilization of frame-to-frame co-
herency. The rest of the paper is organized as follows: in Section 2
we discuss related work, Section 3 details unsteady flow visualiza-
tion on surfaces from CFD. Implementation details are described in
Section 4 while results and conclusions are discussed in Section 5.

2 Related Work

Our work focuses on texture-based representations of unsteady flow
on complex, non-parameterized surfaces. The challenge of visual-
izing time-dependent vector fields on surfaces at fast frame rates
remains unsolved in surveys of the research literature [Post et al.
2002; Stalling 1997]. However, several techniques have been pro-
posed to successfully resolve parts of the problem. In the next
two sections we describe the two main categories of approaches
for dense representations on surfaces and dense representations of
unsteady 2D vector fields.

2.1 Texture-Based Flow Visualization on Surfaces

Previous research with a focus on representations of the vector field
on boundary surfaces is generally restricted to steady-state flow.
This is mainly due to the prohibitive computational time required.
An enhanced version of Spot Noise is applied to surfaces by de
Leeuw and van Wijk [de Leeuw and van Wijk 1995]. Battke et
al. [Battke et al. 1997] describe an extension of LIC for arbitrary
surfaces in 3D. Some approaches are limited to curvilinear surfaces,
i.e., surfaces that can be parameterized using 2D coordinates. Fors-
sell and Cohen [Forssell and Cohen 1995] extend LIC to curvilinear
surfaces with animation techniques and add magnitude and direc-
tional information. Mao et al. [Mao et al. 1997] present an algo-
rithm for convolving solid white noise on triangle meshes in 3D
space and extend LIC for visualizing a vector field on arbitrary sur-
faces in 3D. Stalling [Stalling 1997] provides a helpful overview of
LIC techniques applied to surfaces. In particular, a useful compari-
son of parameterized vs. non-parameterized surfaces is given.

2.2 LEA and IBFV

The algorithm in this paper is a new approach that incorporates fea-
tures of both LEA and IBFV. These very effective algorithms have
recently been introduced to produce dense representations of un-
steady, 2D vector fields.

Jobard et al. introduced a Lagrangian-Eulerian texture advection
technique for 2D vector fields at interactive frame rates [Jobard

Figure 3: A wire frame view of the surface of two intake ports
showing its 221,000 polygonal composition: (left) an overview
from the top, note that many polygons are cover less than one pixel
(right) a close-up view of the mesh between the two intake ports.

et al. 2001; Jobard et al. 2002]. The algorithm produces animations
with high spatio-temporal correlation. Each still frame depicts the
instantaneous structure of the flow, whereas an animated sequence
of frames reveals the motion of a dense collection of particles when
released into the flow. Particle paths are integrated as a function
of time, referred to as the Lagrangian step, while the color distri-
bution of the image pixels is updated in place (Eulerian step). The
result represents a large step forward in bringing the visualization
of unsteady flow to interactive frame rates.

Image Based Flow Visualization by van Wijk [van Wijk 2002]
is the most recent algorithm for dense, 2D, unsteady vector field
representations. It is based on the advection and decay of textures
in image space. Each frame of the visualization is defined as a
blend between the previous image, warped according to the flow
direction, and a number of background images composed of filtered
white noise textures. Performance times up to 50 frames per second
are achieved through effective use of the graphics hardware.

3 Unsteady Flow Visualization on
Surfaces

In this section we describe our technique in detail, starting with a
discussion of those factors motivating the approach.

3.1 Physical Space vs. Parameter Space vs. Im-
age Space

One approach to advecting texture properties on surfaces is via the
use of a parameterization, a topic that has been studied ad nauseam
(e.g., Levy et al. [Lévy et al. 2002]). According to Stalling [Stalling
1997], applying LIC to surfaces becomes particularly easy when
the whole surface can be parameterized globally in two dimensions,
e.g., in the manner of Forssell and Cohen [Forssell 1994; Forssell
and Cohen 1995]. However, there are drawbacks to this approach.
Texture distortions are introduced by the mapping between param-
eter space and physical space and, more importantly, for a large
number of surfaces, no global parameterization is available such
as isosurfaces from marching cubes and most unstructured surface
meshes resulting from CFD. Surface meshes from CFD may con-
sist of smoothly joined parametric patches, but can have a complex
topology and therefore, in general, cannot be parameterized glob-
ally. Figures 2 and 3 are examples of surfaces for which a global
parameterization is not easily derived.

Another approach to advecting texture properties on surfaces
would be to immerse the mesh into a 3D texture, then the texture
properties could be advected directly according to the 3D vector
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field. This would have the advantages of simplifying the mapping
between texture and physical space and would result in no distor-
tion of the texture. However, this visualization would be limited to
the maximum resolution of the 3D texture, thus causing problems
with zooming. Also, this approach would not be very efficient in
that most of the texels are not used. The amount of texture memory
required would also exceed that available on our graphics card, e.g.,
we would need approximately 500MB of texture memory if we use
4 bytes per texel and a 5123 resolution texture.

Can the problem be reduced to two dimensions? The surface
patches can be packed into texture space via a triangle packing al-
gorithm in the manner described by Stalling [Stalling 1997]. How-
ever, the packing problem becomes complex since our CFD meshes
are composed of many scalene triangles as opposed to the equilat-
eral and isosceles triangles often found in computational geome-
try. The problem of packing scalene triangles has been studied by
Carr et al. [Carr and Hart 2002]. For CFD meshes, triangles gener-
ally have very disparate sizes. For a given texture resolution, many
triangles would have to be packed that cover less than one texel.
To by-pass this, the surfaces could be divided into several patches
which could be stored into a texture atlas [Lévy et al. 2002]. In
any case, computation time would be spent generating texels which
cover polygons hidden from the current point of view. The pre-
ceding discussion leads us to an alternative solution that, ideally,
has the following characteristics: works in image space, efficiently
handles large numbers of surface polygons, spends no extra com-
putation time on occluded polygons, does not spend computation
time on polygons covering less than a pixel, and supports user in-
teraction such as zooming, translation, and rotation.

3.2 Method Overview

The algorithm presented here simplifies the problem by confining
the advection of texture properties to image space. We project the
surface geometry to image space and then apply a series of textures.
This order of operations eliminates portions of the surface hidden
from the viewer. In short, our proposed method for visualization of
flow on surfaces is comprised of the following procedure:

1. associate the 3D flow data with the polygons at the boundary
surface i.e., a velocity vector is stored at each polygon vertex
of the surface

2. project the surface and its vector field onto the image plane

3. identify geometric discontinuities

4. advect texture properties according to the vector field in image
space

5. inject and blend noise

6. apply additional blending along the geometric discontinuities
previously identified

7. overlay all optional visualization cues such as showing a semi-
transparent representation of the surface with shading

These stages are depicted schematically in Figure 4. Each step of
the pipeline is necessary for the dynamic cases of unsteady flow,
time-dependent geometry, rotation, translation, and scaling, and
only a subset is needed for the static cases involving steady-state
flow and no changes to the view-point. We consider each of these
stages in more detail in the sections that follow.

3.3 Vector Field Projection

In order to advect texture properties in image space, we must project
the vector field associated with the surface to the image plane, tak-
ing into account that the velocity vectors are stored at the polygon
vertices. We chose to take advantage of the graphics hardware to
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Edge Blending

Noise Blending

Dynamic
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Image Overlay Application

Compute Advection Mesh

Edge Detection

Image Advection
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Figure 4: Flow diagram of texture-based flow visualization on com-
plex surfaces -k represents time as a frame number.

project the vector field to the image plane. We assign a color whose
R, G, and B values encode the x, y, and z components of the local
vectors to each vertex of the boundary surface respectively. The
velocity-colored geometry is rendered to the framebuffer. We use
the term velocity image to describe the result of encoding the ve-
locity vectors at the mesh vertices into color values. The velocity
image is interpreted as the vector field and is used for the texture
advection in image space. More precisely, the color assignment can
be done with a simple scaling operation. For each color component,
hrgb, we assign a velocity, vxyz component according to:

hr =
vx −vminx

vmaxx −vminx

hg =
vy −vminy

vmaxy −vminy
(1)

hb =
vz −vminz

vmaxz −vminz

The minimum velocity component is subtracted for each color com-
ponent respectively, in an effort to minimize loss of accuracy.

The use of a velocity image yields the following benefits: (1)
the advection computation and noise blending is simpler in image
space, thus we inherit advantages from the LEA and IBFV, (2) the
vector field and polygon mesh are decoupled, thereby freeing up ex-
pensive computation time dedicated to polygons smaller than a sin-
gle pixel, (3) conceptually, this is performing hardware-accelerated
occlusion culling, since all polygons hidden from the viewer, are
immediately eliminated from any further processing, and (4) this
operation is supported by the graphics hardware. Saving the ve-
locity image to main memory is simple, fast, and easy. A sample
velocity image is shown in Figure 5 (top, left).

The construction of the velocity image allows us to take advan-
tage of hardware-accelerated flow field reconstruction. During the
construction of the velocity image, we enable Gouraud Shading,
also supported by the graphics hardware. Since each velocity com-
ponent is stored as hue at each polygon vertex of the surface, the
smooth interpolation of hue amounts to hardware-accelerated vec-
tor field reconstruction. This is important for a minimum of two
reasons. First, the polygonal primitive we choose at image advec-
tion time is independent of the original mesh polygons (more in
Section 3.4). In other words, the vertices of the mesh we use to dis-
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Figure 5: The 5 component images, plus a 6th composite image,
used for the visualization of surface flow on a ring: (top, left) the
velocity image, (top, right) the geometric edge boundaries, (middle,
left) the advected and blended textures, (middle, right) a sample
noise image, (bottom, left) an image overlay, (bottom, right) the re-
sult of the composited images with an optional velocity color map.
The geometric edge boundaries are drawn in black for illustration.

tort the image are not the same vertices where the original velocity
vectors are stored. Second, interpolation is essential for flow field
reconstruction. When the surface is rendered with velocity encoded
as hue, the vertices of some polygons are clipped during the projec-
tion process. However, we still need to access the vector field values
inside those polygons, and not just at the vertices, hence the need
for reconstruction. We also note that we are not necessarily limited
to linear interpolation for reconstruction. Higher order interpola-
tion schemes can be supported by graphics hardware [Hadwiger
et al. 2001].

The velocity vectors are de-coded from the velocity image ac-
cording to:

vx = hr · (vmaxx −vminx)+vminx

vy = hg · (vmaxy −vminy)+vminy (2)

vz = hb · (vmaxz −vminz)+vminz

The de-coded velocity vectors used to compute the advection mesh
(Sec 3.4) are then projected onto the image plane.

The magnitude of the velocity vectors at those parts of the sur-
face orthogonal to the image plane may be shortened as a result

of perspective projection, i.e., if the dot product between the im-
age plane normal and the 3D surface normal is zero or close to
zero. This can reduce the visual clarity of the vector field’s direc-
tion during animation. In our implementation, we added an option
that allows the user to apply a bias to the velocity vectors that are
shortened close to zero due to the projection. We can use this bias
to reduce the scaling effect for curved surfaces. Conceptually it is
like applying a reverse velocity clamp.

The projection of the vectors to the image plane is done after
velocity image construction for 2 reasons: (1) not all of the vectors
have to be projected (Sec. 3.4), thus saving computation time and
(2) we use the original 3D vectors for the velocity mask (Sec. 4.2).

3.4 Advection Mesh Computation and Boundary
Treatment

After the projection of the vector field we compute the mesh used
to advect the textures similar to IBFV. We distort a regular, recti-
linear mesh according to the velocity vectors stored at mesh grid
intersections. The distorted mesh vertices can then be computed by
advecting each mesh grid intersection according to the discretized
Euler approximation of a pathline, p, (the same as a streamline for
steady flow) expressed as:

pk+1 = pk +vp(pk; t)∆ t (3)

where vp represents a magnitude and direction after projection to
the image plane. The texture coordinates located at the regular,
rectilinear mesh vertices are then mapped to the (forward) distorted
mesh positions. The distorted mesh positions are stored for fast
advection of texture properties for static scenes.

Special attention must be paid in order to handle flow at geomet-
ric boundaries of the surface. Figure 6 shows an overview of the
original IBFV process. During the visualization, each frame is ad-
vected, rendered, and blended in with a background image. If we
look carefully at the distort phase of the algorithm, we notice that
there is nothing to stop the image from being advected outside of
the physical boundary of the geometry. While this is not a problem
when the geometry covers the entire screen, this can lead to artifacts
for geometries from CFD, especially in the case of boundaries with
a non-zero outbound flow, e.g., flow outlets.

To address this problem we borrow a notion from LEA that treats
non-rectangular flow domains, namely, the use of backward coor-
dinate integration (also proposed by Max and Becker [Max and
Becker 1999]). Using backward integration, equation 3 becomes:

pk−1 = pk −vp(pk−1; t)∆ t (4)

In this case the texture coordinates located at the (backward) dis-
torted mesh positions are mapped to the regular, rectilinear mesh
vertices. Backward integration does not allow advection of image
properties past the geometric boundaries.
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Figure 6: An overview of the original image based flow visualiza-
tion
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3.5 Edge Detection and Blending

While we gain many advantages by decoupling the image advection
process with the 3D surface geometry, artifacts can result, espe-
cially in the case of geometries with sharp edges. If we look care-
fully at the result of advecting texture properties in image space,
we notice that in some cases a visual flow continuity is introduced
where it may be undesirable. A sample case is shown in Figure 7.

World Space

Im
ag

e S
pa

ce

Figure 7: When a 3D surface geometry (left) is projected, conti-
nuity is created in image space (right). If the flow aligned texture
properties are advected across this edge, an artificial flow continuity
may result.

A portion of the 3D geometry, shown colored, is much less visi-
ble after the projection onto the image plane. If the flow texture
properties are advected across this edge in image space, also shown
colored, an artificial continuity results. To handle this, we incorpo-
rate a geometric edge detection process into the algorithm. During
the image integration computation, we compare spatially adjacent
depth values during one integration and advection step. We com-
pare the associated depth values, zk−1 and zk in world space of pk−1
and pk from equation 4, respectively. If

|zk−1 − zk| > ε · |pk−1 −pk| (5)

where ε is a threshold value, then we identify an edge. All posi-
tions, p, for which equation 5 is true, are classified as edge crossing
start points. Special treatment must be given when advecting tex-
ture properties from these points. This process does not detect all
geometric edges, only those edges across which flow texture prop-
erties should not be advected.

Figure 5 top, right shows one set of edges from the detection
process. The geometric edges are identified and stored during the
dynamic visualization case and additional blending is applied (de-
picted schematically in Figure 4). During the edge blending phase
of the algorithm we introduce discontinuities in the texture aligned
with the geometric discontinuities from the surface, i.e., gray val-
ues are blended in at the edges. This has the effect of adding a gray
scale phase shift to the pixel values already blended. This could ob-
viously be handled in different ways, e.g., choosing a random noise
value to advect or inverting the noise value already present. Some
results of the edge detection and blending phase are illustrated in
Figure 8. In our data sets an ε of 1-2% of depth buffer is practi-
cal. However, the users may set their own value if fine tuning of the
visualization is needed.

The same edge detection and blending benefits incoming bound-
ary flow. Also an artifact of the IBFV algorithm, geometric bound-
aries with incoming flow may appear dimmer than the rest of the
geometry. This is a result of the noise injection and blending pro-
cess described in Section 3.6. In short, the background color shows
through more in areas of incoming flow because not as much noise
has been blended in these areas. Figure 9, top, shows a 2D slice
through a 3D mesh from a CFD simulation with incoming bound-
ary flow coming in through the narrow inlet from the right. Note
that the edge of the inlet appears dim. Figure 9, bottom, shows the
same slice with edge blending turned on. The boundary artifacts

Figure 8: A close-up example of geometric edge detection: on the
left side, geometric edge detection is disabled, on the right side
enabled.

of the noise injection and blending process are no longer a distrac-
tion. Edge detection and blending also plays in important role while
an object is rotating. Without special treatment, contours in image
space become blurred when different portions of a surface geome-
try overlap, such as when blood vessels in Figure 12 overlap during
rotation.

3.6 Noise Blending

By reducing the image generation process back to two dimensions,
the noise injection and blending phase falls in line with the origi-
nal IBFV technique, namely, an image, F , is related to a previous
image, G, by [van Wijk 2002]:

F(p;k) = α
k−1

∑
i=0

(1−α)iG(pk−i;k− i) (6)

where p represents a pathline, α defines a blending coefficient, and
k represents time as a frame number. Thus a point, pk, of an im-
age Fk, is the result of a convolution of a series of previous images,
G(x; i), along the pathline through pk, with an decay filter defined
by α(1−α)i. The blended noise images have both spatial and tem-
poral characteristics. In the spatial domain, a single noise image,
g(x), is described as a linearly interpolated sequence of n random
values, Gi, in the range [0,n−1], i.e.,

g(x) = ∑hs(x− is)Gimod n (7)

where the spacing, s, between noise samples is generally greater
than or equal to the distance traversed by an image property in one
advection step and hs represents a triangular black and white pulse
function. Here x represents a location in the flow domain. In prac-
tice, we give the user control of s, resulting in multi-frequency tex-
ture resolutions in the spacial domain. The background textures
used for blending also vary in time. In the temporal domain, each
point, Gi in the background texture, periodically increases and de-
cays according to a profile, w(t), e.g.,

Gi;k = w((k/M +φi)mod 1) (8)

where φi represents a random phase, drawn from the interval [0,1),
M is the total number of background noise images used, and where
w(t) is defined for all time steps. We use a square wave profile, i.e.,
w(t) = 1 if t < 1/2 and 0 otherwise. In our application, the user
has the option of varying M. Smaller values of M result in higher
frequency noise in the temporal domain whereas higher values M
result in a lower temporal frequency. Figure 5 (middle, left) shows a
sample blended image and Figure 5 (middle, right) shows a sample
noise image.
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Figure 9: Here we see a 2D slice through a 3D geometry from
a CFD simulation. (top) With no edge blending, the background
color shows through boundary areas with incoming flow. (bottom).
With edge blending, these artifacts are no longer a distraction.

3.7 Image Overlay Application

The rendering of the advected image and the noise blending may
be followed by an optional image overlay. An overlay enhances the
resulting texture-based representation of surface flow by applying
color, shading, or any attribute mapped to color (Fig. 5, bottom,
left). In implementation, we generate the image overlay following
the construction of the velocity image. This overlay may render
any CFD simulation attribute mapped to hue. The overlay is con-
structed once for each static scene and applied after the image ad-
vection, edge blending, and noise blending phases. Since the image
advection exploits frame-to-frame coherency, the overlay must be
applied after the advection in order to prevent the surface itself from
being smeared. Also worthy of mention, is that the opacity value of
the image overlay is a free parameter we provide to the user.

4 Implementation

In this section we consider some aspects of the algorithm not
previously discussed which are important for implementation.
Our implementation is based on the highly portable OpenGL 1.1
(www.opengl.org) library.

4.1 Texture Clipping

In our application, the resolution of the quadrilateral mesh used to
warp the image can be specified by the user. The user may specify
a coarse resolution mesh, e.g., 128 × 128, for faster performance or
a fine resolution mesh, e.g., 512 × 512, for higher accuracy. How-
ever, if the resolution of the advection mesh is too coarse in image
space, artifacts begin to appear. Figure 10, left, illustrates these ar-
tifacts zoomed in on the edge of a surface. In order to minimize the
jagged edges created by coarse resolution texture quadrilaterals, we
apply a texture clipping function. Subsets of textured quadrilateral
that do not cover the surface are clipped from the visualization as

shown in Figure 10, right. This can be implemented simply with
the image overlay by maximizing the opacity wherever the depth
buffer value is maximized, i.e., wherever there is a great depth.

Figure 10: The result of, left, a coarse resolution advection mesh
with artifacts and, right, the application of texture clipping. The
resolution of the advection mesh shown on the left is 32 × 32 for
illustration.

4.2 Velocity Mask

In order to dim high frequency noise in low velocity regions, the
user also has the option of applying a velocity mask. We adopt the
velocity mask of Jobard et al. [Jobard et al. 2001] for our purposes
here, namely:

α = 1− (1−v)m (9)

where α decreases as a function of velocity magnitude. In our case,
the image overlay becomes more opaque in regions of low velocity
and more transparent in areas of high velocity. With the velocity
mask enabled, the viewer’s attention is drawn away from areas of
stagnant flow, and towards areas of high flow velocity. We note that
in the context of CFD simulation data, engineers are often very con-
cerned about areas of stagnant flow. In the case of a cooling jacket,
stagnant flow may represent a region of the geometry where the
temperature is too high, possibly leading to boiling conditions thus
reducing the effectiveness of the cooling jacket itself. Therefore,
in our case the engineers may disable the velocity mask or use the
velocity mask to highlight areas of flow, e.g., make the hue brighter
in areas of low velocity.

5 Performance and Results

Our visualization technique is applied primarily to large, highly ir-
regular, adaptive resolution meshes commonly resulting from com-
putational fluid dynamics simulations. 1 The ideal intake manifold
(Fig. 1) supplies an equal amount of fluid flow to each piston valve.
Visualizing the flow at the surface gives the engineer insight into
any imbalances between the inlet pipes, in this case, the 3 long nar-
row pipes of the geometry. Figure 13 shows our method applied to
a surface of an intake port mesh (from Fig. 3) composed of 221K
polygons. The intake port mesh is composed of highly adaptive
resolution surface polygons and for which no global parameteri-
zation is readily available. The method described here allows the
user to zoom in at arbitrary view points always maintaining a high
spatial resolution visualization. The algorithm applies equally well
to meshes with time-dependent geometry and topology. Figure 11
shows the surface of a piston cylinder with the piston head (not
shown) defining the bottom of the surface. The method here en-
ables the visualization of fuel intake as the piston head slides down
the cylinder. The resulting flow visualization has a smooth spatio-
temporal coherency. Our algorithm also has applications in the field

1Supplementary video available at
http://www.VRVis.at/ar3/pr2/vis03/
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Figure 11: Snapshots from the visualization of a time-dependent surface mesh composed of a 79K polygons with dynamic geometry and
topology. This intake valve and piston cylinder can also be used to analyse the formation of wall film, the term used to describe the liquid
buildup on surfaces.

of medicine. Figure 12 shows the circulation of blood at the junc-
tion of 3 blood vessels. An abnormal cavity has developed that may
hinder the optimal distribution of blood.

Figure 12: Visualization of blood flow at the surface of the junc-
tion of 3 blood vessels. Stagnant blood flow may occur within the
abnormal pocket at the junction.

Performance was evaluated on an HP Visualize workstation with
an HP fx graphics card, running Red Hat Linux 7.2 with a 1 GHz
Pentium III dual processor and 1 GB of RAM. The performance
times reported in Table 1 support interactive exploration of un-
steady flow on surfaces. The first time reported in the FPS column
is for the static cases of steady-state visualization and the absence
of changes to the view point. The times shown in parenthesis in-
dicate the dynamic cases of unsteady flow and interactive zooming
and rotation. More specifically, the dynamic cases require the con-
struction of a velocity image, image overlay, as well as geometric
edge detection. We include geometric edge detection in the frame
rates reported in Table 1. It does not introduce significant overhead
since it is easily built into the advection process itself.

The performance time of our algorithm depends on the resolu-
tion of the mesh used to perform the advection and the number of
polygons in the original surface mesh. In the case of steady-state
flow, the algorithm no longer depends on the number of polygons in

the surface mesh, but on the area covered in image space. The data
set shown in Figure 1, left, does not cover as much image space, so
its performance times are somewhat higher in the static case.

data number of advection mesh frames
set polygons resolution per second
ring 10K 128 × 128 18 (5)

(Fig 5) 256 × 256 9 (3)
512 × 512 3 (1)

intake 48K 128 × 128 22 (2)
manifold 256 × 256 14 (2)
(Fig 1) 512 × 512 6 (1)

combustion 79K 128 × 128 17 (2)
chamber 256 × 256 10 (2)
(Fig 11) 512 × 512 4 (1)
intake 221K 128 × 128 17 (0.5)
port 256 × 256 7 (0.5)

(Fig 13) 512 × 512 2 (0.3)

Table 1: Sample frame rates for the visualization algorithm.

6 Conclusions and Future Work

We have presented a novel technique for dense representations of
unsteady flow on boundary surfaces from CFD. The algorithm sup-
ports visualization of flow on arbitrary surfaces at up to 20 FPS via
the careful use of graphics hardware. It supports exploration and vi-
sualization of flow on large, unstructured polygonal meshes, and on
time-dependent meshes with dynamic geometry and topology. The
method generates dense representations of time-dependent vector
fields building on both the LEA and IBFV algorithms. It also does
not waste computation time on occluded polygons or polygons cov-
ering less than one pixel. While the vector fields are defined in 3D
and associated with arbitrary triangular surface meshes, the genera-
tion and advection of texture properties is confined to image space.

Future work can go in many directions including visualization
of unsteady 3D flow, something we expect to see soon. Challenges
will include both interactive performance time and perceptual is-
sues. Future work also includes the application of more specialized
graphics hardware features like programmable per-pixel operations
in the manner of Weiskopf et al. [Weiskopf et al. 2002; Weiskopf
et al. 2001] and the use of pixel textures like Heidrich et al. [Hei-
drich et al. 1999].

Portions of this work have been done via a cooperation
between two research projects of the VRVis Research Cen-
ter (www.VRVis.at) which is funded by AVL (www.avl.com)
and an Austrian governmental research program called Kplus
(www.kplus.at). We would also like to extend a special thanks to
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Figure 13: A view of the surface of an 221K polygonal intake port
mesh show in Figure 3. Texture-based flow visualization is applied
to the surface.

J. J. van Wijk for helping us to understand the IBFV algorithm and
to Jürgen Schneider of AVL for his valuable insight into the CFD
simulation data sets. Thanks to Jeroen van der Zijp and the FOX
Windowing Toolkit (www.fox-toolkit.org) for help with the im-
plementation. Thanks to Michael Mayer for medical the simulation
data. We also thank Helmut Doleisch for his contributions. All
CFD simulation data presented in this research is courtesy of AVL.
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Interactive 3D Visualization Of Rigid Body Systems

Zoltán Konyha∗ Krešimir Matković† Helwig Hauser‡

VRVis Research Center, Austria

Figure 1: Interactive 3D visualization of chain and belt drives integrated into Impress.

Abstract

Simulation of rigid body dynamics has been an field of active re-
search for quite some time. However, the presentation of simula-
tion results has received far less attention so far. We present an
interactive and intuitive 3D visualization framework for rigid body
simulation data. We introduce various glyphs representing vector
attributes such as force and velocity as well as angular attributes
including angular velocity and torque.

We have integrated our visualization method into an application
developed at one of the leading companies in automotive engine
design and simulation. We apply our principles to visualization of
chain and belt driven timing drives in engines.

CR Categories: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications; I.6.6 [Computing Methodologies]: Sim-
ulation And Modeling—Simulation Output Analysis

Keywords: rigid body dynamics, rigid body simulation, glyph
based visualization, iconic visualization, automotive industry

1 Introduction

When hearing ”rigid body visualization” most of the people in the
computer graphics community think of the systems for describ-
ing, simulating, and animating/visualizing rigid body systems, like

∗Konyha@VRVis.at
†Matkovic@VRVis.at
‡Hauser@VRVis.at

skeletons used for human body animations, or similar application
[Sauer and Schömer 1998; Park and Fussell 1997]. Actually, com-
puter graphics is not the only field encompassing rigid bodies. Me-
chanical engineers have dealt with them on a daily basis for a quite
some time. Simulation tools exist which simulate complex rigid
body systems, used by mechanical engineers, which overcome the
tools used in computer graphics. The main goals of the two systems
are different. On the one hand, computer graphics people deal-
ing with rigid body simulation are primarily interested in creating
”good-looking” animations with preferably real time and interac-
tive simulation. On the other hand the main goal of mechanical
engineers is to make the simulation as correct as possible which
makes the simulation more complex. Our goal is to develop a visu-
alization front-end for such complex simulation tools. The users of
these system are not animators and designers, but engineers work-
ing with it on a daily basis. The data set we visualize is produced
by rigid body simulation used in modern engine design.

First we focus on visualizing chain drive and belt drive simula-
tion results. These systems are composed of many individual bodies
which makes them difficult to evaluate using conventional methods.
Visualization should help in the exploration and analysis (primar-
ily) and in presentation of the simulation data. Up to now, analysis
was done using a large amount of 2D charts and numbers. Such
an analysis is very time-consuming and complicated. Visualization
techniques proposed in this paper make it easier to interpret simu-
lation results. The user can explore the data interactively and spot
potential problems much easier than without visualization. Further-
more, some of the simulation results, like 3D vectors and relative
positions in 3D space, are nearly impossible to imagine without 3D
visualization.

This paper describes rigid body simulation first, since some of
the readers may not be familiar with its applications in the automo-
tive industry. We will then proceed with the description of the visu-
alization system. Since the whole visualization is based on various
glyphs [Post et al. 1995; van Walsum et al. 1996; de Leeuw and
van Wijk 1993], the glyphs used will be introduced. Finally, the
commercial application developed in cooperation with AVL [AVL
n. d.] is presented. As far as we know this paper describes the
glyph based visualization of rigid body simulation data for the first
time.

539

IEEE Visualization 2003,
October 19-24,  2003, Seattle, Washington, USA
0-7803-8120-3/03/$17.00 ©2003 IEEE

Proceedings of the 14th IEEE Visualization Conference (VIS’03) 
0-7695-2030-8/03 $ 17.00 © 2003 IEEE 

29

helwig
Rectangle

helwig
Rectangle

helwig
Rectangle



Contact Force

-600

-500

-400

-300

-200

-100

0

100

F
or

ce
[N

]

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

time[s]

Friction[N]
Contact[N]

Connection Force

0

200

400

600

800

1000

1200

F
or

ce
[N

]

0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08

time[s]

Force[N]

Figure 2: 2D charts showing (a) forces between two neighboring chain links and (b) forces between a chain link and sprocket.

2 Rigid Body Simulation

With increasing computational power simulation can be processed
faster and with more precision than ever before. Rigid body dy-
namics is an established model of real world dynamics that allows
reasonably accurate simulation of certain systems at an affordable
computational price. In rigid body simulation [Baraff 1989; Mirtich
and Canny 1995; Mirtich and Canny 1996] real world objects are
modelled by physically ideal rigid bodies that can have 6 degrees
of freedom (translation and rotation along all three major axes), but
cannot be deformed. The bodies are connected by connection el-
ements that are basically springs with dampers. Bodies can also
come into contact occasionally by colliding with each other.

Rigid body simulation is extensively used in industrial simula-
tion including automotive industry [Hoffman and Dowling 1999],
aircraft and ship design. Engineers are interested in simulation
since it is much faster and cheaper than producing a physical pro-
totype. Prototype production and testing is still – and will be –
common in engine production. However, simulation can reduce
the number of prototype cycles and thereby improve development
speed and cut down costs. The simulation data in our case comes
from AVL Tycon, a rigid body based simulator developed at AVL
[AVL n. d.] for the design of timing drives in engines. We focus
on chain and belt drives in this paper. In simulation both chain and
belt drives are handled in the same way. In chain drives each chain
link is a rigid body interconnected via stiff springs that model the
pins. Belt drives are simulated by dividing the belt into several rigid
sections. Let us examine a typical chain drive simulation first.

A typical chain drive has 100-200 chain links. The simulator
computes data for approximately 5000 time steps. For each time
step and rigid body, e.g chain link a set of approximately 20 at-
tributes is computed. The attributes include:

• displacement and orientation of bodies
• translational and angular velocity of bodies
• translational and angular acceleration of bodies
• forces and torques in connections between bodies
• relative displacement and relative velocity between endpoints

of the connections

It is clear that the amount of data produced for such a relatively
simple system is huge and not easy to analyze. So far the simulation
results have been presented in 2D graphs that provide vague resem-
blance to the actual 3D models. Figure 2 shows two such graphs
displaying connection forces between two neighboring chain links
and contact forces between the chain link and the sprockets. Note
that these two charts represent one link only, and that there are about
200 such charts describing only one attribute, e.g. force between
chain links.

Our goal is to develop a more intuitive 3D visualization system
for rigid body simulation data which makes the analysis faster and

enables the user to explore the data in ways not possible in 2D chart-
ing.

3 Rigid Body Simulation and Visualization

The overhelming amount of data and 2D charts produced by the
simulation is hardly manageable even for an experienced user.
Therefore visualization should be used to assist the user in explo-
ration, analysis and presentation of the data. Since the primary
users of such visualization tool are engineers, the main goal is to
support data exploration and analysis. Visualization supports data
exploration in numerous ways.

The next section describes the motivation for developing an
interactive 3D visualization framework for rigid body simulation
data.

3.1 Motivation for Interactive 3D Visualization

An experienced engineer can certainly gather a lot of information
from 2D charts, but having the visualization feedback can speed up
the process significantly. It is difficult and often even impossible
to imagine complex 3D geometry from numerical data only. For
example, if there is a sprocket with its radius and position given
in 3D space on the one hand; and a chain link with its geometry,
position and orientation on the other, it is practically impossible
to predict if the chain link actually touches or even intersects the
sprocket. Rather all 3D vector quantities, like contact point posi-
tions or forces between sprockets and links, accelerations, etc. are
difficult to imagine based on 3D coordinates only.

Furthermore, if the user wishes to examine more attributes si-
multaneously, the 3D visualization offers many possibilities. Inter-
active exploration where the user can navigate through, adjust or
toggle parameters is simply not possible using conventional non-
interactive means.

The behavior of the chain drive is of interest to engineers only
when the chain drive is in motion. The 2D charts cannot depict the
motion. On the contrary, interactive visualization can display the
chain in motion and thereby enrich the static data. This feature is
especially valuable to users who want to have an overview of the
dynamic behavior.

If the user wants to explore a particular space in the system, e.g
where chain leaves the sprocket, they can simply zoom in and ex-
plore parameters for all chain links passing by. Doing the same
without interactive visualization would require scanning through
numerous charts, looking for each chain link in turn. If the user
is interested in more than one attribute at the same time the process
can become frustrating. It is clear that visualization can improve
the presentation of rigid body simulation results.

The simulation models of chain and belt drives in Tycon are iden-
tical. Identical attributes are computed thus the same visualization
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Figure 3: (a) Model of a chain drive. Overview and zoom of a part
showing elements. (b) and (c) options for drawing center of gravity
and local coordinate system.

methods can be applied to both drive types. In order to visualize at-
tributes we use various glyphs. In the following section we describe
the glyphs used in our visualization solution.

4 Glyphs for Rigid Body Visualization

In order to represent the rigid body system itself and related at-
tributes various glyphs are required. The following sections intro-
duce the glyphs we propose for visualization of bodies and con-
nections in rigid body systems. The glyphs representing vector at-
tributes (forces, velocities) and angular attributes are also described.

All glyphs described can depict multiple attributes simultane-
ously. However, correlation of attributes in rigid body simulation is
quite natural. Therefore we generally map only one attribute to one
glyph for simplicity.

4.1 Model of Rigid Body System

Rigid body systems in physics consist of rigid bodies and – gener-
ally elastic – connections. The bodies have a center of gravity and
any number of link points defined in the body’s local coordinate
system. The center of gravity is by default represented by a cube
which indicates the orientation of the body. The orientation can be
clarified further by drawing the bodies local coordinate system as
shown in Figure 3 (b) and (c). This is especially necessary when the
user decides to use a sphere glyph to represent the center of gravity.

Connections run between link points of two bodies. Each link
point has a contour assigned which is used in the simulator to cal-
culate contact points between bodies. This modelling paradigm im-
plies that a sprocket for example is modelled as a single rigid body
with one link point at its center. The contour of this link point
(shown in green in Figure 3) a) is the actual shape of the sprocket.
Similarly, each chain link has link points at both of its pins that have
circular contours, shown in blue. The smaller circle is the surface

Figure 4: Color coded disks visualizing the magnitude of contact
forces between a sprocket and chain links. The disks are positioned
at the contact points.

that comes into contact with the sprocket while the larger circle is
the outer surface of the link sliding on guides.

4.2 Colored disks

A very simple glyph that was found to be especially useful in visu-
alizing magnitude of forces is a simple color coded disk shown in
Figure 4. It has proved to be a quick way of locating the areas of
extreme forces – something engineers perform very often as a first
step when investigating a chain drive. The color is mapped to the
visualized attribute. The sizes of all disks are the same. However,
the user can specify the diameter of the disks to suit various model
sizes.

4.3 Arrows

Probably the most straightforward way to visualize vector quanti-
ties is using arrows. Force, translational velocity and acceleration
are often depicted using arrows in physics, thus it comes natural to
use them in our visualization framework, too. The direction and the
magnitude of the visualized attribute are indicated by the direction
and length of the arrow. The starting point of the arrow identifies
the point in space where the force acts.

In our implementation we offer 4 drawing styles of arrow glyphs.
This allows the user to visualize various vector attributes simulta-
neously without confusing them. As shown in Figure 6 we offer flat
head and cross head arrows, along with 3D cone head and pyramid-
shaped ones. However, in 3D visualization only (c) and (d) should
be used. (a) and (b) are more suited to 2D scenarios.

It is possible to visualize the real 3D vector or just its compo-
nents in the body’s local coordinate system. This offers the chance
of visualizing only the normal component of the velocity of chain
links for example as seen in Figure 12.

In addition, it is also possible to show any component along any
axis of the local coordinate system. The advantage of this becomes
obvious when one tries to display tangential velocity of chain links.
The arrows would ”pile up”, occlude each other and render the im-
age illegible as shown in Figure 5 (a). Our solution allows the user
to display the tangential component normal to the chain itself as
shown in Figure 5 (b). By doing so they have a good presenta-
tion of the magnitude, while the direction is known to be tangential
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(a) (b)

Figure 5: Tangential velocities of belt drive slices. (a) Arrows occlude each other when drawn in their real direction. (b) Occlusion reduced
by displaying tangential velocity normal to the real direction.

LLL

W W W

W

D
(a) (b) (c) (d)

Figure 6: Models of (a) flat head, (b) cross head, (c) cone head and
(d) pyramid-shaped arrows. Customizable parameters (width and
length of arrow head, diameter of shaft) are also indicated.

a priori. It must be mentioned that such a rendering may be open
for misinterpretation to novice users. However, experienced me-
chanical engineers are used to such representations because it has
been a common method of displaying chain forces in figures. An
example is shown in [Niemann and Winter 1986].

The arrow glyph can visualize the assigned attribute by chang-
ing its length or by full 3D scaling. Although the latter introduces
the ”visualization lie” [Tufte 1986] effect because of the nonlinear
change in surface, in some scenarios it still turns out to be preferred
by users because it makes extremely large attributes more notice-
able.

It is also possible to apply optional color coding to the arrows to
reflect their magnitude. Users may be interested in the actual value
a glyph represents, thus annotations can be attached to the arrow
glyphs as shown in Figure 12.

4.4 Sectors

Visualizing angular velocity and acceleration is somewhat more
challenging. In computer graphics orientation and angular veloc-
ity are generally described by the axis of rotation (a vector) and the
angle of rotation (a scalar) around that axis. To the contrary, the
simulator we interface to represents rotation with Euler angles and
the engineers expect to see these three angles in visualization, too.

Coming up with a glyph that visualizes 3 rotational degrees of
freedom in an intuitive and unambiguous way is not easy. There-
fore we have opted to visualize only one component of the angular

he
ig

ht

radius

radius

(a) (b) (c)

Figure 7: Glyphs for angular attributes: (a) sector glyph on one
body visualizing angular velocity, (b), (c) sketch of a spiral mapped
on the side of a cone. (b) side view, (c) top view.

velocity in the body’s local coordinate system with one glyph. Ad-
ditional glyphs of the same type can be instantiated to visualize
further components.

One glyph that has proven to be intuitive is a sector. The sector’s
center is at the center of gravity of the body. The plane is rotated
normal to the axis of rotation, thereby directly indicating it. The
magnitude is visualized by the angle of the sector. The direction
of the rotation (clockwise vs. counter-clockwise) is made clear by
changing the transparency along the arc. This immediately defines
the direction of the movement since it gives the impression of an
arm leaving traces during sweeping over the arc. Figure 7 (a) shows
a single body (the center of gravity of a sprocket) and a sector glyph
that indicates its angular velocity.

The radius and the angle mapped to the maximum of the attribute
can be specified by the user. As with arrows, the user is given the
option to use color coding as a further means of stressing magni-
tude.

4.5 Spirals

Although the sectors mentioned above are suitable they have a ma-
jor drawback. They are 2D objects, and when viewed under very
small angles they are difficult to interpret. In the extreme case they
appear as thin lines on the screen completely unable to convey any-
thing other than perhaps the color.

To overcome this problem we have developed a glyph that is
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(f)(d) (e)

(c)(b)(a)

Figure 8: Rendering styles for spirals: (a) wireframe, (b) wireframe with circle, (c) filled, (d) helix, (e) pyramid, (f) ribbon.

capable of visualizing angular attributes reliably no matter where
from it is viewed. The basic idea is simple: take a star-shaped glyph
with a few arms and transform it into a spiral by twisting its center.
The larger the attribute the more the spiral is twisted. This object
is still 2D, therefore it is prone to similar visibility problems as the
sectors. Now map these lines onto the surface of a cone and make
the cone’s height also a function of the attribute being visualized.
This results in a 3D glyph shown in Figure 7 (b) and (c) which
can visualize angular quantities reliably regardless of the viewing
angle. When viewed from the top or bottom the twisted spiral arms
are easily interpreted. When seen from the side the spiral arms are
not as clearly visible as from the top. However, in this case the
height of the cone provides additional clues to the viewer.

The cone is rotated so that its axis coincides with the axis of
rotation. The direction of the rotation is made clear by twisting the
spiral clockwise or counter clockwise, respectively.

We again offer many rendering options to facilitate simultane-
ous visualization of various attributes and allow the user to choose
whichever style they prefer. The user can change (1) the maximum
twist angle (2) radius of the disk at the base of the cone (3) number
of spiral arms (4) scaling factor of the cone’s height. There are 6
rendering styles as shown in Figure 8: wireframe (with or without
the circle at the base of the cone), filled, helix, pyramid and ribbon.
The cones can be made the same height as seen in (d) and (e) in
Figure 8. Color coding and annotations are again optional.

A valuable feature is the optional animation (rotation) of the spi-
rals. The speed and direction of the rotation reflects the attribute
visualized. This has proven to be very popular with users because
it indicates rotation in the most natural way.

Figure 9: Block model of a chain drive in Tycon with the property
dialog of one element.

5 The Application

AVL offers a full range of software for simulation in the auto-
motive industry. The AVL Workspace is a common user-friendly
framework for simulation tools including, amongst others, Tycon
for valve train and timing drive dynamics that is based on rigid body
dynamics. It also includes a common visualization tool called Im-
press which can process output from all simulation modules. The
rigid body visualization capabilities of Impress are based on the
principles described in this paper. We will now guide the reader
through the typical workflow of an engineer working with AVL
Workspace. We will put more emphasis on detailing the process
of evaluating the simulation results.
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Figure 10: Main window of Impress.

5.1 Model Generation

Tycon enables the user to build a 2D block model of the timing
drive. The Tycon user interface is shown in Figure 9. There is a tree
view of elements that can be inserted into the workspace. Properties
such as name, mass, initial position and link points can be specified
in popup dialogs for each element. There are specialized tools to
assist the definition of contours of profiled elements, e.g sprockets.
Connections are created by clicking the appropriate link points on
the bodies, properties such as stiffness are again defined in popups.
Models of standard configurations can be stored as templates for
further use, thus the generation of modified variants is easy and
fast.

5.2 Simulation

Once the model and the boundary conditions (engine RPM, etc)
are defined the simulation can be executed. For complex models
and long simulation runs (several engine cycles) this can be a fairly
time-consuming process. Simulation jobs running for over 10 hours
are not uncommon. The resulting files can be as large as 1 GB.

5.3 Evaluation of Results

When the simulation has finished the user can launch the visual-
ization tool Impress and load the results. The Impress application
shown in Figure 10 has a tree view of objects on the left, can have
any number of independent 3D viewing windows plus the standard
menu and icon bars.

5.3.1 Managing Rigid Body Systems in Impress

Groups of bodies, e.g bodies that belong to one chain are created
automatically. These groups are referred to as systems and they are
displayed in the tree. The user can show or hide the components
of the systems shown in Figure 3 as well as customize their colors
and sizes. It is possible to hide or drag groups that are temporarily
out of interest in order to reduce occlusion. Dragged objects can be
returned to their original position by a single click.

The view can be panned, rotated and zoomed as desired. The
model can be animated using VCR-like controls. The user can per-
form all tasks during animation, too. They can change the view-

Figure 11: Forces between chain links (colored disks) and contact
forces between chain links and sprockets (arrows) This figure also
demonstrates the capability of creating several visualization objects
simultaneously.

point, adjust properties of objects and create new visualization ob-
jects.

5.3.2 Visualizing Attributes

In order to view attributes of bodies or connections in a system the
users selects the system and clicks the icons ”Rigid body results”
or ”Connection results”, respectively. A visualization object con-
sisting of a group of glyphs referring to the bodies is created. A
dialog pops up where the user can select the attribute and glyph
tpye shown as well as customize glyph parameters. Any number of
these visualization objects can be created for each system, and they
can be hidden or dragged just like the systems themselves.

The engineers typically start exploration by examining if the
simulation was correctly set up. They run the animation looking
for obvious signs of incorrect initial conditions. Mismatching chain
and sprocket contours, sprockets defined at the wrongs position or
in the wrong orientation are very easy to spot. With toothed belt
drives, loose tensioners may allow the belt to skip one tooth of the
pulley, which is also very noticeable in the animation. These errors
are very hard to discover without interactive visualization.

Then they proceed by examining forces along the chain drive.
looking for areas of extremely high forces. These areas are quickly
found by creating colored disks and running the animation. In Fig-
ure 11 the span of the chain on the left entering the sprocket is
easily identified as being under heavy tension. Engineers are inter-
ested in the contact position and contact force of the chain links and
the sprockets. This information is valuable in order to understand
which areas will be subjected to extreme wear. In Figure 11 the lo-
cation and direction of these forces is immediately seen which was
not possible at all with the diagrams used before.

The vibrational motion of chain links in long spans can also be
of interest to the engineer. This can be visualized by showing the
translational and angular velocities of chain links as seen in Figure
12. In this case showing only the normal component of the velocity
is highly useful.

Rotational acceleration and torque are very well visualized using
the spirals introduced in Section 4.5. Figure 13 shows a close-up of
rotational acceleration of chain links. It is clearly seen in the image
that chain links undergo heavy acceleration as they hit the yellow

544
Proceedings of the 14th IEEE Visualization Conference (VIS’03) 
0-7695-2030-8/03 $ 17.00 © 2003 IEEE 

34

helwig
Rectangle

helwig
Rectangle

helwig
Rectangle



Figure 12: Rotational velocity of chain links visualized using the
sector glyph. Annotated arrows show the normal component of the
translational velocity. Vibrational behavior is clearly seen.

tensioner guide. This can be an indication to the engineer to change
the profile of the tensioner to allow smoother contact. Naturally,
this can reduce noise levels and the extend the chain’s life span.

We must mention that not all types of color scales used are per-
ceptually uniform [Levkowitz 1996]. The one seen in Figure 11
for instance has a large section of green colors which are hard to
distinguish. Actually, this is not a disadvantage because users are
generally more interested in the extremely small or large magni-
tudes.

We must not forget that interactive 3D visualization cannot en-
tirely replace the traditional 2D diagrams. However, they can co-
exist as means of partly different evaluation tasks. Interactive 3D
visualization helps in exploration, locating areas and attributes of
interest, whereas engineers will always refer to diagrams or actual
numbers for more accurate information. Body names can be dis-
played optionally to assist looking up the corresponding diagrams.

All settings are saved in a project file to allow the user to continue
exactly where they left off. There is a movie director module similar
to the track view found in 3D Studio Max [3ds n. d.] to facilitate
creation of AVI or MPEG movies for presentations. The user can
define events that will be executed at given frames. Events include
show/hide objects, zoom in/out, rotate view, etc. An event can be
assigned to a range of frames. This enables smooth zooms and
rotations, for example.

6 Evaluation

For many years experienced engineers have been using the 2D dia-
grams quite effectively. However, they still face difficulties under-
standing position and orientation of bodies as well as directions in
3D space. It is especially difficult to judge and compare relative
positions and distances. Characteristics of periodic behavior such
as frequency of vibration are also hard to perceive without anima-
tion. The visualization system we have described remedies these
shortcomings.

6.1 User Feedback

Users have stressed the following advantages to their previous
workflow:

Figure 13: Rotational acceleration depicted by spiral glyphs. Op-
posing directions of rotation are distinguished by opposite twist di-
rections and different orientation of the cone, too.

• Contours that are in contact and actual positions of contact
points are clearly identified. This is especially important if
the model is somehow incorrect, for example the contour of a
sprocket is not continuous. Discovering a very loose toothed
belt that skips the teeth of a pulley as seen in Figure 14 is also
made very easy. Errors in modelling and initial conditions
became a lot easier to detect. Finding these types of problems
used to be a slow process because the only indication had been
irrational simulation results.

• Directions of forces are made clear. This is important when
the engineer expects a force to act in one direction, but simula-
tion proves that it acts in some other direction. In fact showing
the direction and magnitude of vector attributes at the same
time is something they could not do before.

• Motion of tensioners can be seen clearly. This has also been
very difficult to understand by studying diagrams.

• Animation shows all chain links at a given time step creating
an overall impression of how the chain moves. The graphs
are created per chain link and the overall motion is not seen in
them.

• It is easier to spot periodic behavior at a given point in space.

• Distribution of forces between chain links is seen. Areas of
extreme tension can be found very quickly.

Less experienced engineers and professionals working in neigh-
boring fields (manufacturing, namely) can also profit a lot from
the more accessible presentation of the simulation results. Further-
more, advantages of 3D visualization for the marketing department
are obvious. Convincing movies for presentations can be generated
with little effort.

It is clear that interactive 3D visualization enhanced the existing
application significantly. All user groups ranging from inexperi-
enced, young engineers through experienced professionals to mar-
keting department benefit from our solution.
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Figure 14: A toothed belt skipping over the teeth of a sprocket due
to a loose tensioner. Contact points are depicted by black crosses.
This phenomenon is very difficult to spot without 3D visualization.

6.2 Performance

Our implementation of rigid body visualization integrated into Im-
press runs on Windows 2000, Linux and various Unix systems.
Naturally, performance depends heavily on the capabilities of the
graphics hardware. Our tests were performed on a 1 GHz Pen-
tium III with HP Visualize fx graphics accelerator and running
Red Hat Linux 7.2. Rendering and navigation – implemented in
a separate thread – runs at over 40 frames per second for typical
scenarios. Animation of the chain model consisting of 134 chain
links shown in Figure 11 updates at around 15 frames per second.
Response to user interaction is generally immediate; creating new
visualization objects requires about a second, though.

7 Conclusion and Future Work

Up to now little effort has been invested into visualization of rigid
body dynamics in the automotive industry. Engineers were using
2D diagrams to evaluate simulation results. We have proven that in-
teractive 3D visualization improves exploration and analysis signif-
icantly. The animated 3D view of the chain drive makes it easier the
discover phenomena that were obscured before. Perception of po-
sition and direction has been enhanced remarkably. Understanding
correlations of various attributes is also easier. These are valuable
and welcome achievements even for experienced engineers. Our
solution can be useful in training novice engineers and communi-
cating simulation results to professionals not working directly with
simulation. Finally, the capability of generating movies showing
actual motion and attributes is an important feature when creating
presentation.

Future work can extend in multiple directions. Users have al-
ready asked for the capability of positioning glyphs at given points
in space. However, the simulator computes attributes that are valid
at the actual position of the chain link they belong to. Therefore
the value these glyphs visualize should be interpolated from the at-
tributes of the chain links in the vicinity of the glyph’s location.

There is also interest in integrating the visualization module in
Tycon itself to facilitate instant model verification in 3D.

Aesthetic value can be enhanced by attaching surfaces to the
bodies that resemble the actual object. This is not very straightfor-
ward though, because in Tycon no such model of the bodies exists.

Currently we visualize raw simulation results only. Visualizing
derived attributes and states such as vibration would probably open
new possibilities in the application.

Finally, we are also planning to introduce similar glyph-based
visualization for flexible body simulation.
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Abstract
Visualization of high-dimensional, large data sets, resulting from computational simulation, is one of the most
challenging fields in scientific viualization. When visualization aims at supporting the analysis of such data sets,
feature-based approches are very useful to reduce the amount of data which is shown at each instance of time
and guide the user to the most interesting areas of the data. When using feature-based visualization, one of the
most difficult questions is how to extract or specify the features. This is mostly done (semi-)automatic up to now.
Especially when interactive analysis of the data is the main goal of the visualization, tools supporting interactive
specification of features are needed.
In this paper we present a framework for flexible and interactive specification of high-dimensional and/or com-
plex features in simulation data. The framework makes use of multiple, linked views from information as well as
scientific visualization and is based on a simple and compact feature definition language (FDL). It allows the
definition of one or several features, which can be complex and/or hierarchically described by brushing multiple
dimensions (using non-binary and composite brushes). The result of the specification is linked to all views, thereby
a focus+context style of visualization in 3D is realized. To demonstrate the usage of the specification, as well as
the linked tools, applications from flow simulation in the automotive industry are presented.

1. Introduction

Visualizing high-dimensional data resulting from computa-
tional simulation is a demanding procedure, posing several
complex problems which include, for example very large
size of data sets and increased dimensionality of the results.
In this paper, we present a formal framework that supports
interactive and flexible analysis of complex data using a de-
scriptive and intuitive language for defining features and
multiple linked views with information visualization (In-
foViz) and scientific visualization (SciViz). In the following,
we shortly discuss a few key aspects, which are important for
the new approach presented in this paper.

Feature-based visualization – visualization which focuses
on essential parts of the data instead of showing all the data
in the same detail at the same time, is called feature-based
visualization. This kind of visualization gains increasing im-
portance due to bigger and bigger data sets which result
from computational simulation, so that not all of the data

can be shown simultaneously. For feature-based visualiza-
tion, proper feature extraction methods are essential.

Up to now, feature extraction mostly is done (semi-)auto-
matically14 with little interactive user intervention, often as
a preprocessing step to the visualization. But for interactive
analysis, in many cases, the question of what actually is (or
is not) considered to be a feature refers back to the user: de-
pending on what parts of the data the user (at an instance
of time) is most interested in, features are specified accord-
ingly. Therefore, flexible feature extraction requires efficient
means of user interaction to actually specify the features.

Separating focus and context in InfoViz – when deal-
ing with large and high-dimensional data sets in InfoViz,
simultaneous display of all the data items usually is impossi-
ble. Therefore, focus-plus-context (F+C) techniques are of-
ten employed to show some of the data in detail, and (at the
same time) the rest of the data, at a lower resolution, as a
context for orientation3� 6. Thereby the user’s attention is di-
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Figure 1: Flexible Feature Specification: simulation data of a catalytic converter is shown, two features have been specified
based on our feature definition language, using the different views for interaction and visualization. (see also colorplate)

rected towards the data in focus (e.g., through visual enlarge-
ment), whereas the rest of the data is provided as context in
reduced style (translucently, for example). This is especially
useful when interacting with the data, or when navigating
through the visualization.

To discriminate data in focus from context information,
a so-called degree of interest (DOI) function can be used6,
assigning a 1D DOI-value out of the unit interval to each of
the n-dimensional data items (1 represents “in focus”, 0 is
used for context information).

Defining the DOI function – in literature, implicit tech-
niques for DOI-specification are described (e.g., focus
specification through dynamic querying15) as well as ex-
plicit techniques, such as interactive object selection9 or
brushing1� 17. When brushing, the user actively marks a sub-
set of the data set in a view as being of special interest, i.e.,
in focus, using a brush-like interface element.

In addition to standard brushing, several useful exten-
sions to brushing have been proposed. Multiple brushes and
composite brushes12, and the use of non-binary DOI func-
tions for smooth brushing4 extend the available toolset for
interactive DOI specification. Also, more complex brushes
like those designed for hierarchical data5, or such using
wavelets18 or relative information between different data
channels8 have been proposed recently.

Complex and high-dimensional feature definition – when
analyzing simulation data, one very often encountered prob-
lem is the limited flexibility of current brushing and inter-
action techniques. Brushing is usually restricted to simple
combinations of individual brushes, as well as missing sup-
port of high-dimensional brushes due to the tight coupling
of GUI interactions and the representation of the brush data
itself. For fast and flexible analysis of the usually large and
high-dimensional simulation data, complex and also high-
dimensional brushes are necessary. In this paper, we present
a formal framework, that is very closely coupled to the data,
allowing to define and handle such brushes interactively.

Linking multiple views – the combination of InfoViz and
SciViz methods7� 4, especially for the interactive visualiza-
tion and analysis of simulation data, improves the under-
standing of the data in terms of their high-dimensional char-
acter as well as the data relation to the spatial layout. Link-
ing several views2 to interactively update all changes of the
data analysis process in all views simultaneously is a cru-
cial property for making optimal use of multiple (different)
visualization views.

In previous work4 we showed how a scatterplot (or a
histogram) can be used to smoothly specify features in
multi-dimensional data from simulation, and how this fo-
cus+context discrimination can be used for selective visu-
alization in 3D. In this paper, we now present a formal
framework (our feature definition language, see section 2)
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for specifying features in simulation data together with ad-
vanced interaction techniques (see section 3), allowing for
fast and flexible exploration and analysis of complex and
high-dimensional data (application examples in section 4).
Finally, a short overview about implementation details is
given, as well as conclusions and some future work topics
are presented.

2. Using a Feature Definition Language

When dealing with results from computational simulation,
usually very large and high-dimensional data sets are inves-
tigated. Previous work already showed, that interactive spec-
ification of features with tight reference to the actual data at-
tributes is very valuable for visualization of such data sets7� 4.
For a fast and flexible analysis of these results, powerful and
intuitive tools are needed – the here described approach pro-
vides flexibility in terms (a) of multiple options to differently
view the data, and (b) a wide range of user interactions to
construct and adapt feature specifications. Whereas previous
work mainly focussed on viewing (a) so far, we mostly im-
prove on interaction (b) in this paper.

To generalize the specification of features (enabling fea-
ture descriptions which are portable between data sets, for
example) and to also formally represent the state of an ana-
lysis session, e.g., to allow for loading/saving of interactive
visualization sessions, we present a compact language for
feature specification, i.e., a feature definition language, here
called FDL for short.

Figure 2: Feature definition language: sketch of its structure.

A sketch of the FDL-structure is presented in Fig. 2. Here
the different key components of this language are shown,
namely the feature specification itself (root), feature sets
(level 1), features (level 2) and feature characteristics (level
3). In the following subsections, these four different hierar-
chical layers of the FDL are discussed in more detail.

2.1. Feature Specification

A description of a feature specification usually is closely
coupled to a data set (the one that is to be analyzed). Alter-
natively, it could also be portable to similar data sets, when
data semantics coincide. In the regular case, a feature spec-
ification therefore has a reference to the source data set, as
well as to one or multiple feature sets (see below).

Our FDL is realized as an XML13 language application,

which makes it easy to handle and the resulting FDL-files
readable. This also allows to save feature specifications as
files, and load them again at any later point in time to re-
sume an analysis session. Additionally, XML-files can be
edited using a text-editor, which allows to re-adjust feature
specifications also on a file level.

The explicit representation of feature specifications in the
form of FDL-files makes using feature specifications on
other data sets possible. Of course, care has to be taken that
only data channels are referred to, which are available in all
these data sets. With portable feature specifications it is pos-
sible to generate general feature definition masks, which can
be applied very easily (and interactively adapted, if neces-
sary).

2.2. Feature Sets

A feature set subsumes an arbitrary number of features
which all are to be shown simultaneously (like an implicit
logical OR-combination). Within each single view, always
only one feature-set is used for F+C discrimination, all the
other feature-sets are inactive at that time. Multiple feature
sets can be used to interactively switch foci during an ana-
lysis session or to intermediately collect features in a "repos-
itory" feature set, not used at a certain point in time. Multiple
views can be used for simultaneously showing different fea-
ture sets (one per view).

2.3. Features

Features are specified by one or multiple feature character-
istics. The DOI function related to each feature is built up
by an (implicit) AND-combination of all DOI functions of
all associated feature characteristics. Multiple features are
used to support named feature identification and intuitive
handling of interesting parts of the data by the user. Each
feature can be moved or copied from one feature set to any
other.

In Fig. 1 two distinct features have been specified, one de-
noting areas of backflow, and another one, showing vortices.
The latter one consists only of one simple feature character-
istic (see below), brushing high values of turbulent kinetic
energy, whereas the first feature consists of a logical combi-
nation of two separate feature characteristics.

2.4. Feature Characteristics

Feature chararateristics can be either simple or complex.
Whereas simple feature characteristics store direct brushing
information with respect to one data attribute (or channel) to
derive a DOI function, complex feature characteristics imply
a recursion.

Simple feature characteristics store a reference to the data
channel which it is based on, as well as infomation about
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Figure 3: four examples of 2D brush types which users
found useful during interactive analysis (catalytic converter
example, pressure [x] vs. velocity [y]): (a) “high velocity and
high pressure” (logical AND), (b) “low velocity or low pres-
sure” (log. OR), (c) “all but high vel. and high pressure”
(NOT-AND), and (d) “high pressure but not low velocity”
(SUB = AND-NOT). (see colorplate for shades of red)

how the data of this channel is mapped to a DOI function
(being the output of this characteristic). Especially the pos-
sibility for the user to directly interact with the data attributes
by specifying feature charcateristics and modifying them in-
teractively is very intuitive and straight-forward. In Fig. 1 a
simple feature characteristic named "negative velocity in X-
direction" is shown in the selection bounds editor. Simple
feature characteristics support discrete and smooth brush-
ing (via specifying percentages of the total brushing range,
where the DOI-values decrease gradually).

Complex feature descriptions on the other hand provide
logical operations (AND, OR, NOT) for the user to com-
bine subsequent feature characteristics in an arbitrary, hi-
erarchical layout. For combining smooth brushes, which
can be interpreted as fuzzy sets, fuzzy logical combinations
are used, usually implemented in form of T-norms and T-
conorms11. We integrated several different norms for the
above mentioned operations. By default, we use the mini-
mum norm (TM) in our implementation: this means, when
doing an AND-operation of several values, the minimum
value is taken, and for the OR-operation the maximum re-
spectively.

In Fig. 3, four examples of 2D brush types, which users
found useful during interactive analysis sessions, are shown.
The data displayed in the scatterplot views comes from the
catalytic converter application shown in Fig. 1 (which is also

explained in more detail in section 4), pressure (x-axis) vs.
velocity (y-axis) values are plotted. Interactive operations
"NOT-AND" and "SUB" are mapped to "NOT"-"AND" and
"AND"-"NOT" combinations in FDL, respectively.

3. Interaction

One main aspect of analyzing results from simulation is that
investigation is often done interactively, driven by the ex-
pert working with the visualization system. Therefore, in-
teraction is one of the key aspects that has to be consid-
ered when designing a system which should support fast
and flexible usage (as described previously). Especially the
task of searching for unknown, interesting features in a data
set, and extracting them, implies a very flexible and intuitive
interface, allowing new interaction methods. In the follow-
ing subsections, we categorize the main types of interaction
which our system supports. Note that these interactions are
designed to meet users’ most often requested requirements
for such an analysis tool.

3.1. Interactive Feature Specification through Brushing

The first type of interaction that has to be considered when
designing an interactive analysis tool for exploring simula-
tion data, is brushing. In our system, interactive brushing of
data visualization is possible in all views except for the 3D
SciViz view, which is used for 3D F+C visualization of the
feature specification results (see section 4). Brushing is used
to define feature characteristics in the FDL interactively. As
many types of applications also request non-binary brush-
ing, we allow smooth-brushing4 in all the interaction views.
One example of using a 2D smooth brush, employing a log-
ical AND operation of two simple feature characteristics is
shown in Fig. 3 (a). Here, a region of relatively high veloc-
ity and high pressure values is brushed in a scatterplot view,
defining (a part of) a feature. As can be seen from this fig-
ure, a smooth brush defines two regions. A core part of the
brush is defined, where data of maximal interest is selected
(mapped to DOI values of 1). It is padded by a border, where
DOI values decrease gradually with increasing distance from
the core part.

3.2. Interactive Feature Localization

Another very often used type of interaction is the so-called
feature localization. It is usually provided in the context of
simulation data, that has some spatial context. When analyz-
ing this kind of data, the first interest is often, where features
of specific characteristics are located in the spatial context
of the data. Interactively defining and modifying features in
different views, coupled with linking, the specification im-
mediately results in a 3D rendering which provides fast lo-
calization of the features in the spatial context of the whole
data set. For an example see Fig. 4 (a)-(c), where the back-
flow regions are interactively localized to be in the entrance
of the catalytic converter chamber.
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Figure 4: Interactive feature specification and refinement: (a)-(c): first step: defining backflow region in a catalytic converter
(see also Fig. 1) in a scatterplot view (a) by selecting negative x-flow values, direct linking to a second scatterplot view (b) and
the 3D view (c). (d)-(f): second step: AND-refinement with a new selection in the second scatterplot view (e), back linking of the
interaction via feedback visualization (color of points according to newly calculated DOI values) to the first scatterplot view (d).
Now only the backflow region is selected, that exhibits general velocity above a specified threshold (f).

3.3. Interactive FDL Refinements

After having defined multiple features via brushing and lo-
calized them, often interactive refinement of these features is
the next step. Refining the feature specification can be either
done by interactive data probing (see below) or by impos-
ing further restrictions on the feature specifications, e.g., by
adding additional feature characteristics to the actual state
of a feature. One example of such an interactive FDL refine-
ment is shown in Fig. 4 (d)-(f). As a first step (first row), all
parts of the data, that exhibit backflow, have been selected,
defining a feature that spans over two distinct regions in the
spatial domain. In the refinement step (second row) a log-
ical AND-combination of the first feature specification (a)
with a new selection in a second scatterplot view of the same
data (but showing two other data attributes) is performed (e).
Thereby only those back-flow regions of the data are put
into focus, which exhibit a general velocity above a speci-
fied threshold (f).

3.4. Interaction with Tree Viewer

Interaction with a tree viewer (see Fig. 1, left upper win-
dow) as a GUI for FDL is another very useful way to adapt

or extend feature sets and features, as well as their charac-
teristics. The tree viewer provides standard GUI elements,
such as textfields for manual input of numbers or range slid-
ers, for example. Naming of the different nodes of the FDL,
as well as editing all the feature characteristics, and also the
management of the tree structure (through copy, delete, or
move of the different nodes and subtrees) are the most of-
ten used interaction methods in this viewer. It strongly de-
pends on the nature of users of whether mouse-interactions
or keyboard-input are preferred when specifying features.
Sometimes, in the case of well-known thresholds, for exam-
ple, the keyboard-input to the tree viewer is faster and more
accurate then mouse-interaction to an InfoViz view.

3.5. Interactive Data Probing

Another form of interactively exploring features is using a
data-probing approach. Thereby, after having specified a fea-
ture (via brushing, for example) the one or other feature
characteristic can be changed interactively (e.g., by using
a range slider). In all linked views (showing the same data
and showing different data attributes) immediate feedback
of DOI changes can give new insights into different data as-
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pects. Especially for exploratively investigating value ranges
and better understanding of associated patterns in the data
sets, this interaction metaphor is very useful.

3.6. Interactive Management of Views

One key aspect of a system which provides multiple, dif-
ferent views of one data set, is the interactive management
and linking of these views. Our system supports an arbi-
trary number of InfoViz views (currently scatterplots and
histograms), as well as SciViz views. Views can be opened
and closed at any point in time without distracting the fea-
ture specification. In the InfoViz views, the mapping which
assigns data channels to the axes can be changed interac-
tively. In the 3D SciViz view the mapping of a data attribute
to rendering properties (color and/or opacity) via transfer
functions can be interactively modified, too. Additionally,
the different axes of all available views can be linked (and
unlinked) interactively, allowing rapid updates in multiple
views.

4. Visualization and Results from Applications

After having discussed our feature specification framework
as well as the important role of interaction for analysis of
simulation data, now the visualization part and typical appli-
cations are presented.

Below general aspects of visualization during analysis
are presented. Then, two different application examples
are described in detail. For high quality versions of the
images presented here, as well as for additional exam-
ples and movies which illustrate the interactive behaviour
of working sessions with our framework, please refer to
http://www.VRVis.at/vis/research/fdl-vis/ .

4.1. Visualization for Analysis

When visualization is used to support analysis of large, high-
dimensional data sets, the use of multiple views, as well as
of flexible views (with respect to data dimensionality) is very
important. Our system supports an arbitrary number of each
type of InfoViz views, as well as SciViz views. When inter-
actively working with data, two types of views in a multiple
views setup can be distinguished: Actively linked views are
the views, which are primarily used for interaction purposes,
i.e., for specifying the features, whereas passively linked
views are primarily used for F+C visualization of the data,
providing interactive updates.

3D SciViz views – The 3D SciViz views of our system are
used as passively linked views for providing a F+C visu-
alization and interactive feature localization. The F+C dis-
crimination is mainly accomplished by using different trans-
fer functions for focus and context parts (and interpolating
inbetween, for smooth F+C discrimination). The transfer
functions in use do not only specify color and opacity, but

also the size of the glyphs, that are used to represent single
data items (see Fig. 1, lower left window for a 3D SciViz
view, showing a smooth F+C visualization).

Two main tasks of this F+C visualization can be identi-
fied. The support for feature localization and the visualiza-
tion of data values through color mapping. Feature localiza-
tion, as already described in section 3, plays a major role in
interactive analysis based on features. By using a F+C vi-
sualization, the user attention is automatically drawn to the
more prominently represented foci, i.e., the features. Value
visualization is another very useful task of visualization in
this view, and it is accomplished by coloring glyphs accord-
ing to the associated data channel.

Of course, interactive user manipulation of rendering pa-
rameters (opacity, size of glyphs, or zoom and rotate) are
necessary, very useful, and support the analysis task, too.

InfoViz views – Apart from supporting interaction, the In-
foViz views (scatterplots & histograms in our system) are
very valuable for visualization purposes, too. They visualize
the data distribution (1D or 2D) and also give visual feed-
back of F+C discrimination. Points in the scatterplot views,
for example, are colored according to the DOI value of the
associated data item. Fully saturated red points are shown
for data in focus, whereas the saturation and lightness of
points decreases with decreasing DOI values, respectively
(see Fig. 3 for examples).

In the InfoViz views it is especially useful that the mapped
data attributes can be changed interactively. Mapping spatial
axis information to one of the scatterplot axes, for example,
is very intuitive in our applications (see below). Addition-
ally, using several scatterplots, comparable to a (reduced)
scatterplot matrix, often adds information about the data and
internal relations of different data attributes.

4.2. Results from Air-Flow Analysis

We now want to give a step-by-step demonstration of how
a typical analysis session takes place, especially to show the
importance of interaction when analyzing simulation data.

(1) In a first step, a data set is loaded: in our example,
results from air-flow simulation around a car (just on one
central slice, from front to back of the car) are shown. To
also cope with 2D-slices of 3D-data, we adapted our 3D-
rendering view accordingly. It should be noted, that the gen-
eral flow direction in this application is in X-direction, past
the car from front to back. Before a tree viewer is opened au-
tomatically, an empty feature set is generated for preparation
of an analysis session. A SciViz view is then opened inter-
actively, to show the general spatial layout of the data (see
Fig. 5 for the initial view setup). In this figure the unstruc-
tured grid of the data set is shown, overall velocity infor-
mation is mapped to color (green denotes low, red relatively
high velocity values).
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Figure 5: Air-Flow around a moving car: After loading the data set, an empty feature set is created, and the spatial layout of
the data is shown, overall velocity information is mapped to color (green denotes low, red high velocity).

(2) As a first start into feature specification (focussing on
non-horizontal, slow flow at this step of the analysis) a scat-
terplot view is opened, showing V-velocity (vertical com-
ponent of overall velocity values), mapped to both axes. In
this scatter plot an OR-brush is used to select relatively large
positive V-flow, as well as relatively large negative one, too.
Then the x-axis of the scatterplot view is changed to show
overall velocity and an AND-refinement is done to limit the
feature specification to slow flow (see Fig. 6, upper right
view).

To furthermore visualize the feature specification up to
this step, a second scatterplot view is opened, showing fea-
ture and context distribution with respect to the spatial X-
coordinates and viscosity (mapped to y-axis of the view, see
Fig. 6, lower right). In an interaction panel of the tree viewer,
the restriction of V-velocity components is further adapted,
to meet the user’s needs (see Fig. 6 for a screen capture after
this step).

(3) A further AND-refinement, restricting the feature
specification to "high viscosity" values is added by using the
second scatterplot view. As a result of this step, only features
behind the car are part of the new focus (see Fig. 7).

(4) Yet another AND-refinement, further restricting the
feature specification to high values of turbulent kinetic en-
ergy (a value also computed by the simulation), is performed
in the tree viewer (see Fig. 8). This clips away parts of the
previously selected features, leaving only the parts that ex-
hibit stronger rotational behavior.

(5) To get a better idea of the vortical structures induced,
interactive probing on one part of the feature specification

(positive V-velocity) is performed. When limiting the focus
to negative V-flow only, the downfacing parts of the upper as
well as of the counterrotating, lower vortex become visible
(see Fig. 9).

4.3. Results from Catalytic Converter Analysis

A second example presented here is an application, where
the data comes from a simulation of a catalytic converter
from automotive industry. The results of another analysis
session are shown. The data is given on an unstructered grid
in 3 spatial dimensions, and has 15 different data attributes
for each of the approximately 12000 cells of the grid.

The data set and a corresponding feature specification is
shown in several views in Fig. 1. The data set consists of
basically three spatially distinct parts, the flow inlet on the
left hand side, the chamber of the catalytic converter (mid-
dle), and the flow outlet on the right-hand side (see Fig. 1,
left lower window for a 3D SciViz view). The other views
shown in Fig. 1 include: the tree view for handling the FDL
(including a pop-up window for changing the brush proper-
ties on the x-component of the velocity), a scatterplot view
(right upper window) plotting x-velocity vs. x-coordinates
for each data point, and a histogram, showing the distribu-
tion of x-velocity values over the data range.

Two distinct features have been specified using the In-
foViz views and the FDL tree viewer. The first feature de-
fines all backflow regions in the data set (with negative x-
component of the velocity, as general flow is in x-direction).
Two such regions are identified at the entrance of the cham-
ber, a weaker one at the bottom of the catalytic converter,
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Figure 6: First step of analysis (non-horizontal slow flow): a tree viewer showing the current feature specification in the upper
left (interaction panel for adjusting a simple feature characteristic shown), a scatterplot view used for feature specification in
the upper right (velocity vs. V-Velocity component), the SciViz view for f+c visualization in the lower left, a second scatter plot
for visualization of f+c distribution (X-coordinates vs. viscosity).

and a stronger one at the top. The second feature description
defines all regions, with high turbulent kinetic energy, these
are the regions, where vortices are appearing usually in the
flow. As can be seen, two vortex cores are easily separated
from the rest of the data at the inlet and outlet of the catalytic
converter in this case.

Both, the vortices and the backflow regions have been
brushed smoothly, to show some information about the gra-
dient of the values in the 3D rendering view. Note, that the
coloring in the 3D view is mapped from another data chan-
nel, namely data values of absolute pressure. This allows to
visualize an additional data dimension for all the data, that
was assigned to be in focus beforehand. In the here applied
color mapping, green denotes relative low values of absolute
pressure, and red corresponds to relative high values.

5. Implementation

The presented prototype system includes the described sim-
ulation data analysis tools and runs interactively on a stan-
dard PC (P3, 733MHz, 756MB of memory, GeForce2) for
the data sets shown (in the range of 20.000 to 60.000 cells,

Figure 7: Step 2 of analysis: AND-refinement, restricting
feat. spec. to high viscosity values in the second scatterplot
view. Only features behind the car are part of focus now.

15 to 50 data attributes associated to each cell). The cells of
the data are organized in unstructured grids. For the render-
ing of these grids a visibility algorithm was implemented,
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Figure 8: Step 3 of analysis: another AND refinement, further restricting to high values of turb. kinetic energy, performed in
the tree viewer. Only parts with strong rotational component are in focus. (see also colorplate)

based on the XMPVO algorithm16 presented by Silva et al.
With newer, more powerful PC-setups we already managed
to visualize data sets consisting of over a million data cells,
but sorting for 3D rendering can not be performed interac-
tively anymore.

For the implementation of our prototype, a hybrid ap-
proach was taken; UI Interaction and handling of the FDL
is realized in Java, whereas mesh access and the rendering
of the visualization views is implemented in native code (we
used MS Visual C++). Native methods are called via the JNI
API, and the gl4java package was used to make the GL ren-
dering contexts available to the Java GUI toolkit. The mesh
access has been realized by using our own data mesh for-
mat. Data coming from different data sources can be easily
converted to this format via linked readers.

When designing the presented FDL, several considera-
tions were taken, including for example: ease of implemen-
tation (close to the visualization sytstem and the data), allow
for manual input by the user (preferably ASCII-based, with
semantics), verification should be possible (to check for in-
valid definitions), and many more. To meet all these design
considerations, is was decided to use the XML language13

for storage of the FDL and as interface to other applica-
tions. For writing and reading feature specifications to and
from FDL-files, the Apache Crimson parser (delivered with
the SUN Java SDK) is used, but any other validating XML
Parser could also be used. We use a DTD (Document Type
Definition) for the verification of the FDL trees. The purpose
of a DTD is to define the legal building blocks of an XML
document. It defines the document structure with a list of
legal elements.

6. Conclusions and Future Work

We presented a framework for flexible and interactive,
high-dimensional feature specification for data coming from
computational simulation. For analyzing simulation data, a
feature-based F+C visualization is a good approach, to cope
with the data sets’ large and high-dimensional nature and to
guide the user and support interactive analysis. For F+C vi-
sualization interactive focus specification is very useful, if
real-time updates of multiple linked views are available. Ac-
tual features in simulation data often only are captured with
a complex type of specification (hierarchical specification,
multiple data channels involved). This is why we believe,
that using a simple language to define features hierarchically,
namely our feature definition language, helps to extract and
manage features during an interactive analysis session. In
combination with using multiple InfoViz views (for data ex-
amination and feature specification) and SciViz views (for
F+C visualization of the interactively extracted features) it
is a very useful approach.

Future work will include extensions of the here presented
FDL as well as of the analyzing tools. A parallel coordi-
nates view10 which has been developed earlier8 can already
be used passively to visualize the high-dimensional data, and
will be integrated fully in the very near future, as well as
new (hardware- and software-based) volume rendering tech-
niques will be included, too. FDL extensions will mainly
deal with including the views setting and couple it more
tightly with the feature specification tree, as well as time-
dependent issues. Currently only steady simulation data can
be visualized and the logical next step will be, to enhance the
FDL as well as all the corresponding visualization and inter-
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Figure 9: Step 5 of analysis: interactive probing of V-
velocity reveals different behavior of vortical structures, only
downfacing parts are shown here.

action views to cope with time-dependent data sets. Feature
specification for time-dependent data sets will be one of the
key-issues of future research.

Acknowledgements

This work has been carried out as part of the basic research
on visualization at the VRVis Research Center in Vienna,
Austria (http://www.VRVis.at/vis/), which partly is funded
by an Austrian research program called Kplus. All data pre-
sented in this paper are courtesy of AVL List GmbH, Graz,
Austria.

The authors would like to thank Robert Kosara, for his
help with preparing this paper. Special gratitude goes also
to our collegue Markus Hadwiger, who helped with parts of
the implementation of the underlying mesh-library system,
and the collegues from the Software Competence Center in
Hagenberg, Austria, who helped with their knowledge about
fuzzy sets and fuzzy combinations.

References

1. R. Becker and W. Cleveland. Brushing scatterplots.
Technometrics, 29(2):127–142, 1987.

2. Andreas Buja, John A. McDonald, John Michalak, and
Werner Stuetzle. Interactive data visualization using fo-
cusing and linking. In Proc. of IEEE Visualization ’91,
pages 156–163.

3. S. Card, J. MacKinlay, and B. Shneiderman. Readings
in Information Visualization: Using Vision to Think.
Morgan Kaufmann Publishers, 1998.

4. Helmut Doleisch and Helwig Hauser. Smooth brush-
ing for focus+context visualization of simulation data
in 3D. In Proc. of WSCG 2002, Plzen, Czech Republic.

5. Ying-Huey Fua, M. O. Ward, and E. A. Rundensteiner.
Structure-based brushes: A mechanism for navigating
hierarchically organized data and information spaces.

IEEE Trans. on Visualization and Computer Graphics,
6(2):150–159, 2000.

6. George W. Furnas. Generalized fisheye views. In
Proc. of the ACM CHI ’86 Conf. on Human Factors in
Computing Systems, pages 16–23, 1986.

7. D. L. Gresh, B. E. Rogowitz, R. L. Winslow, D. F. Scol-
lan, and C. K. Yung. WEAVE: A system for visu-
ally linking 3-D and statistical visualizations, applied
to cardiac simulation and measurement data. In Proc.
of IEEE Visualization 2000, pages 489–492, 2000.

8. H. Hauser, F. Ledermann, and H. Doleisch. Angular
brushing of extended parallel coordinates. In Proc. of
IEEE Symp. on Information Visualization, pages 127–
130, 2002.

9. H. Hauser, L. Mroz, G. I. Bischi, and E. Gröller. Two-
level volume rendering. In IEEE Transactions on Visu-
alization and Computer Graphics, volume 7(3), pages
242–252. IEEE Computer Society, 2001.

10. A. Inselberg and B. Dimsdale. Parallel coordinates:
a tool for visualizing multidimensional geometry. In
Proc. of IEEE Visualization ’90, pages 361–378.

11. E. P. Klement, R. Mesiar, and E. Pap. Triangular
Norms, volume 8 of Trends in Logic. Kluwer Academic
Publishers, Dordrecht, 2000.

12. A. Martin and M. O. Ward. High dimensional brushing
for interactive exploration of multivariate data. In Proc.
of IEEE Visualization ’95, pages 271–278.

13. Webpage of the World Wide Web Consortium on XML.
See URL http://www.w3.org/XML/.

14. F.H. Post, H. Hauser, B. Vrolijk, R.S. Laramee, and
H. Doleisch. Feature extraction and visualization of
flow fields. In Eurographics State of the Art Reports,
pages 69–100, 2002.

15. Ben Shneiderman. Dynamic queries for visual infor-
mation seeking. Technical Report UMCP-CSD CS-TR-
3022, Department of Computer Science, University of
Maryland, College Park, Maryland 20742, U.S.A., Jan-
uary 1994.

16. C. Silva, J. Mitchell, and P. Williams. An exact inter-
active time visibility ordering algorithm for polyhedral
cell complexes. In Proc. of IEEE Symp. on VolVis ’98,
pages 87–94, 1998.

17. M. O. Ward. XmdvTool: Integrating multiple methods
for visualizing multivariate data. In Proc. of IEEE Vi-
sualization ’94, pages 326–336.

18. Pak Chung Wong and R. Daniel Bergeron. Multires-
olution multidimensional wavelet brushing. In Roni
Yagel and Gregory M. Nielson, editors, Proc. of the
Conf. on Visualization, pages 141–148, Los Alamitos,
October 27–November 1 1996. IEEE.

c� The Eurographics Association 2003.

46

helwig
Rectangle

helwig
Rectangle



Doleisch, Gasser, Hauser / Interactive Feature Specification for F+C Visualization of Complex Simulation Data

Figure 10: Two examples for feature-based flow visualization using our framework for interactive feature specification and four
illustrations of different combination modes for smooth brushes (middle row) (for verbose captions see figures 1, 3, and 8).
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Abstract
This paper presents the results of a thorough user study that was performed to assess some features and the general
usefulness of Semantic Depth of Field (SDOF). Based on these results, concrete hints are given on how SDOF can
be used for visualization. SDOF was found to be a very effective means for guiding the viewer’s attention and for
giving him or her a quick overview of a data set. It can also very quickly be perceived, and therefore provides an
efficient visual channel.
Semantic Depth of Field is a focus+context (F+C) technique that uses blur to point the user to the most relevant
objects. It was inspired by the depth of field (DOF) effect in photography, which serves a very similar purpose.

Categories and Subject Descriptors(according to ACM CCS): I.3.36 [Computer Graphics]: Methodology and Tech-
niques; H.5.2 [Information Interfaces and Presentation]: User Interfaces

1. Introduction

Like few other areas in computer science, visualization in-
volves the user as the most important part. No matter how
good a visualization technique is in terms of its computa-
tional cost, its clever design, or the pretty pictures it pro-
duces – if it does not convey information to the user effi-
ciently and effortlessly, it is useless. Visualization therefore
lacks elegant, formal proofs for its methods, and instead re-
quires the “dirty work” of user studies and psychological
tests to asses which methods and techniques are useful, and
which are not. Such studies have been neglected in the past,
but the awareness of the need of proper evaluation of meth-
ods is slowly growing3, 5, 10.

This paper reports the results of a study that was per-
formed to evaluate a new method called Semantic Depth of
Field. We also present conclusions we drew about how and
where this method can be used.

1.1. Semantic Depth of Field (SDOF)

Semantic Depth of Field (SDOF)6, 7 is a focus+context
(F+C) technique that uses selective blur to make less impor-
tant objects less prominent, and thus point out the more rele-
vant parts of the display to the user (e.g., certain chess figures
in Figure 1). It is based on the depth of field (DOF) effect
known from photography and cinematography8, which de-
picts objects sharply or blurred depending on their distance
from the lens. This is used to guide the viewer’s attention,
and is quite effective and intuitive. SDOF extends this effect
to decide for every object whether to display it sharply or
blurred, not based on geometry, but on the object’s current
relevance.

We measure blur as the diameter of a circle over which
the information from one pixel is spread when it is blurred.
Thus, a blur diameter of 1 means a perfectly sharp image,
with larger values creating more and more blurred depic-
tions.
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Because blur is generally known to be slow in computer
graphics, we developed a fast implementation that uses tex-
ture mapping on commodity graphics hardware6 to make in-
teractive applications possible on state-of-the-art PCs.

1.2. Study Goals

The overall goal of the study was to find out if SDOF is
an effective means of guiding the user’s attention, and if it
supports the user in applications.

Effectiveness was assessed in two ways: a) by testing the
ability to preattentively (i.e., very quickly and without serial
search, see Section 3) detect and locate objects, as well as es-
timate the percentage of sharp objects; and b) by comparing
search times for different cues, i.e., sharpness versus color
and orientation (Section 4), and also checking for the inter-
play between SDOF and those other cues. We also tested the
thresholds necessary to tell different blur levels apart, and
also the blur levels necessary for an object to appear sharp
or blurred (Section 5). Applications7 were also tested, but
are not presented here because of space constraints.

The following section presents some high-level results we
obtained from the study; the sections after it go into the de-
tails – they first present the hypothesis to be tested, then the
test method, and finally the results. Technical details of the
study (sample, etc.) are given in the appendix.

2. Results – How to Use SDOF

The following points are the key findings of our study:

• SDOF can be used to quickly and effectively guide the
user’s attention.
• SDOF makes it possible to discriminate between a small

number (about two to four) of object groups.
• Interaction is very important, because people do not like

looking directly at blurred objects (if they do so, the ap-
plication is badly designed).
• SDOF enables the user to get a quick overview of data by

letting him or her ask questions quickly and efficiently.
• Blur levels have to be chosen carefully. For normal view-

ing conditions, we found a blur of 7 pixels too small, and
a value of 11 pixels sufficient.
• Things that don’t need to be blurred shouldn’t be.

3. Preattentivity

Preattentive processes take place within about 200 ms after
a stimulus is presented1, 4, 9, and are performed in parallel,
without the need for serial search. Such processes involve a
limited set of features (e.g., orientation, closure, color, prox-
imity, etc.) for which certain tasks (e.g., detection, location,
count estimation, recognition of groups, etc.) can be per-
formed with ease. Using preattentive features for visualiza-
tion makes the information easier to see in order to get an

Figure 1: Chess board application, with the chessmen
threatening the knight on e3 in focus (from Kosara et al.6)

overview. Especially methods for pointing out information
have to make the relevant objects immediately stand out.

Experience suggests that sharp objects can be preatten-
tively recognized among blurred ones: depth of field is a
very effective means in photography and also cinematog-
raphy, where the eye can be guided from one object to the
other with focus changes. And blur is also present in the hu-
man eye, which also only has a limited depth of field (like a
camera lens), but we hardly notice that – we simply ignore
blurred areas.

3.1. Test Procedure

We tested two preattentive abilities: being able to detect and
locate a sharp object, and being able to estimate the percent-
age of targets among distractors.

The images for target detection and location showed el-
lipses whose main axes were horizontal, and which were
scattered over the image (Figure 2b). The reason for choos-
ing ellipses was that we needed objects that would not
change their shape drastically when blurred to rule out shape
perception effects. Ellipses seemed perfect for this, because
they don’t change, and they can also be rotated (which was
needed in the interplay trial, Section 4). Participants were
shown images with 3, 32, or 63 distractors, with or with-
out a target (50% with, 50% without a target) and one of
the seven combinations of three different blur levels (7, 11,
and 15 pixels) – resulting in 42 different combinations. For
each combination, participants were shown five images (ran-
domly picked from 30 generated ones), resulting in 210 im-
ages per participant.

The test procedure consisted of four steps (Figure 2a):
First, an empty screen was shown for 300 ms, followed by
the image, which was shown for 200 ms. After that, the an-
swer screen was presented, which gave the participant the
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choice between clicking on one of the four quadrants or but-
tons for “no target” and “target not locatable”. After the an-
swer was given, a screen with the German word for “Next”
was shown, which required a key-press to continue with
the next iteration. This was done to provide the participants
with a means to control the speed of the test. Additionally,
a screen encouraging the subject to take a short break was
shown after every 30 images. For percentage estimation, the
sequence was identical, except that the answer screen con-
tained only three buttons for the estimated number of tar-
gets: “few” (up to 19 targets), “intermediate” (20 to 45) and
“many” (more than 45 targets). The images shown in this
trial only used one blur level per image, and always con-
tained 64 objects, with 5% to 95% of targets (in steps of
10%), and the rest distractors (Figure 2c).

3.2. Results

Finding sharp targets among blurred distractors is indeed
performed preattentively. Figure 3a shows the accuracies for
correct location of targets, which were very high (> 90%) or
high (> 60%) depending on the blur level. When the low-
est blur level (7 pixels) was present, the accuracy dropped
significantly – this is most likely due to the fact that par-
ticipants were not able to differentiate between sharp and
slightly blurred objects. There is also a significant differ-
ence in accuracy between the cases with three distractors
and those with 32 or 64 (Figure 3b), which was to be ex-
pected. Accuracies were almost identical for cases with and
without targets, only for the case with only the smallest blur
level present, it was much higher in the no-target case. This
is most likely due to the participants not being able to distin-
guish between the slightly blurred distractors and the sharp
target, and thus not finding it – so stronger blur than 7 pixels
is needed (this is also quite apparent from Figure 3c).

Estimation of the percentage of sharp objects can also be
done preattentively. The accuracy for all blur levels is sig-
nificantly better than chance. When analyzed by number of
targets, the accuracy is lowest close to the borders of the in-
tervals (“few”, “many”, “intermediate”), and slightly higher
on the low and high end than in the middle – which is not
surprising, because for these numbers, the participants can
make the decision more easily. The dependence on blur lev-
els is weaker than for target location, and does not differ
significantly between the lowest one and the stronger two.
For the smallest blur level, more objects were perceived as
sharp (Figure 3d), which led to more errors.

The results clearly show that SDOF is an effective method
that can draw the user’s attention to objects quickly. Getting
a first idea of data (e.g., in a scatter plot) seems also possi-
ble. The smallest blur level (7 pixels) clearly was too small
for these viewing conditions, because it seriously impeded
the subjects’ performance. Proper parameterization of the
method for the user’s viewing conditions is therefore nec-
essary.

Answer

"Next"Empty

Image
200ms

300ms

b)

a)

c)

Figure 2: Test sequence and sample images.a)The sequence
of screens for testing preattentive location of objects (Sec-
tion 3) and interplay (Section 4);b) Sample image for target
detection and location with 32 distractors of the highest blur
level, and a target;c) Example image for interplay: Find the
rotated, sharp object.
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Figure 3: Results for preattentiveness:a) Ratio of correctly located targets depending on blur levels used (encoding of blur
levels see below);b) Ratio of correct answers by number of objects;c) Correct answers by blur level and number of objects;
d) Ratio of correct estimations by blur level and number of targets.Encoding of blur levels:for each of the three blur levels, a
1 indicates that it is present, and a 0 that it is not. So for “b011”, the lowest blur level was not present, the higher ones were.

4. Interplay

SDOF will very likely not be used without any other visual
cues, which is why we were interested in its interaction with
other features; for this test we selected color and orientation.

4.1. Test Procedure

For this part, images similar to the ones used for the preatten-
tiveness test were used, with the additional properties color
(red, black) and orientation (main axis horizontal or at 45◦).

The user interaction was similar to the first blocks, only
this time subjects could look at the image as long as they
wanted to find the answer – they were, of course, encouraged
to answer as quickly as possible.

We testedsimple, disjunctive, andconjunctivesearches.
Simple searches are based on the presence of one feature in
the target, with the distractors not being different from one
another. In a disjunctive search, the subjects looked for one
feature in the targets, but the distractors could also differ in
another one (e.g., if the red object is the target, all distrac-
tors were black but could be sharp or blurred). Conjunctive
searches required the participant to look for a combination of

two features in the targets (e.g., the red sharp object), while
the distractors could have any other combination of the two.

4.2. Results

In terms of search time, SDOF is not significantly worse than
color – this is perhaps the most interesting and surprising
finding of this study. There is no significant difference be-
tween a simple search for colored or for sharp objects (Fig-
ure 4a). The conjunctive searches for color and blur, orien-
tation and blur, and color and orientation differ significantly
from each other, with color and orientation being the slow-
est – each of these two features combined with SDOF is
faster. Also, the conjunctive search for color and blur is not
significantly slower than the simple and disjunctive searches,
which is quite contrary to what we expected, because con-
junctive searches usually are slower9.

Search times were longer when no target was present (Fig-
ure 4b), which is not surprising, because it takes longer for
subjects to make sure they have not overlooked a target2.
The total number of errors in this block was only 10 (i.e.,
less than 0.7%) for the whole test (90 images per partici-
pant, 1440 in total). This shows that subjects took the tests
seriously, and did not sacrifice accuracy for speed.
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Figure 4: Results for interplay of features.a) time needed for
search when target present (“simple”: only look for one fea-
ture, with no other feature present; “dis”: disjunctive search
for one feature with two distractor features; “con”: conjunc-
tive search for combination of features;b) search times for
conjunctive search by search task and existence of target.

5. Blur Perception

One aspect of SDOF we were planning was to use it as a
fully-fledged, separate visualization dimension that could be
used in addition to the existing such as space, color, etc. In
order to do this, we needed to assess the minimal difference
in blur that can be perceived, and the rate at which “steps”
in blur are perceived. Our original hypothesis was that there
would be an exponential relationship between the blur level
and the perceived blur (similar to the way luminance is per-
ceived, for example).

5.1. Test Procedure

This test consisted of several parts. In the first, we tested
the ability to tell whether or not two objects had the same
blur level. For this, we showed the subjects two objects next
to each other, with equal or different blur. Subjects had to
decide whether the blur was equal or different – if they de-
cided it was equal, the blur of one of the objects was in-
creased (starting with sharp objects), and the objects were
shown again. Another part started with strong blur and de-
creased the blur level. In a third part, participants had to de-
cide, which of the two was sharper, or if they were equal.
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Figure 5: Results for blur perception.a) Correct answers
for identical (“no”) and different (“yes”) objects, by blur
level; b) Distance needed to detect difference, by blur level;
c) Numerical answer to perception of absolute blur value, by
displayed blur value (error bars for 95% of values).

We also tested for the absolute thresholds of blur percep-
tion, by showing just one object, which was sharp in the
beginning and got increasingly blurred until the participant
judged it as blurred. This test was also performed starting
with a strongly blurred object that got increasingly sharper
(until it was perceived as sharp).

In the final part, participants had to tell the perceived re-
lation in blur in terms of a ratio of two numbers. They were
free to use any numbers they wanted (i.e., not restricted to
“1:x”), which were later normalized. These numbers were
given orally, and recorded by the test supervisor.
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5.2. Results

SDOF cannot be used as a full visualization dimension. Par-
ticipants were able to tell the difference between objects of
different blur levels (Figure 5a) with a good accuracy (which
even stayed quite constant even for strong blur). But they
were not able to correctly identify objects of the same blur-
riness, and did not better than chance for blur over 7 pixels.

The differences in blur needed to tell the blur levels apart
(Figure 5b) do not show a clear trend. The distances are
quite small (less than 1.8), and overall appear quite constant,
which suggests a good differentiation between blur levels –
in accordance with the above results. In terms of absolute
values, a blur diameter of 3.27 (on average) was already
judged a sharp object, when the participant was presented
a very blurred object that got sharper; but a blur level of
only 1.46 was already judged as blurred when starting out
with a sharp object.

When judging the ratio of blur of two objects, subjects
reported very small numbers compared to the real ratio (Fig-
ure 5c). Their answers also differed very much, so that no
clear trend could be made out. This is quite contrary to the
above results about being able to differentiate between blur
levels. So while subjects were able to see a difference, they
were not able to quantify it – another peculiar similarity to
color perception.

The quantitative results of this part of the study form a
consistent image with the participants’ comments, that they
disliked having to look at blurred objects and to compare
them. It therefore appears to be necessary to make sure that
no important parts of the display are blurred, and that the
user can switch to a different view, or back to a completely
sharp image at any time.

6. Conclusions and Future Plans

This study has shown that SDOF is, indeed, an effective and
efficient method for guiding the user’s attention. We were
surprised to find the similarities with color (even though they
were not significant), which we had not expected. We now
also have some data for parameterization of SDOF for the
use in standard desktop environments, and can perhaps ex-
tend this to other viewing conditions as well.

This study has revealed a lot of interesting information
about SDOF, but it was only a first step. We want to con-
tinue investigating SDOF properties and parameters in new
studies which we want to design based on this one.
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Appendix: The Gory Details
The test setup was designed in workshop sessions between the computer scientists at the
University of Technology/VRVis and the usability experts at the Center for Usability Re-
search and Engineering (CURE); the test software was developed by Robert Kosara. All
tests were performed in August 2001 in the CURE usability lab in Vienna, Austria.

For significance testing, we used chi-square tests and ANOVAs with Scheffé tests for
post-hoc analyzes. All results that are described as significant in this paper were tested for
with a probability for error ofp< 0.001. The base level for the whole study wasp< 0.05.

To rule out large differences in perception between test participants, and to allow for a
rather small sample size due to financial and time constraints, we selected a rather narrow
group of participants who all fulfilled the following requirements: male, aged 18–25, very
good vision (no contact lenses or glasses), student at university, basic computer knowledge.

The sample size was 16 individuals, which we recruited from different universities
in Vienna. Each participant was paid a small amount of money for taking part. Each test
session took about two hours.
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ABSTRACT

We presentthe usageof a non-discretedegreeof interest(DOI) function, obtainedby
brushingmulti-valued3D simulationdatain informationvisualizationviews, to define
opacity, color, andgeometricaltransferfunctionsfor 3D renderingin a scientificvisu-
alizationview via linking. To reflect the smoothnatureof featuresin flow simulation
data,smoothbrushingwaschosen.Dif ferentavailableviewsandinteractionmethodsof
aprototypesystemarediscussed,andexamplesfrom 3D flow simulationareshown.

Keywords: F+C Visualization,Linking & Brushing,InformationVisualization,Scien-
tific Visualization,3D Visualization,TransferFunctionModulation,Flow Simulation

1 INTRODUCTION

In this paper we presenta new solution
for feature-basedvisualization,which is es-
pecially useful for analysisor exploration
of simulation data. In our case,the data
comesfrom flow simulation in automotive
applications. We are dealing with multi-
dimensionalandmulti-modaldata-setsfrom
flow simulation,which arelayedout on un-
structuredgrids in two or three spatial di-
mensions.

In general,simulationdataoftenexhibits
a rather smooth distribution of data val-
uesalongspatialdimensions.This requires
specialtreatmentwhendealingwith feature
specification(seelater aboutsmoothbrush-
ing). As a specialfeatureof thesolutionde-
scribedhere,a3D visualizationof thedatais
inherentlyintegratedinto our approach.

Dealing with occlusion in SciViz – when
renderingtruly three-dimensionalinforma-
tion in scientificvisualization(SciViz), such
as,for example,medicaldataacquiredfrom
computertomography, it is very important
to decidehow to renderthe data. But even
more important,the questionof what parts
of the datashouldbe displayedneedsto be
addressed[6]. Becauseof occlusion,not all
of thedatacanbeshown concurrently.

In volumerendering,usuallya so-called
transfer function is employed,whichassigns
an opacity value to eachof the dataitems.
A compositingprocedureis used,featuring
semi-transparency for imagesynthesis.The
designof a transfer function is a difficult
challenge,thatstronglydependson thespe-
cific goalsof the visualizationprocess. At
the IEEE Visualizationconferencein 2000,
the most recognizedapproacheshave been
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discussed� in aninterestingpanel[8].

Separating focus & context in Inf oViz –
apart from SciViz as discussedabove, in-
formationvisualization(InfoViz) alsodeals
with data-setsof tremendoussize and in-
creaseddimensionality. Sincethe simulta-
neousdisplay of all of the data items usu-
ally is impossible,focus-plus-context (F+C)
techniquesareoftenemployedto show some
partsof the datain detail, and at the same
time therestof thedataasa context for ori-
entation. This is especiallyusefulwhenin-
teractingwith thedata,or navigatingthrough
thedisplay[2].

To discriminatedata in focus from con-
text information,a so-calleddegree of inter-
est (DOI) functioncanbeused[4]. It assigns
to eachof then-dimensionaldataitemsa1D
DOI-valueout of the unit interval (1 repre-
sents“in focus”, 0 is usedfor context infor-
mation).

Using a DOI function for opacity modu-
lation – in this paperwe demonstratehow
the ideaof F+C visualizationandtheuseof
a transferfunctionfor volumerenderingcan
becombined(throughlinking, awell-known
conceptfrom InfoViz, seebelow). To do
so,we usea DOI functionthat is definedby
interactive meanson the n-dimensionaldo-
main of the simulationdata. It is thenused
asatransferfunctionfor opacitymodulation.
Thereby, a3D F+Cvisualizationof flow fea-
turesis realized:partsof thedatawhich are
in focus, i.e., theflow features,aredisplayed
ratheropaque,whereasthe rest of the data
(thecontext) is shown translucent.

This means,that concentratingon fea-
turesduringvisualizationalsoallows to im-
prove on theocclusionproblemwhich is in-
herentto 3D rendering.

SmoothBrushing – for specifyingtheDOI
function on the n-dimensionaldomain of
simulationdata,weuseaninteractivebrush-
ing tool which is basedon separateInfoViz
views. To cope with the rather smooth
distribution of simulationdata, we useso-

called smooth brushing which results in a
DOI function that continuouslymapsto the
[0, 1] range. The herebyderivedDOI func-
tion alsocanbeinterpretedasafuzzysetde-
scribing a “degreeof being in focus” [15].
For scientific visualization, the DOI func-
tion, asspecifiedin an InfoViz view, corre-
spondsto modulatedopacity valuesin 3D
rendering(throughlinking).

2 RELATED WORK

As the work presentedin this paperrelates
to severaldifferentareasof visualizationre-
search,this sectionconsistsof severalparts.
A shortdiscussionof themostimportantap-
proachesis givenhere,for moredetailedin-
formation the readeris pointedto the indi-
catedreferences.

Visualizing n-dimensionaldata fr om flow
simulation – in general,simulationof flow
data yields multiple values per data item
such as, for example, pressure,tempera-
ture,andvelocity. Visualizationof all these
different valuesis useful for understanding
the results of the simulation, and for en-
abling the analysisprocess. Standard2D
solutions(color plots, graphs,etc.), aswell
assurface-basedsolutionsembeddedin 3D
(iso-surfaces,for example)arewidely avail-
ablein commercialsoftwareproducts.

On top of standardsolutions,Kirby et al.
proposesimultaneousvisualizationof mul-
tiple values(of 2D flow data) by using a
layeringconceptrelatedto thepaintingpro-
cess of artists [9]. In another approach
for 2D CFD data, called Linked Derived
Spaces[7], Henzeusesmultiple 2D views
(featuringgeometricalconnectivity), which
arelinked,andallow discretebrushing– op-
posedto smooth brushingasfeaturedin our
approach– in all of theviews.

Another related topic is feature-based
flow visualization,e.g., detectionandvisu-
alizationof vorticesor vortex cores– recent
work hasbeenpresentedby Roth andPeik-
ert [11] aswell asSadarjoenet al. [12].

56



Linking
�

& Brushing for connectingSciViz
& Inf oViz – linking & brushing is a useful
and well-appreciatedconcept,known from
InfoViz. Brushing is a processin which
theusercaninteractively highlight,select,or
deleteasubsetof elementswith regardto vi-
sualizationby usingsomeappropiatebrush-
ing tool. Often, brushingis associatedwith
linking, a processin which brushingsome
elementsin oneview directly affectsthevi-
sualappearanceof thedatain other(linked)
views. Already in 1987,Becker andCleve-
land applied linking & brushing to high-
dimensionalscatter-plots[1].

Theprincipalideaof linking SciViz & In-
foViz views hasalreadybeendemonstrated
in a systemcalled WEAVE, by Gresh et
al. [5]. In this approach, which deals
with datafrom a heartsimulation,(discrete)
brushing is performedin InfoViz views –
a 3D view is linked via through coloring.
However, this systemdoesnot featurevolu-
metricrenderingbasedonsemitransparency,
only surface-and point-basedmethodsare
used. Also in the linked derived spaces[7]
(seeabove) it is possibleto show the two
spatialdimensionsof the grid in oneof the
scatter-plotsfor 2D scientificvisualization.

DOI functions for discriminating Focus
& Context – DOI functions(asdescribed
above) have beenintroducedby Furnasin
1986 [4]. Multiple ways of how to define
a DOI function have beenpresentedsince
then,usingeitherexplicit or implicit speci-
fication. Whereasmany F+Csolutionsbuild
onanexplicit specificationof thefocus,e.g.,
by pointing at dataitem of specificinterest,
othersusean implicit anddata-drivenspec-
ification of what is in focus. Examplesare
queryingmethodsas,e.g.,usedin theXmd-
vTool [14].

Martin et al. [10] extendedthe usageof
brushesto definea DOI function by several
new concepts,includingnon-discretebrush-
boundaries,simultaneousdisplayof multiple
(up to four) brushes,andcreatingcomposite
brushesvia logical operators.

3D rendering / dealing with occlusion /
F+C solutions – when rendering3D data
with a volumetricapproach,the problemof
occlusionneedsto besolved.In standard3D
rendering,the conceptof using an opacity
transferfunction for this purposehasbeen
well acceptedin thefield of scientificvisual-
ization[8]. A recentapproachof volumetric
flow renderingwasRaycastingVectorFields
presentedby Frühauf[3], whichdirectlyren-
dersall of the available dataelements,and
thereforelackseasyspatialperception.

A similar problemof occlusion,dueto a
lot of databeingshown, is apparentin infor-
mationvisualization– the input often com-
prisingvery largeandhigh-dimensionaldata
sets.Heretheconceptof focus+context visu-
alization wasestablished[2]. Thebasicidea
of this conceptis to enableusersto have the
objectof primaryinterestpresentedin detail,
while still preservinganoverview or context
availableat thesametime.

Therearefew attemptsto utilize F+Cso-
lutionsalsoin scientificvisualization,oneis
two-level volume rendering[6], wheredif-
ferentrenderingtechniquescanbeappliedto
differentobjectsin a 3D dataset,depending
on whetherthey arein focusor not.

3 FOCUS+CONTEXT VISUALIZATION
OF SIMULATION DATA BASED ON
SMOOTH FEATURES

Inspired by the work of Gresh et al.
(WEAVE [5]), and two-level volume ren-
dering [6], we found F+C visualizationto
be also very useful in scientific visualiza-
tion. Both approachesuse a different vi-
sualappearancefor datain focus vs. thedis-
play of context information.In WEAVE, In-
foViz viewsareusedto specifydatain focus,
whereasin two-level volume renderingob-
jectsappearin focus throughexplicit selec-
tion. While WEAVE useslinkedcolor cod-
ing for 3D F+C visualization,two-level vol-
ume renderingusesdifferent techniquesof
(more or less)translucent3D renderingfor
F+Cdisplay.
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Figure 1: Smooth Brushing and Linking: simulationdataof a catalytic converter is shown.
Right side:ascatter-plot, wherea non-binaryDOI function wasdefinedby smoothbrushinga
clusterof highvelocity/highpressuredata;Left side:a3D SciViz view, employing opacity/color
modulationfor the3D arrows.

We think that a F+C approachin scien-
tific visualizationfits togetherverywell with
thechallengeof solving theocclusionprob-
lem in 3D rendering. F+C solutionsin In-
foViz and the notion of featuresin feature-
basedvisualizationcorrespondvery well, as
in both fields a level of interestis specified
for specialpartsof the data. Whendealing
with 3Drenderingof thedata,occlusionisan
inherentproblemto tackle. It canbesolved
by modulatingthe opacity of dataitems in
3D renderingaccordingto a degreeof inter-
estfunction.

Both from InfoViz and WEAVE, we
know thattheconceptof linking & brushing
is very useful for discriminatingfocus and
context in visualization.In our approachwe
useInfoViz views on high-dimensionaldata
from flow simulationto specify the desired
DOI function interactively accordingto dif-
ferentattributesof thedataitems.This DOI
function is linked to the 3D view, showing
thefeaturesof interestin aF+Cstyle.

As a speciality of data from flow sim-
ulation, data values are distributed rather
smoothly along spatial dimensions. Dif-
ferent to data from medical visualization,
for example,almostno sharpboundariesof

(flow) featuresaregiven. To copewith this
specialtype of data,we usea non-discrete
brushingtechnique,which we call smooth
brushing, to specifya continuousDOI func-
tion for F+Cvisualization.

For evaluation of our ideas, we imple-
menteda software prototypethat supports
different views from SciViz & InfoViz to-
gether with smooth brushing in InfoViz
views, aswell as linking of the 3D view to
InfoViz views throughthe continuousDOI
function. In 3D rendering,DOI valuesinflu-
encetheopacityof displayelements,and/or
their color coding,aswell astheir geometri-
cal properties,e.g.,their size.

Fig.1givesanexampleof thesolutionde-
scribedhere,showing an applicationfeatur-
ing datawhich comesfrom a 3D simulation
of flow in acatalyticconverter. Theleft view
shows a scientific visualizationwith small
3D arrows representingdataitems. Velocity
is mappedto color, with red corresponding
to high velocity. Theright view is a scatter-
plot wherevelocityvaluesareplottedagainst
valuesof staticpressure.A non-binaryDOI
function wasdefinedby smoothbrushinga
clusterof dataitems exhibiting high veloc-
ity andratherhigh pressure.This DOI func-
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tion wasusedto modulatetheopacityaswell
as the color of the 3D arrows in the ren-
deringview – displayelementsnot in focus
aredrawn in a gray-scalefashion. Onecan
seethatmainly theinlet of thecatalyticcon-
verter (upper left part in the 3D view) ex-
hibitsvaluesof highpressureandhighveloc-
ity. Throughthe smoothbrushpartsof the
outlet arealsoof partial interest,sinceval-
uestherearenot muchdifferentto the core
focusof this visualization,andthusarealso
partially influencedby theF+Cmapping.

4 VIEWS AND INTERACTION

To test our ideas we implementeda pro-
totype including the two most prominent
InfoViz views (scatter-plot and histogram
view) anda 3D renderingview with differ-
entrepresentationmodes.

In thescatter-plot view thetwo attribute-
to-axis mappingsare interactively config-
urable,any attribute dimensionavailable in
the dataset canbe usedon any of the two
axes. Additional feedbackis provided by
showing zero-axesandnumericaloutputof
theboundariesof thedatarangesfor thetwo
correspondingaxes.

An example scatter-plot view is shown
on the right sideof Fig.1. It visualizesthe
datadistribution of thedataitemsaccording
to two attributes.Clusteredregions,but also
outliersandtrendsareeasilyidentifiedbyus-
ing this view. Two-dimensionalbrushingof
the dataitems in the scatter-plot is accom-
plishedby interactively defininga rectangle

(a) (b)

Figure2: binarybrushingof acluster(a)
andmultiple brushingregions (b) in the
scatter-plot

(with themouse)andthuscreatinga binary
selection(seeFig.2(a)). To increaseflexi-
bility in brushingthe data,multiple brush-
ing regionscanbedefined(seeFig.2(b)),al-
lowing to put distinct dataclustersor sub-
setsinto focussimultaneously. Futurework
will include logical combinationsof differ-
entbrushingregions.

As alreadyexplained, smoothbrushing
was the conceptof coping with the spe-
cialities of datafrom flow simulation. The
boundaryregion of non-zeroDOI valuesis
visualizedby a secondrectangleenclosing
theinitial (binary)brushingregion. Thissec-
ond rectanglecan also be changedinterac-
tively, providing thepossibilityto separately
definetheregionof interpolationof DOI val-
uesbetween0 (context) and1 (full focus)for
eachof thefour directions.TheDOI valueis
alsoencodedin thecolorof thepointsrepre-
sentingthedataitemsin thescatter-plot.

Thehistogramview (seeFig.5,for exam-
ple) visualizesthenumberof occurencesper
(rangeof) dataitem(s) for one attribute, in
contrastto the scatter-plot where only the
data distribution and not the count is visi-
ble. In our approachit is linked to one of
theaxesof thescatter-plot andthusprovides,
at the sametime, additionally data count
information to the distribution information
shown. Brushingmechanismsaresimilar to
thescatter-plot, but obviouslyonly 1D.

The histogram view also provides the
userwith afeedbackvisualization(colorand
opacityvalues)of thetwo transferfunctions

(a) (b)

Figure3: 3D arrows(a)vs. 3D blobs(b),
showing vortex corelines for the inlet of
thecatalyticconverterapplication
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employedin the3D renderingview.

In the3D renderingview (Fig.1 left side)
currentlytwo differentrenderingmodesare
available. 3D arrows (Fig.3(a)) vs. 3D
blobs (Fig.3(b)) for every cell of the grid.
The arrows aretetrahedron-like (lengthand
orientationencodemagnitudeanddirection
of the flow at the currentgrid position),the
blobs’ geometryis a sphere. Opacity and
color of the primitivesare triggeredby the
transferfunctionasexplainedearlier.

Although volume renderingis currently
being developed,the 3D arrows and blobs
have the important advantageof giving a
one-to-onerepresentationof singleelements
in the data set, often asked for by special
tasksof interest. For both modesthe trans-
fer functionmapsoneattribute,in Fig.3 this
is magnitudeof the turbulencekinetic en-
ergy. 3D arrows provide the possibility of
conveying additional information, such as
direction and magnitudeof the flow – that
is only reasonable,if detailed information
is desiredabout small regions of the data.
Whenshowing an overview, the advantages
of the (then too) small arrows get lost, and
renderingblobsis thebetterchoice(keeping
complexity lower, too).

All theavailableviews arelinkedvia the
(non-discrete)DOI function definedin one
of the InfoViz views by brushingthe data.
ThisDOI functionis especiallyusedto mod-
ulatetheappearanceof the3D renderingfor
thedataelements.Optionallyopacity, color,
and/orsizeof geometricobjectscanbemod-
ulated,dependingontheF+Cdiscrimination
definedby theDOI value.

In thecurrentsetupof theprototype,also
the attribute to axis mapping of the his-
togramaxis andoneof the scatter-plot axes
arelinked,asmentionedabove.

Another featureof the prototypeis that
thebrushinginformation(DOI function)per-
sists until the next brushing interaction in
any of theInfoViz views is performed.This
allows to comparedifferentattributesin the
3D renderingview for the samefeatures.

Also, analyzingand comparingdatadistri-
butions in the scatter-plot by changingthe
attributeto axismappingwith thesameDOI
feedbackvisualizationper data item is en-
abledthroughthis concept.Thenext section
discussesanexampleof this feature.

5 RESULTSAND IMPLEMENTATION

In Fig.4(a) the application of joining two
flows (from left and upperpipes) into one
(going to the right side) in a so-calledT-
junction is shown. Fig.4(b) shows the cor-
respondingscatter-plot to Fig.4(a). A low
velocity/low pressureareahasbeenbrushed
smoothly, to focuson the recirculationarea
of the mixing flows. In the lower two im-
agesthe currently active attribute to be vi-
sualizedby the transferfunctionsin the 3D
view andthecurrentlyactiveattributeto axis
mappingfor they-axis in thecorresponding
scatter-plot view waschangedto be the tur-
bulencekinetic energy insteadof the veloc-
ity. Notethepersistenceof theDOI function
asdescribedabove.

Fig.5 presentsa differentexample,com-
ing from a simulationof theventilationsys-
tem in a car. This time, only a 2D slice of
cells from front to backof the carwascon-
sideredduring simulation. The inlet of the
ventilation systemis the red region on the
left side, wheremaximum velocity can be
observed. The datahasbeenbrushedin a
histogramview onvelocityvalues,shownon
the right side. Relatively high velocity val-
ueshave beenbrushedsmoothly, to specify
the DOI function. Again the transferfunc-
tion of the featuresin the 3D view is a col-
oredone, red defininghighestvelocity val-
ues and greenbeing associatedwith rela-
tively small values(which are not in focus
andthusnotvisiblehere).Thecontext trans-
fer function is a gray-scaleone,andthesize
of the arrows usedfor the representationof
thedataelementsis alsosmaller, nearlynot
visible. Linearinterpolationof thealphaand
color values,aswell asof thesizeof thear-
rows is appliedaccordingto theDOI values.
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(a) (b)

(c) (d)

Figure 4: Smoothbrushingof the recirculationareain a T-Junctionapplication(a) and (b),
changingof theattributeto axismappingandattributeto transferfunctionmappingto turbolence
kineticenergy on thepreviously brushedinformation(c) and(d)

Further results and video-sequencesof
working with the systemare available at
www.VRVis.at/vis/research/smooth-brush/.

The presentedsystemhas been imple-
mentedin a self-developedenvironmentfor
visualization, called OFVis (Open Frame-
work for Visualization). It is a combina-
tion of Java (for graphicalUI) andC++ (for
dataaccessvia librariesof our primarypart-
nercompany AVL List GmbH),usingOpen
GL for therenderingparts(usingthegl4Java
package).This allows for flexible dataac-
cess,andpossibleextensionsby usingonly
data accessroutines that are different for
otherdatasources.

The prototypesystempresentedruns in-
teractively on a standardPC platform (P3,
733MHz, 756MB, GeForce2) for the data
setsshown (in therangeof 20.000to 60.000
cells, 15 to 40 dataattributesassociatedto
eachcell). The cells of the dataare orga-
nizedin unstructuredgrids. For the render-
ing of thesegrids a visibility algorithmwas

implemented,basedon the XMPVO algo-
rithm [13] presentedby Silvaetal.
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with 3D rendering.Also, we thankM. Had-
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RTVR – a flexib le Java librar y for interactive volume rendering

LukasMroz andHelwig Hauser
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Abstract

This paper presentsseveral distinguishing design features of
RTVR – a Java-basedlibrary for real-timevolumerendering.We
describe,how the careful designof datastructures,which in our
casearebasedonvoxel enumeration,andanintelligentuseof look-
up tablesenableinteractive volumerenderingevenon low-endPC
hardware. By assigningvoxels to distinct objectswithin the vol-
umeandby usingan individual setupandcombinationof look-up
tablesfor eachobject, object-aware renderingis performed: dif-
ferent transfer functions, shadingmodels,and also compositing
modescanbemixedwithin a singlesceneto depicteachobjectin
themostappropriateway, while still providing renderingresultsin
real-time.While providing frameratessimilar to volumevisualiza-
tion using3D consumerhardware,theapproachutilized by RTVR
offers muchmoreflexibility andextensibility dueto its puresoft-
warenature.Furthermore,dueto thememory-efficiency of thedata
representationandthe implementationin Java, RTVR canbeused
to providevolumeviewing facilitiesover low-bandwidthnetworks,
with almostfull control over renderingandvisualizationmapping
parameters(clipping, shading,compositing,transferfunction) for
the user. This paperalsoaddressesspecificproblemswhich arise
by theuseof Java for interactive Visualization.

Key words: interactive volumevisualization,Internet-basedvisu-
alization,Java

1 Intr oduction

Volume visualizationhasproven to be a valuabletool for explo-
ration, analysis,andpresentationof datafrom numerousfields of
application,suchas medicine,geo sciences,or mathematics,for
example.Within thevisualizationprocess,interactivity is not only
crucial for efficient explorationandanalysisof data; the commu-
nicationof visualizationresultsto a viewer alsobenefitsfrom the
ability to manipulatethevisualizationoutputwhile viewing, espe-
cially if complex 3D interrelationshave to be understood.Data
explorationandinteractivepresentationwith low demandsoncom-
putationaland/ornetworking resourceshasbeenoneof thedriving
factorsfor thedevelopmentof theRTVR library.

�
Mroz@VRVis.at, Hauser@VRVis.at

Volumetricdata-setscontaina variety of structureswith different
characteristics.With respectto thestructureof thedataandthegoal
of thevisualization,differentvisualizationtechniquesareappropri-
atefor differentobjectsto bestconvey thenatureof thedata. The
mostcommonapproachesaresurfacerendering[12, 13], opacity-
weightedblending(direct volumerendering,DVR) [10], or max-
imum intensityprojection(MIP) [23]. The secondmotivation for
thedevelopmentof RTVR is to provide theuserwith meansfor in-
dividually selectingthebest-suitedcombinationof visualizationpa-
rameters– transferfunction,shadingmodel,andcompositingtech-
nique– for eachobject(i.e. part)of a volume,while still providing
interactive framerates.

RTVR integratesandextendsseveralpreviously publishedtech-
niquesfor interactive rendering[4, 8, 16, 15] and efficient data
transmission[14] into a flexible framework which canbe utilized
to provide volumevisualizationon PC-hardware.

A commonapproachto theaccelerationof software-basedvol-
umerenderingis to employ techniquesfor efficiently avoiding the
processing(projection)of irrelevantpartsof thevolume,i.e.,empty
(transparent)space,or interior parts of entirely opaqueobjects.
Numeroustechniquesand data structuresfor this purposehave
beenpublished,utilizing, for example,octrees[11], distancevol-
umes[3], or run-lengthencoding[11]. Basedon the observation,
that for somecompositingtechniques,like MIP, partsof the vol-
umewhich arerelevant for thevisualizationresultarestronglyin-
termixedwith irrelevantparts[15], a differentapproachfor empty
spaceleapinghasbeenchosenfor RTVR. By pre-filteringthevol-
umedata,voxels which may be of relevancefor the visual repre-
sentationof objectsare identified and storedinto a derived data
structure– an enumerationof possiblyrelevant voxels – which is
well-suitedfor fastrendering[15, 16]. Althougha similar strategy
hasbeenalreadyintroducedfor shell rendering[22], our approach
exhibits severaladvantages:

� Thederiveddatais alwaystraversedin asequential(memory-
aligned)orderduringrendering,thusincreasingtheefficiency
of theprocessorcache.

� Dueto theprojectiontechniquewe use(a fastshear-warpap-
proach),no strictly spatiallyorderedtraversalof the datais
required,allowing reorderingof datafor efficient skippingof
entireblocksof irrelevantvoxels.
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� Extractedvoxels canbereorderedin a way which allows ef-
ficient encoding,compression,and transmissionof the data
by exploiting spatialcoherence.Renderingcanbeperformed
without restoringtheoriginalarrangement[14].

TheabovepropertymakesRTVR well-suitedfor providing volume
visualizationover low-bandwidthnetworks, either for interactive
presentationof datawhich hasbeengeneratedoff-line, or within
a split client/server approachfor on-line visualization. The chal-
lengeof interactively presentingimagesof volumetric dataover
networks,which alsocanbemanipulatedinteractively on standard
desktop-hardware,hasbeenaddressedby severalapproaches.The
simplestway to displayobjectscontainedwithin volumetricdata-
setsis to extractapolygonalsurfacerepresentationof theobjectand
to rendera sufficiently simplifiedversionof themodelat theclient
(via a VRML browser, for example). Although currentconsumer
3D hardware is alreadyquite powerful, it is still not possibleto
renderhighly detailedmodelsfrom real-life data-setsat interactive
framerates. To overcomethis problem,Engelet al. [7] placethe
data-seton a server anduseprogressive transmissionandprogres-
sive refinementto allow interactive surfaceextractionandviewing.
They alsopresentedan approachfor providing direct volumeren-
dering(DVR) at low-endclients[6]. Firstasmall,subsampledver-
sionof thedata-setis transmittedto theclient. During interactions
which influencethe renderedimage,the local copy of the datais
renderedusingtexture-mappingcapabilitiesof consumer3D hard-
ware.After finishingtheinteraction,ahigh-qualityrenderingof the
full-resolutiondata-setis computedon a server andtransmittedto
theclient. Althoughtheseapproacheswork well for a limited num-
berof userswho sharethesameserver, they cannot beappliedif
aninteractivevisualizationis publishedto a largegroupof viewers,
for exampleover theInternet.

An approachwhich is bettersuitedfor “public” distribution of
visualizationresultshasbeenpresentedby Höhneet al. [20]. A
multi-dimensionalarrayof imagesis renderedandstoredin anex-
tendedQuicktime-VRformat. Theviewer canbrowsethroughdif-
ferentviews of the data,imitating an interactive rotation,dissec-
tion, or segmentation,for example. While this approachprovides
high-qualityimages[21] on low-endhardware,theuserinteraction
is restrictedby the“hidden” browsingmechanism(inbetweenpre-
computedviews). Furthermore,thesizeof evensmall-scalemovies
alreadybecomesa limiting factorfor viewing over low-bandwidth
networks. Thenecessityto transmitanentirevolumeover thenet-
work is alsothelimiting factorto theapproachof Hendinet al. [9].
They introduceda VRML-basedviewer, which performsvolume
renderingby themeansof texture-mapping,displayingasetof axis-
aligned,texturedpolygons.

Theapproachimplementedby theRTVR library is locatedinbe-
tweenthe methodsdiscussedabove. The amountof datawhich
actually is transmittedto the client for visualizationis very low
(about the size of several images),especiallyin comparisonto
the Quicktime-VRapproach.The viewer is not restrictedto pre-
computedviews andhasfull controlover visualizationparameters.
Theonly restrictionfor renderingis thatjust thosepartsof thevol-
umewhich have beenpre-selected(extracted)for presentationand
transmissioncanbe rendered.As usually just limited intervals of
transferfunctionparametersproducemeaningfulresultsfor agiven
visualizationtask,this restrictionhasprovennot to beproblematic.

Volume renderingby the useof specialpurposehardware like
the VolumeProboard[17], or using3D consumerhardware [18],
achieveshighly interactive frame-rates,allowing fastandefficient
tuning of visualizationparametersfor entire volumes. Unfortu-
nately, neitherthe VolumeProboard,nor recentapproachesbased
on texturedpolygons,allow to work with segmenteddataand to
specifyparametersona per-objectbasis.

Whenusedin a distributedclient-server scenario,thesoftware-
only renderingapproachof RTVR providesmuchmoreflexibility
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Figure1: RTVR allows theassignmentof shadingandcompositing
methodson a per-objectbasis.Thecombinationof Phongshading
(objects1a,2, 5,8) with non-photorealisticmethods(1b,5, 7,8), of
surfacerendering(1, 2, 5, 7), DVR (9), MIP (3, 8), andsummation
(x-ray) rendering(4 and6) is donein real-time.

in termsof renderingparametersthanvolumepreviewing usingtex-
turemappinghardware,still at comparableor even lower costsin
termsof bandwidthrequirements.

In contrastto volume visualizationtoolkits like VolVis [1] or
VTK [19], which cover a very broadrangeof datarepresentations
andapplications,RTVR is focusedon fastvisualizationof isotrop-
ically spacedrectilinearvolumes,with flexible handlingof render-
ing parameters.Therestrictionto isotropicalspacingis requiredto
ensurecomparablerenderingquality regardlessof the viewing di-
rection. Datadefinedon othertypesof grids hasto be resampled
for rendering(this canbedoneon thefly, during theextractionof
relevantvoxels).

In the following we describesomeof thedistinguishingdesign
issuesof RTVR which areresponsiblefor its excellentefficiency
with respectto real-timevolumerenderingaswell as its flexibil-
ity in termsof renderingparameters.Section2 givesanoverview
over thebasicconceptsbehindRTVR, aswell asanoverview over
renderingfeaturesandvisualizationtechniqueswhich arerealized
on this basis. Section3 presentsRTVR’s internaldatastructure,
performance-relevant issues,and the renderingalgorithmsused.
Timingsfor typicalapplicationscenariosaregivenin section4, fol-
lowedby thepresentationof sampleapplications,which arebased
on the RTVR library (section5). Interactive visualizationswith
RTVR correspondingto the imagesof this papercanbe found at
http://www.VRVis.at/vis/research/rtvr/

2 Concepts and Capabilities

From a visualization-user’s point of view, a volumetric data-set
rarely resemblesa monolithic block of data. Usually the datais
assumedto be composedof a collectionof spatialstructures,i.e.,
objects,which have to be renderedor omitted from renderingto
achieve thedesiredvisualizationgoal. An obviousconsequenceof
this observation, is to treat thosestructureswithin the volumein-
dividually during rendering,allowing separateadjustmentof their
visualizationandrenderingparameters(seeFig. 1 for anexample).
Providing more degreesof freedomfor the individual parameter
adjustmentallows betterfitting of the visualizationmethodto the
inherentpropertiesof thevisualizedobjects.Consequently, within
RTVR eachvoxel of theinput volumeis assignedto anobjecthav-
ing a commonset of renderingparameters,consistingof opacity
andcolor transferfunctions,a shadingmodel,anda compositing
method(for exampleMIP or DVR) for combiningthevoxelsof an
objectduringrendering.
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Figure2: Renderingquality:
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Figure3: Volumedataflow within RTVR: first,voxelswith actually
contributeto thevisualizationareextracted,thenthisrepresentation
of volumetricobjectsis usedfor fastandflexible rendering.

Dependingon thechosensetof renderingparameters,voxelsof
anobjectmayor maynotcontributeto arenderingof theobject.Es-
pecially if MIP is usedfor compositing,relevant andnon-relevant
voxels are strongly intermixed, making the usualapproachesfor
skippingnon-relevantdata(octreesor distancevolumes)inefficient.
Ontheotherhand,for mostscenariosonly asmallpercentageof an
object’svoxelscontributeto animage.Consideringthis facts,over-
headfor skippingirrelevantvoxelsduringrenderingcanbeentirely
avoidedat moderatememorycostif potentiallyrelevantvoxelsare
extractedfrom thevolumeandstoredwithin aderivedenumeration
datastructure. For rendering,just this datastructure,which con-
tainsa highpercentageof relevantvoxels,hasto beconsidered.

Consequently, thebasicrenderingprimitiveof RTVR is a voxel,
i.e.,a singledata-samplefrom thevolume.As no spatialneighbor-
hoodinformation is availablewithin the derived data,no interpo-
lation canbe performedinbetweensampleswithout accessingthe
original volume. To avoid this expensive operation,the extracted
voxelsareprojectedindividually. A methodwell-suitedfor fastren-
deringof such“sparse”voxel datais shear-warp projection,with
nearest-neighborinterpolationwithin the base-plane.For objects
with sharpopacitytransitions,this renderingmethodallows zoom
factorsup to two with sufficient imagequality (i.e. an imagesize
of

������

for

���	���
datasets,or

��������

for

�����
�
volumes,seeFig. 2).

For fuzzy objectsevenhigherzoomfactorsareacceptable.
Thevisualizationprocedureusingtheabove techniquesis atwo-

stepprocess(Fig. 3). During a segmentationanddataextraction
step,voxelswhichactuallyarerelevantfor theuser-definedvisual-
ization goal are identifiedandextracted. The segmentationinfor-
mationwhich is requiredto distinguishobjectswithin thedatamay

Figure4: Combinationof differentshadingmodels:Phonglighting
for bonesandvessels,contourrenderingfor theskin.

be obtainedtogetherwith the volumedataitself from an external
datasource,or interactively computedusingthreshold-basedseg-
mentation.Theactualselectionof voxelscanbebalancedbetween
aradicaleliminationstrategy, which justselectsvoxelsrelevantfor
a specificparametersetting(for example,just thesurfacevoxelsof
anentirelyopaqueobject),andtheselectionof all voxelsof anob-
ject, on theotherextreme.Althoughthelatterapproachat thefirst
glanceseemsto beuselessasanaccelerationof rendering,it allows
to freelyadjustthetransferfunctionduringrendering.For thecho-
senshear-warp basedrenderingtechnique,the orderof projecting
voxels which sharethe samedistance( � ) to the base-planeis not
relevant. Thusit is possibleto shuffle suchvoxelswithout any re-
striction.By arrangingvoxelswith thesame� into two sub-groups
whichcontainvoxelsrelevant,respectively irrelevantto thecurrent
transferfunction,efficientskippingof irrelevantpartswithin theex-
tracteddatais achieved. Using specificvoxel sortingschemesfor
differenttypesof transferfunctionsandcompositingmodesallows
to skip voxels irrelevant for thecurrentparametersettingswithout
resorting[4, 15]. If, for example,voxel opacityis chosento corre-
spondto gradientmagnitude,andvoxels areorderedaccordingto
this attribute,entireblocksof voxelscanbeskippedassoonasthe
first entirelytransparentvoxel within a groupis encountered.

The voxel extractionstepusually leadsto a significantdatare-
duction,asonly a smallportionof theoriginal volumeactuallybe-
longsto objectsof interest. Especiallyfor surface-like structures,
the extractedvoxel datacan be efficiently compressedexploiting
coherenceamongvoxel positionsandattributevalues.Theresult-
ing compactrepresentationof the volumecanbeusedto storevi-
sualizationresultsfor later interactive viewing, or for transmission
andon-lineviewing over low-bandwidthnetworks[14].

For performingthe actualvisualizationand rendering,the ex-
tractedvoxels areassignedto distinct objectsand insertedinto a
scenegraph. Using a fast,look-up tablebasedapproach(seesec-
tion 3.4for details),notonly opacityandcolor, but alsotheshading
modelcanbe definedindividually for eachobject. This allows to
combinerenderingusingstandardshadingmodelslikePhongshad-
ing with objectsthatarerenderedby theuseof non-photorealistic
shading[4, 5]. Suchcombinationis, for example,useful to pro-
vide context andshapeinformationalmostwithout occlusion(see
Fig. 4).

Most volume rendering packagesonly allow to render a
wholedata-setusingeithertheusualopacity-blendedcompositing
(DVR) [10], andsurfacerendering[12, 16], or maximumintensity
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Figure5: Combinationof differentcompositingmodes:DVR for
thebrain,summationfor thesurroundingboneandtissue.

projection(MIP) [15]. RTVR allows to separatelydefinethecom-
positingmodewithin eachobject (DVR, MIP, or summation),as
well asan inter-objectcompositingmode(two-level volumeren-
dering[8]). This allows to choosethemostappropriatecomposit-
ing techniquefor eachobject,dependingonthestructureof thedata
andthegoalof thevisualization(seeFig. 5, colorplated).

Among other “standard”techniques,RTVR supportsthe clip-
ping of volumesor setsof individual objectsat planesandmore
complex structures.Clippedpartsof objectscanbe omittedfrom
rendering– which is the most commonapproach– or rendered
using a different set of renderingparameters(seecolor plate e).
By using for examplePhongshadingfor non-clippedvoxels and
a contour-only renderingfor clipped parts, insight into an object
canbegiven,while still providing a sketchof themostsignificant
featuresof theclippedpartasacontext (seeFig. 1, skin).

Anotherfeatureof RTVR is thesupportfor visualizationof time
seriesof volumetricdataandof multi-dimensionalparameter-series
of volumesfrom simulation. The large memorydemandsof such
dataarecompensatedby thefact,thatdataextractedfrom avolume
andusedby RTVR for renderingis usuallymuchsmallerthanthe
originalvolume.Only extracteddataof thecurrentlydisplayedvol-
umehasto bekeptin memoryfor rendering,remainingpartsof the
volumeanddatawhichbelongsto othertime(parameter)stepscan
bekeptondisk.

3 Intrinsics and Implementation

For eachvoxel identifiedduring the extractionaspotentiallyrele-
vant for rendering,thecoordinatesanda setof attributes,like data
value,gradientdirection,andmagnitudearestoredin the derived
datastructure.For rendering,asubsetof theattributesis selectedas
an informationsourcefor visualizationmapping,andtransformed
into a compactrepresentationwhich is well-suitedfor fastrender-
ing.

The attribute valuesareusedto index look-up tablesto obtain
andmodulatecolor andopacityvaluesin a way which is defined
by the selectedrenderingmode. The look-up tablesallow to im-
plementdifferent transferfunctionsandshadingmodelsin a very
effective way.

3.1 The RenderList as Data Representation

The voxel extraction is performedby scanningthe volume slice
by slice, producing for each slice of each object a so-called
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Figure6: Volumetricobjectrepresentation:voxels which arerel-
evant for renderingan objectareextractedslice by slice from the
volumeandstoredinto RenderLists.

RenderListEntry, containing the object’s relevant voxels
within theslice(Fig. 6). TheRenderListEntrysof eachobject
aregroupedinto anarray– aRenderList. Thereby, theoriginal
(implicit) spatialarrangementof datavalueswithin the 3D array
is sacrificedfor anobject-awareenumerationschemeof arbitrarily
arrangedvoxels. All theattributesof a voxel arestoredin separate
arrays,theRenderListEntry itself just storesadditionalinfor-
mationwhich is requiredfor rendering:

� anobject-level opacityvaluefor clippedandregularvoxels

� look-uptablesfor mappingof clippedandregularvoxels

� specificationof renderingandcompositingmodesfor clipped
andregularvoxels

� a referenceto anarraywhich containsa renderablerepresen-
tation of voxel data(derived from voxel attributes). Within
this array, voxelsbetweenfirst andfirstClipped be-
long to theregularpartof anobject,voxelsbetweenfirst-
Clipped andlastInSlice belong to the clipped part.
Only voxelsbetweenfirst andlast, respectivefirst-
Clipped andlastClipped have to be rendered,voxels
betweenlast andfirstClipped, andlastClipped
andlastInSlice arenot relevant for the currenttransfer
functionandrenderingmode.

The “blocking” of voxels into non-contributing, clipped, etc., as
shown in figure 6, is achieved by simply reorderingthe voxels
within RenderListEntrys during clipping and optimization
operations.Theoptimization,i.e., identificationandreorderingof
currentlynon-relevantvoxelswithin RenderListEntrysis per-
formedbyabackgroundthread,whichisactivatedwhenevertheap-
plicationis idle andno renderingis performed.No effort hasto be
spenton skippingthosevoxels during following renderingpasses.
The backgroundoptimizationis especiallyuseful for accelerating
therenderingof “fuzzy” objects,wherenoexactinformationabout
therelevanceof voxelsis availableat thetime of extraction.

For fast rendering,position and attribute information for each
voxel is fittedinto asingle32bit integer. The � and � coordinatesof
thevoxel arestoredusing8 bit each,the � coordinateis identicalfor

66



all voxels within a RenderListEntry asthey areall extracted
from the sameslice of the volumeandthusit is storedjust once.
Thecommoncoordinatestoredat theRenderListEntry for all
voxels is referredto as � for reasonsof simplicity. In fact, three
copiesof the dataandthusthreeRenderLists arerequiredfor
the shear-warp algorithm – eachone groupedand sortedby one
of the threecoordinates. Using just 8 bits per coordinatelimits
themaximumextentof an objectto

�
�
� �
voxels. Largervolumes

and objectsare internally split into
���	���

piecesand the missing
high bits of the coordinatesare encodedinto an offset, which is
alsostoredonceat theRenderListEntry. The remaining16
bits are typically split into a 12 bit and a 4 bit field which store
thedataattributesusedfor renderingaspreviously described.This
“renderable”voxel representationis attachedasanadditionalarray
to eachRenderListEntry, and is actually the only per-voxel
informationaccessedduringrendering.

Althoughthelimitation to two voxel attributeswith anoverallof
16 bit for renderingis clearly a limitation with respectto flexibil-
ity andaccuracy, thecompactrepresentationis perfectlysuitedfor
veryfastrendering.In combinationwith theability to re-ordervox-
elswithin aRenderListEntry therenderingprocessturnsinto
a “streaming”of sequentialchunksof voxels– anoptimalscenario
for cachingandprefetchingasimplementedby recentprocessors.
The problemof the low bit resolutionof dataattributesfor ren-
deringcan be addressedby applying intelligent remappingwhen
copying voxel attribute datainto it’ s renderableform: insteadof
clipping low bits of an attribute, a logarithmic remappingcanbe
performed,or acertainsub-rangeof attributevaluescanbemapped
to therangeof valuesavailablefor rendering.For scenarioswhich
requiremorethantwo attributesfor evaluatinga voxel’s contribu-
tion, specialrenderingmodescanbedefinedwhich usemorethan
32 bit of informationpervoxel, at the costof slower renderingof
theaffectedobject.
Java Peculiarities – dueto the specificway of memorymanage-
mentasemployed by currentJava virtual machines(VM), a spe-
cial datahandlingandcachingfunctionality is usedby RTVR to
supportthevisualizationof hugedata-sets(seriesof dozensto hun-
dredsof volumes),which areproduced,for example,by numeri-
cal simulationapplications[2]. Themaximumamountof memory
which is available to a VM hasto be fixed at initialization time.
As thegarbagecollectionandobjectallocationmechanismsweeps
throughtheentireaddressspaceof theVM, allocatingmoremem-
ory to the VM than physically available would lead to excessive
pagingandstrongperformancedegradation. Insteadof allocating
sufficient memoryto fit even the largestdata-sets,RTVR usesa
separatememoryanddisk cachefor space-demandingpartsof it’ s
datastructures,i.e., the original volumedata,the extractedvoxel
attributes,andthe renderablevoxel data. Data,which is currently
notusedfor rendering,is placedinto thememorycacheandthereby
potentiallywritten to diskby abackgroundthread.Requestsfor re-
centlyuseddatacanusuallybesatisfiedout of thememorycache,
whereasreadinglessrecentlyaccesseddatamayrequireto fetchit
from disk. The cachefeatureis usedwhenlarge data-setsarevi-
sualizedlocally, andis disabledwhenRTVR is usedwithin a web-
browser.

3.2 The RTVR Scene Graph

After extraction,theRenderListsandattributedataof volumet-
ric objectsareencapsulatedinto VolumeObjects andaddedto
a commonscenegraphfor rendering(Fig. 7). A commontaskof
all typesof nodeswithin the scenegraphis to deliver up-to-date
RenderLists which representthecontentof their subgraphs.In
the following a short overview over the most important typesof
nodesis given:
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Figure7: RTVR scenegraphanduserinteractionhandling

� VolumeObject: holds the RenderList of a singleob-
ject aswell asinformationon all parameterswhich affect the
appearanceandvisualizationmappingsfor thisobject.

� GroupNode: the shear-warp rendererperformsa back-to-
front renderingof RenderListEntrys. In addition to
providing a simple way of handling multiple objects, the
main purposeof the GroupNode is to merge and sort the
RenderLists of its sub-graphsinto a single list which is
sortedby thecurrentmainviewing axis( � ).

� Depending on the value of a selection parameter, the
SwitchNode provides the RenderList of one of it’ s
children. SwitchNodes allow to browse through multi-
dimensionalarraysof volumes,like timeseries,or parameter-
dependentsimulationresults.

� ClipNodes filter andreorderthevoxels of it’ s child nodes
to implementclipping.

Eachnodeis responsiblefor trackingchangesof parameterswhich
affect it’ scontentandfor performingappropriateactionsaccording
to changes.Theactualupdateof renderabledatato reflectparame-
ter changesis carriedout as late aspossible,i.e., whena request
for the affected voxel data is issuedfor rendering(lazy evalua-
tion). Keepingjust the currentlyvisible dataup-to-dateimproves
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theresponsivenessof thevisualizationduringinteractiveparameter
changes� significantly.

3.3 User Interaction

The philosophy of data manipulation within RTVR is object-
oriented. Oneof the objectswithin the currentlydisplayedscene
is selectedto be the “active” object, for exampleby pointing into
therenderedscene.Themostimportantpropertiesof theactive ob-
jectcanbechangedby pressingoneof themousekeysanddragging
over theimage.Transferfunctioncontrast(color andalpha),opac-
ity, andcolor canbechangeddirectly within the3D view. Further-
more,cameraposition,light sourceposition,andzoomfactorcan
besetwithin theview. Themappingof mouseactionsto parameter
changesis performedby anInteractionHandler component,
whichcanbeadaptedto meettheneedsof specificapplications(for
exampleto implementstreamline integrationfrom thepositionof
a mouseclick for a flow visualizationapplication).

As a supplementto parametermanipulationwithin therendered
view, all parametersof theactiveobjectcanbeadjustedusingstan-
darduser-interfacecomponentswhich areautomaticallygenerated
by RTVR. This parameterpanelallows anexplicit selectionof the
active objectandadjustmentof its parameters,andcan(but does
not have to) be usedwithin any applicationwhich utilizes RTVR
for visualization.
Java Peculiarities – for Java-basedgraphicaluserinterfaces,basi-
cally two APIsareavailable:theAWT, availablein its presentform
since Java version 1.1, and the more sophisticatedSWING 1.1,
which is partof theJava runtimesinceversion1.2. The front end
(GUI andrenderingoutput)of RTVR is providedusingboth,either
AWT or SWING. As mostweb browserscurrentlyprovide a 1.1
virtual machineonly, anAWT implementationis providedfor com-
patibility reasons,despiteof all its inconveniencesanddeficiencies.
Therenderingperformanceof theSWINGimplementationbenefits,
for example,from afasterimagehandling(BufferedImage) in-
troducedin Java 1.2.

3.4 Rendering

To achieve interactive renderingrateseven on standarddesktop
hardware,a fastshear-warpbasedparallelprojectionis used.Ren-
deringto thebase-planeis performedusingback-to-frontcomposit-
ing of voxels by the useof nearest-neighborinterpolation. The
warpstepof thealgorithm,which especiallyfor large imagesizes
maybemoretime-consumingthanthevoxel projectionitself, can
alsobecarriedout by texturemappingusingOpenGL.In compar-
ison to a previously publishedversionof this fastalgorithm[16],
RTVR includesanextendedversion,whichprovidesmoreflexibil-
ity for mappingvoxel attributesto color andopacity. Threelook-
up tables(LUTs, typically 1x4 bit, 2x12 bit) areavailableat each
RenderListEntry for implementingshadingandtransferfunc-
tion mapping.A setof combinationpatternsfor thevoxel attributes
andlook-uptablesis providedby RTVR (SeeFig. 8) andselected
by choosingan appropriaterenderingmode for an object. This
schemeof combiningLUTs allows efficient processingwhile still
enablingvariousways of selectively applying visualizationtech-
niquesto objectswithin the data. TheRenderListEntry can
alsobeextendedto provideuser-definedrenderingfunctionalityfor
it’ svoxels,whichfinally allowsto implementany desiredoperation
onvoxel attributesandlook-uptables.

Shadingoperationsare performedusingan approachwhich is
basedon look-up tables,with a 12-bit representationof thegradi-
entvectorasanindex. Two shadingmodelsareprovidedby RTVR:
a Phongshadingtable(color platea), a non-photorealisticshading
tablewhich enhancesthe contourof an object [5] (Fig. 4), anda
combinationof both(color plateb). Theshadingtableshave to be
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Figure8: SampleLUT combinationsduringvoxel renderingwithin
RTVR: a) shadedsurfaceb) non-shadedDVR c) contourrender-
ing. An overall of 4 combinationschemesfor voxel opacityand9
combinationschemesfor voxel colorareavailable.

re-computedafterevery changeof viewer or light sourceposition,
which is not time-criticaldueto their smallsize(4096entries).For
rendering,the shadingtableis placedinto LUT2 (Fig. 8), andin-
dexedby the12bit data-channelwhichcontainsthegradientvector.
Theoutputof the look-up is anintensityvalue,which is thenused
to accessthecolortransferfunctionin LUT3. Splittingshadinginto
two stagesallows to reusethesameshadingtablefor objectswith
differentcolor transferfunctions.

Theopacityof a pixel is influencedby several sources.An all-
objectopacity value is always includedinto the computationand
canbe usedto tunethe overall opacityof entireobjects. The in-
dividual opacityof eachvoxel is modulatedby variouscombina-
tions of datachannelandlook-up operations.In the following, a
few samplecolor andopacitycalculationsetupswill bediscussed,
which implementdifferentvolumerenderingapproaches.

� display of (iso-)surfaces (Fig. 8a): the surfacevoxels of an
objecthave to be shadedandblendedusingtheobjectopac-
ity. A Phongshadingtable is put into LUT2, the resulting
intensityvalue is usedto accessa color transferfunction in
LUT3. Thetransferfunction is a rampof objectcolor values
startingwith the color of the highlight (white) andevolving
towardsmaximumsaturationandminimumlightness(object
color, ambientlight, seecolor platea). By just renderinga
thin layerof voxelswhich form thesurface,theobjectopac-
ity canbeusedto influencethetransparency of thesurfacein
thesameway asanalpha-valueinfluencestheappearanceof
a polygonalsurfacemodel.

� non-shaded DVR (Fig. 8b): LUT3 containsthe color and
opacity transferfunction and and is indexed by the 12 bit
datavalue (Fig. 5, brain). Optionally, voxel opacitycanbe
modulatedby thecontentof LUT1 accessed,for example,by
gradientmagnitudeencodedin the4 bit datafield.
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� Bright object outlines (Fig. 8c): LUT2 is loadedwith a shad-
ing tablewhichmapstheanglebetweenviewing directionand
gradientdirectionto intensity. LUT3 containsa color trans-
fer function which is usedto tunecontrastandcolor for the
specificobject. If theresultof theLUT2 look-upis alsoused
asvoxel opacity, theobjectbecomesalmostentirelytranspar-
ent– exceptfor thecontourswhichremainopaque(colorplate
c, skin).

The implementationof object-awarecompositingrequiresthe use
of two separatepixel buffers, one for compositingwithin an ob-
ject andonefor compositingof theglobal image(Fig. 8). Scenes
which requireonly a single compositingmode(within and inbe-
tweenobjects)do not requiretwo pixel buffers andare rendered
moreefficiently with theusualsingle-buffer approach.

If pure MIP is used, voxels can be sortedand groupedinto
RenderListEntrys by value insteadof the � coordinate[15].
In this case,projectingsortedvoxelsfrom lowestvaluedto highest
valuedoneseliminatesthe needfor maximumsearch. However,
if MIP is combinedwith othercompositingtechniqueswithin the
scene,back-to-frontrenderingandthussortingby the � coordinate
is requiredalsofor objectscompositedby MIP, asthey may inter-
leave with otherobjectsrenderedwith differenttechniques.

4 Performance

High responsivenessof a visualizationsystemto useractionsis a
crucial factor for the effectivity of dataexplorationand analysis.
The renderingtimesfor the surfacerendering[16], MIP [15] and
two-level renderingapproach[8] usedby RTVR have beenpub-
lished in previous work. Thus, insteadof broadly surveying the
behavior of eachmethod,a comparisonof themeasuredtimesfor
renderingthe samedata-setwith RTVR usingvariousmethodsis
given in table 1. The measurementshave beencarriedout on a
PII/400MHzPCusingthevirtual machineof JDK1.3from Sunand
the AWT front-endof RTVR. The sizeof the renderedimagesis������


. The first row shows timings for the data-setshown in fig-
ure 4. Skin, bones,and vesselsare representedby their surface
voxels. Therenderingis carriedout usingMIP, DVR, a gray-scale
DVR view, anda combinationof DVR for thevesselsandMIP for
bonesandskin. The last columncontainsthe timesfor rendering
the samescenesusingtexturemappingandOpenGLfor the warp
stepof theprojection.In contrastto softwarewarp,which for large
images(

������� 

) usuallyis alreadythedominantfactorfor rendering

time, GL basedwarpis insensitive to thesizeof theoutputimage,
andtakes10-20mson mostcurrentconsumergraphicscards.The
secondrow displaystimingsfor theheaddatashown in color plate
a,with vesselsandskin displayedasadditionalsurfaces.Thedata-
set in row 3 is similar to the one depictedin color plate f. The
basinis representedby its surfacevoxels, thechaoticattractorhas
a highly complex internalstructure,andis thusconsidereda volu-
metricobject.

The purerenderingtime reflectsthe renderingperformancefor
mostinteractions.Theseincludeinteractivechangesof theviewing
parameters(viewerpositionandzoom),changesto contentof look-
up tables(moving light source,changingtransferfunction), and
changesto theparametersandrenderingmodesof objects.Clipping
operationsrequirescanningandreorderingof objectvoxels.During
simpleclipping of all objectsat anaxisalignedplane,theresponse
time increasesby approximately40% comparedto when chang-
ing viewer position. Time requiredfor clipping at morecomplex
objectsdependson thecomplexity of thetestwhich hasto beper-
formedfor eachvoxel. Clipping of a complex sceneat anoblique
plane,for example,canbedonewith 1–2framespersecond.Dur-
ing browsing throughlarge (time or parameter)seriesof volumes,
voxel datamayhave to befetchedfrom diskcache,thusincreasing

theresponsetime by thetime requiredto readthedata.Depending
on thesizeof thescene,this mayrangefrom few milliseconds,to
morethanonesecond.Thetime for extractionof new objectsfrom
a volumedependson the complexity of the segmentationcriteria
andon theamountof voxelsselected(gradientcomputation).The
extractionof an iso-surfacefrom a

�
�
� �
volume for examplere-

quiresapproximately1.5seconds,includinggradientcomputation.
Thechoiceof thevirtual machineusedto executetheapplication

hassevereimpacton the performance.Among the testedruntime
environments,fastestexecutionand renderinghasbeenobserved
for theVMs (1.1.6++,1.2,1.3) from Sunon Windows and(1.1.8,
1.2,1.3) from IBM on Windows andLinux. Virtual machinespro-
videdby web-browsersarein generalslower, probablydueto ad-
ditionally performedsecuritychecks.Worstresultsareobtainedby
theVM which is usedby Netscapebrowsers(Version � 4.7.4)on
Linux – morethantentimesslower thanthetimingsin table1.

5 Sample Applications of RTVR

TheRTVR library hasbeensuccessfullyusedto providevolumevi-
sualizationfunctionalitywithin twoprojects.Thefirst applicationis
avolumeviewerwhichcanbeusedfor fastvolumedataexploration
andanalysisin thefield of medicaldata.Visualizationresultscre-
atedwithin theviewer (extractedobjectsandvisualizationparam-
eters)canbe storedusinga compactrepresentation(typically just
a few hundredkilobytes)for later interactive viewing or for publi-
cationon the Internet.An appletversionof theviewer which pro-
videsthesamefunctionality, exceptfor theextractionandcreation
of new objects,canbe usedto view previously storeddatawithin
webpages(interactiveversionsof thispaper’s imagescanbefound
athttp://www.VRVis.at/vis/research/rtvr/).

A secondapplicationwhich makes use of the capabilitiesof
RTVR is avisualizationandanalysissystemfor 3D dynamicalsys-
tems(discretenon-invertiblemaps)[2]. Theapplicationis usedto
analyzeandvisualizestructuresandeventswithin thephasespace
of thesystems.For thisapplication,objectsof interestareattractors
(oftencomplex andchaotic),their basinsof attraction(i.e., theset
of all systemstateswhichareattractedby them)andsurfaceswhich
separateregionswith differentproperties(colorplatef). Events(bi-
furcations)canbe causedby contactsbetweenstructuresassome
parameterof thedynamicalsystemis changed.Theprocessof vi-
sualizationissplit into two parts.A volumetricrepresentationof the
structureswithin phasespaceis computedoffline (

���	� �
volumes)

andstoredin a space-efficient form. For the analysisof bifurca-
tions, sequencesof up to hundredsof volumesare computedfor
differentvaluesof thebifurcationparameter. For investigationthe
dataproducedby thesimulationis loadedinto theviewer (thedisk-
cacheis extremelyuseful for large sequencesof volumes)which
providesapplicationspecificfunctionality, like theshootingof tra-
jectoriesby pointingwith themouseat thestartposition. To ease
thedetectionof contactsbetweenobjects,distanceinformationcan
be mappedto voxel color, asshown in color plate f. The feature
of mixing MIP with othercompositingmethodshasproven to be
especiallyusefulfor visualizingchaoticattractors.Their complex
internalstructureis well capturedusingMIP while producinglittle
occlusion.At thesametime, theattractor’s basinof attractioncan
berenderedasa shadedsurface.

6 Conc lusions

Usinganefficient datarepresentationanda fastrenderingmethod
volumetricdatacanbedisplayedatanaveragedesktopPCat frame
rateswhich arecomparablewith thosewhich areachievedfor vol-
umerenderingby consumer3D hardware,while providing signifi-
cantlymoreflexibility , like object-wisetransferfunctions,shading

69



data-set size scene voxels MIP DVR DVR/mono two-level two-level, GL-warp
hand& vessels 256



x124 380k 80ms 135ms 80ms 180ms 160ms

head& vessels 256


x158 640k 100ms 185ms 110ms 250ms 220ms

attractor& basin 256
�

1M 130ms 250ms 140ms 320ms 280ms

Table1: Timingsfor variousdata-setsandrenderingmodes

modelsandcompositingmethods(MIP, DVR, ...). Taking into ac-
countpeculiaritiesof Java,all thosecapabilitiescanbemadeavail-
ableto userswith standarddesktophardwareusingdifferentoper-
atingsystems.Usinga compactvolumerepresentation,theRTVR
library canbealsoexploitedto provide highly interactive andflex-
ible presentationsof visualizationresultsover networks, like the
Internet.
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a) surface representation of a skull b) shaded and contour enhanced vertebrae

c) surface rendering for for bones and vessels, d) DVR for brain,
contours only for skin summation for bones and outer tissue

e) surface rendering for vessels, MIP for hip-bone, f) contact bifurcation -
contour enhanced surface for thighbones, one out of a sequence of 40 volumes

contours for clipped part of skin from a numerical simulation
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Abstract. In thispaperwepresentacompressiontechniquefor efficiently repre-
sentingboundaryobjectsfrom volumetricdata-sets.Exploitingspatialcoherency
within objectcontours,weareableto reducethesizeof thevolumetricboundary
down to the sizeof just a few images.Allowing for direct volumerenderingof
the down-scaleddatain addition to compressionratiosup to 250:1,interactive
volumevisualizationbecomespossible,even over the Internetandon low-end
hardware.

1 Intr oduction

One major challengeof visualizationin generalis to deal with a whole lot of data.
Especiallyin volumevisualization,commondata-setsrangebetweenseveralhundreds
of Kilobytes, at the minimum,up to Gigabytesof uncompressedsize.In medicalvi-
sualization,for example,volumetricdata-setsof size �������	��
�� Bit, i.e., 32MBytes in
total, arequite usual.If standardcompressionlike gzip [7], for example,is applied,
data-setsusuallyshrinkto about30–60percentof theoriginal size– still MBytes.

Processinghugedata-setsitself poseshigh-performancerequirementsonthevisual-
izationsoftware,butalsostorageandtransmissionof volumetricdata-setseasilygetinto
bandwidthproblems,especiallyif multipledata-setsareto betreated.Frommedicalap-
plications,for example,we know thatarchiving 3D data-sets,which accompany diag-
nosisdata,significantlystressesstoragedevicescurrentlyavailablein commonclinical
setups.

Even morecritical, concerningthe sizeof volumetricdata-sets,andcomparedto
storageproblems,is visualizationover the Internet.Web applicationslike remotedi-
agnosis,for example,suffer from low transmissionrates,evenover local networks.In
general,client-serversolutionsin thefield of visualizationusuallyareclassifiedby the
point, at which thevisualizationpipeline[8] is cut into a server-partanda client-part.
Doing most of the visualizationjob at the client, for example,usually is referredto
beinga fat-clientsolution[10]. Thin clients,on the otherhand,just displayresultsof
the visualizationprocess,namelyimages,which entirely have beencomputedat the
server beforehand.Thetrade-off betweenthin- andfat-clientsolutionsis drivenby the
fact,thatcuttingthevisualizationpipelineatanearlierstage(fat-clientsolution)allows
for moreflexibility at theclient’s side(without any needto reloaddata).However, this
advantageis gainedat theexpenseof large-sized(volumetric)datato bedownloaded,
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whenever necessary(initial download,changesto parametersof the preprocess).Re-
spectively, thin clientsdealwith smallerdata– just result images,for example– but
needto downloadnew data,wheneverany of theparameters,evenjustviewing param-
eters,arechanged.

The applicability of the more flexible fat-client solution to volume visualization
stronglydependson the effectivity of the compressiontechniquesusedfor transmis-
sionof thedata-set.Losslesscompressiontechniques– generalpurpose[7] aswell as
volumetricdataspecific[6] – usually achieve ratherlow compressionratios (around
2), which is not sufficient to significantlywidenthebandwidthbottleneck.Usinglossy
compression[17,2,12] ratiosin the rangeof 5 to 50 canbe achievedwhile maintain-
ing acceptablequality of thevisualizationresults.On theotherhand,medicalapplica-
tions, for example,prohibit changesto the accuracy of the data,as inducedby lossy
compressionmethods.Hierarchicalmethods,like wavelet compression[12] combine
advantagesof lossyandlosslesscompression.By transmittingandconsideringjust a
smallfractionof thecoefficients(around5%) imagesof acceptablequalitycanbegen-
erated,datavaluesof the original volumecanbe reconstructedif all coefficientsare
considered.A useful propertyof wavelet compressionand many lossy compression
techniquesis the ability to rendercompresseddatadirectly, without prior expansion
anddecompression.

Polygonalrepresentationsof structureswithin thevolume(e.g.of iso-surfaces)can
beusedto realizesolutionswhich arecompromisesbetweena purethin andfat client
approach.Thevolumeis maintainedat theserver, just thepolygonalmodelis transmit-
ted andrenderedat the client. Changesof viewing parametersrequirelocal rendering
only, justchangesaffectingtheshapeof themodelrequirearecomputationat theserver
andtransmissionof surfacedataover the network. To reducethe bandwidthrequired
to transmitthe modelandto improve the interactivity of renderingat low-endclients,
progressiverefinementaswell asfocusandcontext techniquescanbeused[5], trading
quality of representation(in lessrelevant regionsof the volume)for speed.A combi-
nationof server-sideandclient-sideapproachesfor direct volumerenderinghasbeen
presentedby Engeletal. [4]. They transmitasub-sampledvolumeto theclientanduse
it for local renderingduring interactions.The original volumeat the server is usedto
createandtransmita high-qualityimagewhenever theinteractionis finished/paused.

Purethin-client solutionson the otherhand,allow to performvisualizationusing
low-endclientsmakingat thesametime shareduseof specialpurposehardwareat the
server (multiple CPUs,VolumeProboard[18] for example).

Oneapproachto determinethe effectivenessof compressiontechniquesfor volu-
metricdata-setsandtheir suitability for Internet-basedvisualizationis to comparethe
sizeof compressedvolumesversusthesizeof imagesof thesamedata.Thiscomparison
is usefulasit directlycorrespondsto thetrade-off betweenthin andfat-clientsolutions.
If sizesof compressedvolumedata-setsrangein the samemagnitudeassizesof im-
agesthereof,andgiven the client to provide sufficient computationalperformanceto
carryoutmostof thevisualizationstepsitself, thenfat-clientsolutionsbecomefeasible
evenvia theInternet.In ourcase,weachievecompressionratessuchthat,givena �
�����
data-setaswell as ��
��
� images(24Bits per pixel) in compressedGIF-format,about
2–5imagesalreadyarebiggerin sizethanthecompressedvolumedata-set.
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Fig.1. Boundaryextraction,compressionandvisualizationpipeline

2 The BasicIdea

The effectivity of our approachis basedon the observation that for the vast major-
ity of applications,especiallyin medicalvisualization,volumetricdatais renderedby
displayingeither iso-surfaces[14] or surface-like structuresdefinedby areasof high
gradientmagnitude[13]. In bothcases,theresultof thevisualizationis determinedby
contributionsof justasmallfractionof all volumesamples.By justcodingthosevoxels
of anobject,whichactuallycontributeto its visualappearance,thesizeof thedata-setis
greatlyreduced.Thereby,asmall-scaleboundaryrepresentationof volumetricobjectsis
generated(Fig. 1, Sect.3).Compressionof theboundaryrepresentation,whichexploits
spatialcoherenceamongneighboringvoxels, producesan extremelycompactobject
representation(Sect.4) which is well-suitedfor network transmission(Sect.5). The
informationcontainedwithin this representationof objectsallows interactive render-
ing at a client without any dependency on hardware-support,andwith moreflexibility
regardingvisualizationparametersthanpolygonalsurfacerepresentations(Sect.6).1

Thefirst stepto obtainanefficient representationof boundedobjectswithin a vol-
umetricdata-setis the identificationandextractionof voxels which contribute to the
object’s visual representation,i.e., the boundaryof the object.In our case,boundary
voxels are datasampleslocatedwithin the objectand have at leastone neighboring
voxel outsidethe object.The extractionprocessgeneratesa separateboundaryrepre-
sentationfor eachobjectwithin thevolume.Usually5–10%of all voxelsbelongto the
boundaryrepresentation.

Typically, gradientinformation is requiredto evaluatea shadingequationat each
voxelduringrendering.It is moreefficientto precomputevoxelgradientsduringbound-

1 A demonstrationappletis availablefrom
http://bandviz.cg.tuwien.ac.at/basinviz/compression/
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aryextractionthanto storeall datavaluesrequiredfor gradientcomputationatboundary
voxelsat renderingtime.

Within our representationof an object,voxels aregroupedinto slicessharingthe
same� coordinate(SeeFig.1).Within aslice,theboundaryvoxelsform contoursof the
object– asetof connectedsequencesof voxels.Exploitingspatialcoherenceof thecon-
tour, thepositionsof voxelswithin thesliceareefficiently encodedinto a compressed
datastream.Voxel gradientsarecompressedin thesameorderasthecorrespondingpo-
sitions,usinga specialcompressionscheme.Additional streamsof voxel attributes(=
datachannels),like datavalue,gradientmagnitude,etc.,canbeoptionallyencodedin
a similar way. Theoutputof thecompressionstepis a boundaryrepresentationof vol-
umetricobjects,typically compressedby a factorof 10–100comparedto the original
volume.

By transmittingthedatachannelsin a smartorder, for example,positiondatafirst,
gradientslast,a preview of theobjectswith full spatialaccuracy canbedisplayed(ap-
pendix,Fig. 3) aftertransmittingjusta few Kilobytesof data(usingestimatedgradients
for shading).

Thedecompressedboundaryrepresentationcanberendereddirectly [15,9], with-
out prior reconstructionof a full-sized volume. Comparedwith a polygonal repre-
sentationof the boundarysurfaces,our approachpreserves the full accuracy of the
data-setat much lower memorycost,allows interactive renderingon low-end hard-
wareandprovidesmoreflexibility with respectto renderingparameters.Transparency,
non-photorealisticshadingandthe fusionwith truly volumetricobjects(which canbe
compressedusingthesamemethod)areeasilypossiblewithout performancedegrada-
tion.

3 Extraction of Boundary Voxels

In our approachwe either usethe iso-surfacemetaphorto specify boundaryvoxels,
or usea predefinedandexplicit segmentationmaskfor this purpose.In the first case,
voxels with a datavalue � iso-valueandat leastone26-connectedneighborwith a
valuesmallerthanthe iso-valueareconsideredto be part of the boundary. This defi-
nition resultsin 6-connectedsetsof boundaryvoxels,a propertyusefulfor exploiting
coherenceduring compressionof the contours.Boundariesof objectsdefinedusinga
segmentationmask,canbeextractedin asimilarwayandalsoresultin 6-connectedsets
of voxels.As voxel identificationaccountsonly for asmallpartof extractiontime (gra-
dientcomputationis mostexpensive),a simplesweepmethodis usedfor this purpose.
Theextractionof objectboundariesis performedduringan interactive volumevisual-
ization session.The resultingobject representationcanbe renderedimmediately, the
compressedboundarycanbestoredfor laterviewing andpresentationof visualization
results.

Althoughbestcompressionefficiency is achievedfor surface-like voxel sets,truly
volumetricobjectscanbeextractedandcompressedin thesameway. This is especially
usefulfor thevisualizationof spatiallycomplex structures,like vesselsin medicalan-
giographydata-setsor complex chaoticattractorsin thefield of dynamicalsystems[1].

76



���������� ������������ �
��� ������������ ���� �  � !�!!�! """###

$$$%%
% &&''(()

)

**++

,�,�,�,�,�,�,�,,�,�,�,�,�,�,�,-�-�-�-�-�-�-�--�-�-�-�-�-�-�-
.�.�.�.�.�.�..�.�.�.�.�.�..�.�.�.�.�.�..�.�.�.�.�.�..�.�.�.�.�.�.
/�/�/�/�/�/�//�/�/�/�/�/�//�/�/�/�/�/�//�/�/�/�/�/�//�/�/�/�/�/�/
0�0�00�0�00�0�00�0�00�0�0
1�1�11�1�11�1�11�1�11�1�1
2�2�22�2�22�2�22�2�22�2�22�2�22�2�2
3�3�33�3�33�3�33�3�33�3�33�3�33�3�3

4�4�4�4�4�4�44�4�4�4�4�4�45�5�5�5�5�55�5�5�5�5�566677
7

Y

X

sequence start (2)sequence start (1)

restart

(Px,Py)(dx=1,dy=1)(length=14)(xyyyyxyyyyyyy)(restart)

difference
encoding

huffman 
encoding

huffman 
encoding

runlength
encoding

huffman 
encoding

compressed representation

runlength
encoding

huffman 
encoding

not encoded yet

sequence start

sequence member

restart
sequence end

re−encoded

position stream length stream step stream control stream

Seq1:
(Px,Py)(dx=1,dy=1)(length=25)(xxyxxyxxyxxyxyxyxyyyyyyy)(restart)

(length=15)(yyxxxxxxyxyxyx)(end)Seq2:

(length=10)(yyxyyxyyx)(end)

sequence start

non−default  stepping

sequence trashing
sequence start
(dx=1, dy=1)

sequence start
(dx=1, dy=−1)

re−encoded
voxels

(default)

(default)

(a) (b)

Fig.2. Encodingof voxel positions:slicescannedfrom top left to bottomright a) longsequences
andsequencecontinuationsb) re-encodingof voxelsandnon-default steppingdirectionto reduce
numberof sequencestartsandthuspositionspecifications

For theextractedvoxels,attributes(datachannels)like voxel position,datavalue,gra-
dientdirectionandmagnitude,andapplicationspecificattributesarestored.Whenonly
thedisplayof shadedsurfacesis desired,storingvoxel positionandgradientdirection
is sufficient.

4 Data Compression

Individual objectswithin the volume are compressedseparately. Voxels of eachob-
ject aregroupedinto slicesof voxelswith the same� coordinatewhich areprocessed
sequentially(SeeFig. 1). To ensureeffectivity, differentdatachannelshave to becom-
pressedusingspecializedcompressionmethods.

4.1 Position Data Channel

Boundaryvoxels within a single � -slice form object contourswhich consistof face-
connectedvoxels(SeeFig.2).Exploitingspatialcoherenceandconnectivity, voxelscan
be groupedinto “sequences” which spatiallyfollow the objectcontour. The approach
is similar to “chain coding” usedin binary image(text) compression[11] for contour
encoding.In contrastcontoursof 2D objects,theboundaryof a volumetricobjectmay
bethicker thana singlelayerof voxels,andthusrequiresa modifiedapproach.
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Duringcompression,thesliceis scannedfor non-encodedvoxels.Wheneveroneis
found,a new sequenceis startedandthe positionof the voxel 8:9<;>=?9A@�B is stored.The
sequenceis continued,by selectingandappendingoneof the neighborvoxels at it’s
end.As the contourvoxels are face-connected,potentialcandidatesfor continuation
arelocatedat 8C9 ;�DFE�G =H9 @ B or 8C9 ; =H9 @IDJE
K B with E�G = E�K beingrespectively -1 or 1.
Encodingtheselectionof oneof thefour neighborsasasuccessorwouldrequire2Bits.
If the choiceis restrictedto two neighborsby usingconstantvaluesof E
G and E�K for
a whole sequence,eachvoxel continuinga sequencecanbe specifiedby a singleBit,
which defineswhethera stepby E�G or E
K is used.Althoughthis restrictionreducesthe
flexibility andthustheaveragelengthof sequences,thecostpervoxelwithin asequence
is cutby half, outweightingthedisadvantageof shortersequences.

In caseswherea directneighborof the trailing voxel of a sequenceis present,but
cannot be reachedusingthe current(fixed) E
G and E
K values,a sequencerestartcan
beperformed,continuingthesequenceat this neighborwith a new valuefor E�G or E�K .
To realizethis,eachsequenceis followedby a commandcodewhich specifieswhether
the sequenceends,or restartswith a different steppingdirection.The presenceof a
restartcodeimplicitly definesthe positionof the startvoxel of the new sequence.As
theprevioussequencehadto beterminated,no successorsof it’s lastvoxel arepresent
in it’s E
G and E
K direction.Oneof the remainingtwo neighborsis the secondbut last
voxel of the interruptedsequence,so theotheronenecessarilyis thestartingvoxel of
thenew sequence.Thenew valuesof E
G and E
K arederivedfrom E�G and E�K of theold
sequence.Dependingon whetherthe laststepof thesequencewas E�G or E�K either E
G
or E
K is inverted.Althoughbeingmorerestrictive thanwith anexplicit specificationofE
G and E�K , this strategy still allowsencodingof cyclic structureswith a singleposition
specificationandrestartcommandswithin achainof sequences.

For eachcombinationof E
G and E�K values,oneof thepossiblesteppingdirections
is preferred,wheneverbothwayscanbetaken.Thepreferenceis chosenin away, thata
clockwiseprocessingof closedobjectswill stayascloseto theouterborderaspossible.
For example,for E�GML 
 and E
KNL 
 like in thefirst sequenceof Fig. 2a,stepsby E
G
arepreferred.

After thecreationof longsequences,usuallygroupsof shortsequencesor evennon-
connectedvoxelsremain.Startinganew sequencefor eachof thesevoxelsis expensive.
Usually mostof thesevoxelscanbe encodedat a lower costby joining theminto se-
quencesre-usingvoxelsalreadyencodedearlierin theprocess(Fig. 2b). In general,a
sequencehasto be continued,reusingalreadyencodedvoxels, if this allows to reach
non-encodedvoxelsat a costwhich is lower thana “sequenceend” andthe startof a
new sequence.

As the scanfor non-encodedvoxels within a slice is performedin ascendingG
and K direction,using E
GOL 
 and E�KPL 
 asa default steppingdirectionfor newly
startedsequencesis usuallya goodsolution– voxelswith smaller G and K coordinates
comparedto thecurrentonearealreadyencodedin this case.In somecaseshowever,
keeping E
GQL 
 and E
KRL 
 as default directionstendsto generatea lot of short
sequences“sequencetrashing”(Fig. 2b). Insteadit is betterto first search“backwards”
(using E
GSLRT 
 , E�KUL 
 ) andto startthenew sequenceusing E
GSL 
 and E�KVLWT 
 at
thelastvoxel found(for reasonsof simplicity no backwardscanwasperformedfor the
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sequencesof Fig. 2a).At eachsequencestart1 Bit is usedto store,whetherthedefault
steppingdirection 8X

=Y
ZB , or thedirectionof thebackwardscan 8[

= T 
�B is used.

For furthercompression,thesequencedatais separatedinto four streams.Theposi-
tion streamstoresstartingpositionsandsteppingdirections.Positionsarestoredusing
Huffmanencodeddifferencesbetweensuccessive coordinatevalues(Typically 12Bits
perstartingcode).The lengthstreamstoresinformationaboutsequencelengths(Huff-
manencoded,5Bits persequence).Thestepstreamstorestheinformationfor building
up sequences(1Bit pervoxel). As E
G and E�K stepstendto clusterdueto thepresence
of a preferredsteppingdirection,this informationis run-lengthencoded,usingagain
Huffman encodingfor the run-lengths.The control stream is usedfor the sequence
controlinformation(end/restart,1Bit persequence).As many restartsat thebeginning
of encodinga slicearefollowedby shortsequencescollectingisolatedvoxelstowards
theendof encoding,which leadsto clusteringof restartandendcommands,run-length
encodingcombinedwith Huffman encodingis also usedhere.Combiningall those
streams,anaverageof 2Bits is requiredto encodethepositionof a singlevoxel.

Within all otherdatachannels,voxelsareencodedin thesameorderastheir posi-
tion data.Thisorderingallowsto exploit spatialcoherencewithin voxel sequencesalso
for attribute encoding.For subsequentoccurrencesof re-encodedvoxels,no attribute
informationis stored.

4.2 Gradient Dir ectionChannel

As a first step,gradientvectorsarenormalized,transformedto polar coordinatesand
quantizedto 2x6Bits. This gradientrepresentationis also usedby our renderingal-
gorithm for interactive shading.By exploiting spatialcoherencewithin the encoded
streamof voxels the gradientinformation is reducedto 3–8Bit per voxel, depending
on the smoothnessof the boundary. Both polar coordinatesareencodedinto separate
streams,storingdifferencesbetweencoordinatesof successive voxels.As mostof the
differencedataconsistsof sequencesof valuesin therangeof \ T 

=Y
Y] which areocca-
sionally interruptedby largervaluesor clustersthereof,theencoderswitchesbetween
two differentcodingschemes.Thefirst schemeis usedto encodesequencesof differ-
encesin therangeof \ T 
�=Y
^] using1Bit for 0 (mostcommon),2 and3Bits for -1 and1,
anda3Bit codeto switchto theotherencodingscheme.Largerdifferencesareencoded
usingHuffmancodingwith anextrasymbolto switchto theencodingschemefor small
values.A switch to thecodefor small valuesis only performedto encodesufficiently
longsequencesof smallvalues(costof switching).

The useof predictiontechniquesfor estimatinggradientsandthe encodingof the
predictionerrorinsteadof encodinggradientdifferencesseemsto promisegoodresults
at the first glance.Nevertheless,testsperformedusing linear regression[16] with a
diameterof 3 and5 for gradientestimation,indicatethat compressionratesobtained
usingthis techniqueareworsethanourcurrentapproach.

4.3 Other Data Channels

Additional datachannels,like gradientmagnitude,datavalue,etc.,arecompressedin
thesameorderasthepositionsof thevoxelsto exploit spatialcoherency also.Huffman
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encodingof differencesof successive valuesand additionalzlib compression(for
furtherreductionof uniformareas)is used.

5 Data Transmissionand Decompression

Thecompresseddata-setconsistsof two parts:a header, which containscontrol-infor-
mationabouttheobjectsandtheirpositionwithin thedata,informationaboutadditional
datachannelsandhow to usethemfor rendering.Thebodycontainsvoxelpositionsand
otherdatachannelsfor all objects.Thedatawithin thebodyis arrangedin awaywhich
allowsto obtainaview onthedataasearlyaspossibleduringloading.Objectsanddata
channelswhicharemoresignificantfor thepresetvisualizationmappingsarestoredand
transferredearlierthanlesssignificantdata.Datachannelsaresubdivided into blocks
of a few Kilobyteseach.As soonasanentireblockhasarrived,it canbedecompressed
anddisplayedwhile thefollowing datais arriving. This allowsvoxel datato berapidly
updated,without having to wait for thearrival of theentirechannel.Finally, asgradi-
ent informationusuallyaccountsfor mostof the datato be transmitted(Seetable1),
for boundaryobjectsa locally computedgradientapproximation(linearregression[16]
with afilter sizeof 5 while interpretingthedataasabinaryobject)canbedisplayedbe-
fore theoriginal gradientdataarrives(appendix,Fig. 3). For inherentlybinaryobjects,
like basinsof attractionwithin the phasespaceof a dynamicalsystem[1] the locally
computedgradientscanentirelyreplacethetransmissionof gradients,significantlyde-
creasingtheamountof transmitteddata.

6 Rendering

In our testapplication,tenderingof thedatais performedby a Java appletat theclient.
A fastshear-warp-basedmethodpreviouslydescribedby theAuthors[15,9] is usedand
extendedto providemoreflexible influenceof datachannelsontheresultsof rendering.
The12Bit gradientrepresentationis usedto directly index a look-up tablecontaining
shadinginformation for interactive lighting (appendix,Fig. 4a). Using a shadingta-
ble filled accordingto a non-photorealisticshadingequation[3] andusing the result
to modulatevoxel opacity, interactivenon-photorealisticrenderingcanberealized.Us-
ing gradient-basedshadingandanadditionalgradientmagnitudechannel,theclassical
gradient-modulatedtransferfunctionsof Levoy [13] canbe realized.Using oneaddi-
tionaldatachannel(containingdistanceinformation)to modulateeithercoloror opacity
(appendix,Fig. 4b) thevisualizationof contactsbetweenobjectscanbeenhanced.

7 Results

Table1 presentsthe compressionratesobtainedby applying our techniqueto a col-
lection of data-setsfrom differentapplicationfields.The headandhanddata-setsare
CT scanscontainingobjectstypical for medicalapplications.Boneandskin surfaces
extractedfrom thedataareusuallymadeup from 1–4%of all voxels.Usingour com-
pressionschemethe boundarydatais compressedby a factorof 20–90comparedto
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data-set volumesizeobj. voxelsBit/posBit/grad Bit/voxelfile(w/ograd.) ratio to gzippedvol.
head-bone_�`�a�bdcfe^`Yg 378k 2.0 7.0 9.0 430k(95k) 1:22(1:97)
head-skin _�`�a�bdcfe^`Yg 231k 2.1 5.8 7.9 229k(60k) 1:40(1:154)
hand-bone_�`�a b cd_�h�_ 191k 2.5 7.8 10.3 246k(60k) 1:45(1:186)
hand-skin _�`�a�bdcd_�h�_ 170k 2.0 4.0 6.0 126k(41k) 1:89(1:273)

engine _�`�a�bdcfe�eji 298k 1.7 5.1 6.8 253k(64k) 1:13(1:51)
teapot _�`�a�k 152k 1.7 3.4 5.1 80k(28k) 1:4(1:11)

attractor _�`�a k 769k 1.8 4.9l 6.7 639k(170k) –lXl
basin _�`�a k 292k 2.2 0.6l 2.8 104k(80k) –lXl

Table 1. Compressionsurvey. l Scalarvaluechannelinsteadof gradients.lXl Theattractorand
basindata-setshave beenextractedfrom a volumewith a vectorof severalscalarvaluesat each
voxel directlywithin thesimulationapplication.No volumetricrepresentationwasavailable.

theoriginal volumewhencompressedwith gzip. If gradientinformationis not stored
but approximatedat the client the compressionfactorincreasesto 100–270.The cost
of compressingvoxel positionswithin suchdata-setsis relatively independentof the
surfaceshape2–2.5Bit/voxel. The cost for storinggradientsdependson the smooth-
nessandcurvatureof thesurfaceandvariesbetween4 and8Bit/voxel.For objectswith
artificial, “well-behaved” surfaceslike theCT scanof anengineblockor thevoxelized
teapot,bettercompressionis achievedfor bothvoxel positionandgradientdata.Theat-
tractorandbasinof attractiondata,obtainedfrom asimulationof adynamicalsystem,is
alsoeffectively compressed– especiallyasthebasinboundaryis derivedfrom abinary
classificationof spaceandno gradientinformationhasto be stored– it canbe recon-
structedfromthesurfaceshapeattheclient.Compressionfor eachof theexamplesmen-
tionedabovetakesapproximatelyonesecondonaPIII/733PC.Decompressiontimings
for locally storeddataaresimilaronthesamePC.An appletwhichimplementsthetech-
niquesdescribedin thispaperandall compresseddata-setsdiscussedanddepictedhere
areavailableathttp://bandviz.cg.tuwien.ac.at/basinviz/compression/.

8 Conclusions

Many applicationsof volumevisualizationrequirethe displayof objectsboundaries.
Usingourcompactvolumerepresentation,volumevisualizationbecomesfeasibleeven
overtheInternet,whilestill providingfull spatialaccuracy.Representingjustthebound-
aryvoxelsof objectsreducestheamountof datato betransmittedorstoreddramatically.
By exploitingknownpropertiesof theboundaryvoxels(likespatialcoherenceandinter-
voxel connectivity) thedatais furthercompressed.Theresultingdatarepresentationis
smallerby a factorof 20-250thanthevolumecompressedwith gzip. Thelocationof
voxelswithin thevolumeis compressedveryefficiently to about2 Bit/voxel. Thecom-
pressionratesfor gradientdataarelower, in therangeof 3-8Bit/voxel, asgradientdata
is derivative informationcomparedto the original data,containinglessspatialcoher-
ence.Usinga propergradientreconstructionscheme,gradientscanbeestimatedfrom
voxel positionsonly, allowing to displayobjectsjustafterthewell-compressedposition
datahasarrived,insteadof waiting for theoriginalgradientinformation.Thedisplayof
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the boundarydatacanbe performedin puresoftware(Java) at interactive framerates
without theneedfor any hardwaresupport.
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(a) (b)

Fig.3. Estimatedgradients(a)areusedfor shadinguntil theoriginalgradientdatahasarrived(b)

(a) (b)

Fig.4. a)By adjustingthevisualizationmappingsat theclient theskinsurfacehasbeenrendered
usinganon-photorealistictechniqueover theconventionallyshadedskull. b) A datachannelcon-
tainingdistanceinformationhasbeenusedto modulateopacityof thebasinsurfaceto emphasize
areasof almost-contactbetweenthesurfaceandtheattractorcontainedwithin.
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Interactive High-Quality Maximum Intensity Projection

LukasMroz, Helwig Hauser
�
, EduardGröller

�

Abstract

Maximum IntensityProjection(MIP) is a volumerenderingtechniquewhich is usedto visualizehigh-intensity
structureswithinvolumetricdata.Ateachpixelthehighestdatavalue, which isencounteredalongacorresponding
viewingray is depicted.MIP is, for example, commonlyusedto extractvascularstructuresfrommedicaldatasets
(angiography).Due to lack of depthinformationin MIP images,animationor interactivevariation of viewing
parameters is frequentlyusedfor investigation.Up to nowno MIP algorithmsexist which are of bothinteractive
speedand high quality. In this paper we presenta high-quality MIP algorithm (trilinear interpolationwithin
cells),which is up to 50 timesfasterthanbrute-forceMIP andat least20 timesfasterthancomparableoptimized
techniques.This speed-upis accomplishedby usingan alternativestorage schemefor volumecells (sortedby
value)andby removing cellswhich do not contributeto anyMIP projection(regardlessof theviewing direction)
in a preprocessingstep.Also,a fastmaximumestimationwithin cellsis usedto furtherspeedup thealgorithm.

1. Introduction

Theability to depictbloodvesselsis of greatimportancefor
many medicalimagingapplications(angiography).CT and
MRI scannerscan be usedto obtain volumetric datasets,
whichallow theextractionof vascularstructures.Especially
dataoriginating from MRI, which is most frequentlyused
for this purpose,exhibits somepropertieswhich make the
applicationof othervolumevisualizationtechniqueslikeray
casting4 or iso-surfaceextraction6 difficult. MRI datasets,
for example,containasignificantamountof noise.Inhomo-
geneitiesin thesampleddatamake it difficult to extractsur-
facesof objectsby specifyingasingleiso-value.In addition,
vascularstructuresandespeciallythin vesselscover a wide
rangeof datavalues,whichmakestheextractionby conven-
tional techniquesalsodifficult.

Maximum intensity projection (MIP) exploits the fact,
that within angiographydatasetsthe datavaluesof vascu-
lar structuresarehigherthanthe valuesof the surrounding
tissue.By depictingthe maximumdatavalueseenthrough
eachpixel, thestructureof thevesselscontainedin thedata
is captured.A straight-forwardmethodfor calculatingMIP

�
formername:Helwig Löffelmann�
Instituteof ComputerGraphics,ViennaUniversity of Technol-

ogy, Karlsplatz 13/186/2,A-1040 Vienna, Austria. email:{mroz,
hauser, groeller}@cg.tuwien.ac.at

is to performray castingandsearchfor themaximumsam-
plevaluealongtheray insteadof theusualopacityandcolor
composition.In contrastto directvolumerendering,noearly
rayterminationis possible,makingstandardMIP evenmore
expensive.

Usually, MIP containsno shadinginformation,depthand
occlusioninformation is lost. Structureswith higher data
value lying behinda lower valued object appearto be in
front of it. The most commonway to easethe interpreta-
tion of suchimagesis to animateor interactively changethe
viewpoint while viewing. This can be achieved using one
of the interactive MIP techniques1 � 3� 7 which - up to now -
werenot able to generatehigh-quality images.For perfor-
mancereasonsthesetechniquesperformno resamplingof
theoriginaldatavaluesduringmaximumevaluation,thusin-
troducingaliasingandproducingimagesof moderatequality
(Figure1). For exact depictionof even small featuresthere
is needfor algorithmswhich producehigh-qualityMIP in
real-time.In contrastto interactive MIP techniqueswhich
perform just nearestneighborinterpolation,moreaccurate
evaluationof ray maximais requiredfor the generationof
high-qualityMIP. At thecostof significantlylongercompu-
tationtimes,thisallowsto createmuchmoredetailedimages
andaccurateanimations.

Dependingon the quality requirementsof the resulting
imageandthe desiredperformance,differentstrategiesfor
finding themaximumvaluealonga raycanbeused:

c
�
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(a) (b)

Figure 1: MIP with a) shear-warp projectionwith nearestneighborinterpolationb) raycastingandtrilinear interpolation.

� Analytical solution: Usuallydatavalueswithin acell are
reconstructedusingtrilinear interpolationof thedataval-
uesat the cell vertices.For eachdatacell, which is in-
tersectedby the ray, themaximumvalueencounteredby
the ray is calculatedanalytically. For trilinear interpola-
tion within cells this meansthat themaximumof a cubic
polynomialmustbedetermined.This is themostaccurate
but alsocomputationallymostexpensive method9.� Sampling and interpolation: As usually done for ray
casting,datavaluesaresampledalongthe ray usingtri-
linear interpolation(SeeFigure6a).The costof this ap-
proachdependson theresamplingstepsizealongtheray.
Dependingon how many interpolations,whichdo not af-
fect the result, can be avoided9� 10, accelerationcan be
gainedup to acertainlimit.� Nearest neighbor interpolation: Valuesof thedatasam-
ples closestto the ray are taken for maximumestima-
tion. In combinationwith discreteray traversal this is
the fastestmethod. As no interpolation is performed,
the voxel structureis visible in the resulting image as
aliasing1 (SeeFigures1a,6b).

Recentalgorithmsfor MIP employ a setof approachesfor
speedingup therendering:

� Optimization of ray traversal and interpolation: Sakas
etal.9 evaluatecell maximaonly if themaximumvalueof
theexaminedcell is larger thanthe ray-maximumcalcu-
latedsofar. For additionalspeedupthey useintegerarith-
meticsfor raytraversalandacache-coherentvolumestor-
agescheme.Zuiderveld et al.10 applya similar technique
to avoid trilinear interpolations.In addition,cellscontain-
ing only backgroundnoise(usuallyratherlow values)are
not interpolated.For furtherspeedupa low-resolutionim-
agecontaininglower-boundestimationsof themaximum
of pixel clustersis generatedbeforethe main rendering
step.Cells with valuesbelow this boundcanbe skipped
when the final image is generated.Finally a distance-
volumeis usedto skip emptyspaces.A carefuldefinition

of “empty space”is requiredto avoid thatsmall,low val-
uedstructuresaremissed.� Use of graphics hardware: Heidrich et al.3 use con-
ventionalpolygon renderinghardware to simulateMIP.
Several iso-surfacesfor differentthresholdvaluesareex-
tractedfrom thedataset.Beforerendering,thegeometry
is transformedin a way, that thedepthof a polygoncor-
respondsto the datavalueof its iso-surface.MIP is ap-
proximatedby displayingthez-buffer asa rangeof gray
values.Recentversionsof SGI OpenGLincludeblend-
ing modesfor maximumevaluationand the SGI Volu-
mizer API includesa MIP option. However the advan-
tagesof hardware-accelerationfor high-qualityMIP are
only availablefor upperrangegraphicsworkstations.Re-
centlytheVolumeProboard8 becameavailableasapurely
hardware-basedsolution for volume renderingand also
MIP. For generatingMIP of a quality which is compara-
ble to ourapproach,4 timessuper-samplinghasto beem-
ployed,reducingtheframeratesof theVolumeProboard
to approximately4 fps for a1283 volume.� Splatting and shear warp factorization: Several
approaches1 � 2 exploit the advantages of shear-warp
rendering5 to speedup MIP. Cai et al.1 usean interme-
diate“worksheet”for compositinginterpolatedintensity
contributions of voxels for projection of a single slice
of the volume. The worksheetis then combinedwith
the shearimageto obtain the maxima.Several splatting
modeswith differentspeed/ quality tradeoffs areavail-
able.Run-lengthencodingandsortingof theencodedseg-
mentsby valueareusedto achieve furtherspeedup.� Elimination of irrelevant voxels and alternative stor-
age schemes: In a previouspaperwe showed,thatmany
voxels of a volumetricdatasetdo not contribute to any
MIP7. Significantspeedupis gainedby identifying them
beforerenderingandexcluding themfrom imagegener-
ation. To avoid overheadfor skipping them during ren-
dering,voxelswhichmightcontributeto aMIP imageare
storedin a list andsortedaccordingto theirdatavalue.By
processingthis list from low to high intensityvoxelsand
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projectingthemusingacomputationallyinexpensive pro-
jection(template-basedorshear-warpparallelprojection),
real-timeMIP is achieved(SeeFigure6c).Onepurposeof
thispaperis to extendthis ideato high-qualityMIP using
trilinear interpolation.

Two majorlimitationsto theperformanceof state-of-the-
art softwarebasedhigh-qualityMIP canbeidentified.First,
althoughregionsof thevolumewhichdo not containmean-
ingful datacanbe identifiedin advanceandskippedduring
renderingusingdistancevolumesor similarstructures10, the
overheadassociatedwith evaluatingtheadditionalinforma-
tionandsteppingoverthesecellssignificantlylimits thepos-
siblespeedupof volumetraversal.Secondly, despiteof space
leapingapproaches,thenumberof interpolationswhich are
actually performedis still far from optimum. As the vol-
umeis traversedin a spatiallyorderedmanneralongview-
ing rays,local maximaareusuallyencounteredandevalu-
atedbeforethe global ray maximumis reached.Moreover,
lots of unnecessaryevaluationsareperformedon the rising
slopesof datavaluewhichprecedeamaximum.

In this paperwe presenta new algorithmfor the gener-
ationof high-qualityMIP (parallelprojection)which is ap-
proximatelyoneto two ordersof magnitudefasterthanother
software-basedapproacheswith comparablequality. In Sec-
tion2wepresentapreprocessingscheme,whichcan(but not
necessarilyhasto) be appliedto identify andexcludenon-
contributingcellsfrom thevolume.To maximizetheamount
of cells,whichdo notcontributeto any MIP, 12setsof cells
are generated,correspondingto 12 clustersof viewing di-
rections.Usually, more than two thirds of all cells can be
eliminatedfrom thedatacompletely, no longercausingany
overheadto identify themlaterandskip over them.This is
achievedby resortingthecellsaccordingto their maximum
value(Section3). As thespatialorderof processingcellsis
not relevant for maximumevaluation,cellscontaininghigh
datavaluesareevaluatedfirst. This reducesthe numberof
evaluationsrequiredfor MIP significantly. To avoid even
moreof the relatively expensive trilinear interpolations,we
usea fastmethodfor estimatingthemaximumvaluealong
a ray-cell intersection(Section4). Using thesetechniques,
weareableto greatlyreducethenumberof trilinear interpo-
lationsrequiredperimagepixel, achieving interactive high-
qualityMIP.

2. Preprocessing of Volume Data

The methodsdescribedin the following sectionsarebased
on aninterpretationof thedatasetasa regulargrid of cells,
eachone definedby eight datasamplesof the volume lo-
catedat the cell’s vertices.Within cells trilinear interpola-
tion is assumed.For imagegenerationcontinuousraysare
shotthroughthepixelsof theimage,allowing arbitraryim-
agesizesaswell asoversampling.

2.1. Motivation

Althoughtime usedfor volumetraversalis moresignificant
as a portion of overall renderingtime for computationally
inexpensive maximumevaluationand projectionmethods,
identifying and skipping not interestingregions also low-
ersthe numberof candidatesfor a costly maximumevalu-
ation.For trilinear interpolationwithin cells the cell maxi-
mumis alwayslocatedat oneof thevertices.Besidesskip-
ping pre-identifiedemptyregionsof the volumeusingdis-
tancevolumes,anothersimpleway to increaseefficiency is
to perform maximumevaluationsonly within cells with a
cell maximumCmax greaterthanthecurrentray maximum.
Thistechniqueavoidstheevaluationof cellsreachedby rays
after processinga (local) maximum.If in additiona good
lower-boundestimationof theraymaximumcanbeobtained
before rendering,also cells encounteredbefore the maxi-
mum can be skipped,if their maximumis lower than the
lower-boundestimation.

Although thesemethodsreducethe numberof required
evaluationssignificantly, the lower-boundestimationhasto
beperformedfor eachnew viewing directionandmuchtime
is spentduring renderingon identifying andthenskipping
cellsandemptyregions.

To increasetimesavingsduringrendering,cellswhichdo
not contributeto any MIP shouldbeidentifiedandremoved
duringapreprocessingstep.

2.2. Cell Removal

A cellC doesnotcontributeto MIP from any viewing direc-
tion (andthereforeshouldnot to be consideredfor render-
ing), if all rayspassingthroughit collecta highervalueby
passingthroughothercellsD eitherbeforeor afterC is pro-
cessed.Our first approachis to investigatedirectneighbors
Di of acell C only. C doesnot contributeto any ray through
it if � i �Dimin 	 Cmax. As we assumecontinuousraysto be
tracedthroughthevolume,only face-connectedneighborsof
C have to beconsidered(A ray enteringC throughanedge
or vertex at least“touches”someface-connectedneighbors).

Applying suchaunifiedrelevancedetectionfor cell elim-
ination,whichconsidersthewholedomainof viewing direc-
tions,is very ineffective andleadsto low cell removal rates.
Significantlybetterresultscanbeachievedif severaldistinct
clustersof similar viewing directionsaredistinguished.For
rendering,thesetof cellscorrespondingto theclusterwhich
containsthe currentviewing-directionis selectedandused
for MIP. To minimize thenumberof neighborswhich have
to bechecked for elimination,a decompositionof all view-
ing directionsinto 24 clustersis performedfirst. Eachclus-
terof viewing directionscorrespondsto aquarter-faceof the
directionalcubeasdepictedin Figure2b. Consideringjust
viewing directionsout of oneclustera cell’s relevanceto a
MIP dependson just threeneighbors(Figure2c) insteadof
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Figure 2: a) relevanceof cellC dependsonvaluesof 6 face-
connectedneighbors Di . b) decompositionof the viewing-
domaininto 24(12)clustersof viewingdirections.c) for any
viewing directionwithin cluster11 relevanceof C depends
on thevaluesof at most3 directneighbors

six as in the caseof viewpoint-independentpreprocessing
(Figure2a).

As the directionof ray traversalis not relevant for MIP
anda MIP generatedfrom a certainviewing directionpro-
ducesexactly the sameimage as a MIP from the oppo-
site direction,setsof possiblycontributing cells have only
to be calculatedfor 12 of the 24 clustersof viewing di-
rections.Furthermore,ascanbe seenin Figures2b andc,
threeclustersof viewing directionsaroundeachcornerof
the directionalcuberesult in the samesetof direct neigh-
borson which a cell’s relevancedepends(for exampleclus-
ters1, 11 and20). Unfortunately, the clustersdiffer in the
way in which theestimationsfor raysenteringthroughcell
facescombineto theestimationsfor exiting faces.As ourre-
moval algorithmusesfaceestimationsfor determiningnon-
contributing cells,theclusterscannot becombinedwithout
sacrificingremoval efficiency.

To achieve effective cell elimination,not only the influ-
enceof directneighbors,but alsotheinfluenceof moredis-
tantcellsonrayshasto beinvestigated.Thiscanbedoneby
applyingasimpletwo-passschemefor eachclusterof view-
ing directions.For reasonsof simplicity, theprocedurewill
beexplainedin 2D. Theextensionto 3D is straight-forward.

For cell removal in 2D, theviewing domainis decompos-
ited into 8 clusters,eachonecoveringarangeof viewing di-
rectionsspanning45 degrees(Figure3a).Rayswithin clus-
ter1canentercellC only throughedgev1v4 orv4v3. Consid-
eringjust thevaluesat thecell’svertices,cellC hasnoinflu-
enceon themaximumof raysthroughv1v4, if min
 v1 � v4 � 	
max
 v2 � v3 � . In this case,the maximumcontribution of the
cell to any ray enteringthroughv1v4 and leaving through
v1v2 or v2v3 is locatedon the edgev1v4. As this edgeis
sharedwith cell D which is traversedby the rays earlier,
C doesnot contribute to the rays.Similarly, thecell hasno
influenceon raysthroughv4v3 if min
 v3 � v4 � 	 max
 v1 � v2 �

1 2

34
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Figure 3: a) Viewing domaindecompositionin 2D. b) face-
maximumpropagationfor cluster1

dueto thecontribution of cell E. Theconditionfor v4v3 has
to considerthe influenceof v1, asa large datavalueat v1
mayinfluencethedatagradientwithin thecell in a way that
raysthroughv4v3 obtaina largervaluewithin thecell than
atv4v3 or v2v3.

Preprocessingthe volume in a spatially consecutive or-
der, theinfluenceof cellson ray maximacanbepropagated
with anadvancingfront approach.In theexamplein Figure3
cells D and E are processedbeforecell C is reached.For
bothof them,lower-boundestimationsof themaximumfor
rayswhichleavethecellshavebeencalculated(for thisclus-
ter, raysleave cellseitherthroughfacev2v3 or throughface
v1v2). This means,that at the time C is processed,lower-
boundestimationsm1 
 4 for raysenteringthroughv1v4 and
m3 
 4 for raysenteringthroughv3v4 areavailable,which al-
readyincludetheinfluenceof moredistant(preceding)cells
andthe influenceof the edgesthemselves(min
 v1 � v4 � and
min
 v3 � v4 � ). Thus,therevisedtestfor theirrelevanceof cell
C is m1 
 4 	 max
 v2 � v3 � andm3 
 4 	 max
 v1 � v2 � . If bothcon-
ditionsaretrue,C is removedandnever ever consideredfor
MIP anymore.After classifyingthecell, thelower-boundes-
timationsfor the maximaof rays leaving the cell have to
becomputed.As for the investigatedclusterof viewing di-
rectionsonly rayswhich have enteredthecell throughv1v4
canleave throughv1v2, theestimationfor raysthroughv1v2
is m1 
 2 � max
 min
 v1 � v2 ��� m1 
 4 � . As raysenteringthrough
both,v1v4 andv3v4 canleave throughv2v3, the estimation
for v2v3 � max
 min
 v2 � v3 ��� min
 m1 
 4 � m3 
 4 ��� .

While thefirst sweepallows to identify andremove low-
valuedcells locatedbehindhigher-valuedpartsof the vol-
ume,a secondsweepin theoppositedirectionis requiredto
propagatetheinfluenceof high-valuedcellsto cellsreached
earlierby theraysof this cluster. Thesecondsweepis iden-
tical with thefirst sweepwith theexceptionof the inverted
orientationof theraysandthusaninvertedvolumescanor-
der. Cellswhichhavebeenremovedduringthefirst sweepdo
not influencerayvaluesduringthesecondsweep.Consider-
ing alsocellsremovedduringthefirst sweepwould resultin
mutualeliminationof cellsandleadto holesin thevolume.

Thetwo-passmethodpresentedabovecanbeextendedto
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Figure 4: Cell arraystoragescheme:all cellsaresortedac-
cording toCmax in descendingorder. Theirpositionin space
is stored in an array (4 bytesper cell). An additional index
pointsto thefirst cell in thearray for each possiblevalueof
Cmax. All cellswith thesameCmax are sub-sortedaccording
to Cmin in descendingorder.

3D in a straight-forward way. For a decompositionof the
viewing domaininto 24 (12) clusters,rays may enterand
leavecellsthroughthreefacesfor eachcluster. Lower-bound
estimationshave to bepropagatedfor facesinsteadof edges.

2.3. Noise Compensation

To even moreincreasethe efficiency of removal andcom-
pensatefor noisewhich is usuallypresentin MRI datasets,
the removal processcan be modified to remove also cells
which violate the exact criteria by a factorwhich doesnot
exceeda userspecifiedthreshold(removal tolerance).Af-
ter the preprocessingwith a 1% tolerance,on averageonly
about30%of all cells remainaspossiblycontributing for a
singleview-set.For detailedresultspleasereferto Section5
andTable3.

3. Cell Storage

In the following, we will use 
 x � y� z� �
 min
 xi ��� min
 yi ��� min
 zi ��� , 
 xi � yi � zi � being the vertex
coordinates,asreferencecoordinatesof acell.

As the orderin which cells areprocessedis not relevant
for MIP, we areableto abandonthe usualstoragescheme
for volumes,which is a threedimensionalarray. Weuse,in-
stead,a storageschemewhich is well suitedfor omitting
irrelevant cells during rendering7. Cells are sortedaccord-
ing to descendingmaximumvalueswithin a 1D cell array.
For every cell its referencecoordinatesare storedusing 4
Bytes– packing3 indices 
 x � y� z� allows to storevolumes
upto asizeof 2048x2048x1024cells.Assumingdatavalues
to berepresentedby 2 bytes,thisalternativestoragescheme
requirestwice the amountof memory(without any cell re-
moval). Using this alternative storageschemeit is trivial to
startMIP with high-valuedcells.Speedup factorsof 10-20
comparedto otheroptimizedhigh-qualityMIP approaches
aregainedby just this partof our approachin combination
with theusualoptimizationslike evaluatingonly cellswith
Cmax � ray maxandnoiseskipping(SeeTable1, row 3).

Althoughsortingall cellswithin asetbyCmin wouldmost

effectively reducethe number of interpolationsrequired,
sortingthemby Cmax hasseveral advantages.First,Cmax is
implicitly encodedinto thepositionof a cell in thearrayby
usinganadditionalarrayof indiceswhichcontains,for each
possiblevalueof Cmax, the index of thefirst cell in thecell
arraywith the particularvalueof Cmax (seeFigure4). The
implicit encodingof Cmaxallowsto accessit in anextremely
efficientway for testingacell’s relevanceduringprojection.
Within a groupof cells with the sameCmax sub-sortingis
doneaccordingto descendingCmin. Due to thesmall range
of differentvalues,sortingbyCmaxandCmin canbedoneus-
ing fasthistogram-basedsorting(complexity O 
 N � ). During
projection,cellswith highCmaxandCmin areprocessedfirst.

Fordisplayof medicalimagesusuallyaremappingof data
valuesto gray levels (windowing) is appliedto enhancethe
contrastfor aspecificrangeof datavalueswhichis of utmost
interestto theviewer. A window is definedby acenterc and
awidthvaluew, anddefinesamappingof data-valuesbelow
c � w� 2 to black, valuesabove c � w� 2 to white, andval-
uesbetweenc � w� 2 andc � w� 2 to auniformrampof gray
levels. If cells are sortedby Cmax and renderingis started
with highestvaluesof Cmax, renderingcanbestoppedafter
reachingthe first cell with Cmax mappedto black. For re-
alistic window definitionsas usedby medicaldoctorsthis
cansignificantlyspeedup therendering(up to severaltimes
faster).

Besidesthe fast computationof MIP due to re-sorting,
anotherbig advantageis gained:progressive refinementis
achieved automatically, as cells which are most relevant
to MIP are projectedfirst. Projectioncan be stoppedany
time - the resultwill alwaysbeoptimal for the given time-
constraints.Also, computationof cheappreviews is simple.
Sinceinteractionis crucial for usingMIP, this advantageis
alsovery importantfor practicaluse.

In the following a roughcomparisonbetweenthe tradi-
tional way of volumestorageandour cells array is given:
Storing the position instead of data values doubles the
amountof memoryrequired.As roughly30%of all cellsre-
mainafterthepreprocessingstep(cell removal), theamount
of memory required is about 0.6 * original volume size
(per clusterof viewing directions).For 12 clustersthis re-
sultsin anapproximatelysevenfoldincreasein memorysize
comparedwith the original dataset.Consideringdatasets
from medicalapplicationsandregular hardware resources,
thestoragerequirementsareacceptable.If, nevertheless,the
memoryresourcesarea limiting factor, thedatasetcanalso
be transformedinto a singlecell arraywithout prior view-
dependentpreprocessing.This,of course,slightly increases
renderingtime (SeeTable5) , but still gainsresultssignif-
icantly fasterthanconventionalapproachesof comparable
imagequality, while requiring just twice asmuchmemory
astheoriginaldataset.
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pixel gridv1 v1sub-pixel grid

pixels covered by cell C pixels covered by cell D

projection

of cell C

of cell D
projection

Figure 5: Cell projection templates.As the projectionsof
cell C and cell D (position of v1) havedifferent sub-pixel
offsets,the shapeof pixel-setsaffectedby the cells differs.
ThusC andD require differenttemplatesfor projection.

4. Rendering

To achieve maximumrenderingperformance,precalculated
templatesareusedto determineall pixelsof theimagewhich
arecoveredby a cell’s projection(Section4.1). A fastpar-
allel projectionis usedto calculatethe positionof a cell’s
projectionin the image(Section4.2). Finally, the orderof
traversalof the cell arrayanda fastheuristicestimationof
theupper-boundfor themaximumvaluealongacell-rayin-
tersectionreducethe numberof more costly and accurate
trilinearmaximumevaluationsrequired(Section4.3).

4.1. Template Calculation

Themainpurposeof thetemplateis to allow fastidentifica-
tion of thepixelsaffectedby theprojectionof acell. At each
of thesepixels, thecell’s influenceon the maximumof the
ray throughthis pixel andthusto the pixel valuehasto be
evaluated.A sufficiently accuratecalculationof this contri-
bution requiresseveral stepsof trilinear interpolationalong
theraywithin thecell. To save timeduringcell projection,it
is quiteusefulto pre-calculateentryandexit coordinatesof
theray for eachpixel of thetemplate.Interpolationweights
(u, v, w ��� 0 � 1� for trilinear interpolation)of the entry and
exit pointsarestoredfor thispurpose.

As only parallelprojectionis used,theshapeandsizeof
the projectedimageof all cells is identical in a continuous
imagespace.Dueto arbitraryscalingandrotationof thevol-
umefor viewing andthediscretenatureof apixelizedimage,
imagesof cells differ by an individual sub-pixel displace-
mentwith respectto thepixelsof the image(seeFigure5),
which also leadsto differing setsof pixels coveredby the
cell’s image.To accountfor this shift with sufficient accu-
racy, the projectionhasto be performedwith sub-pixel ac-
curacy, allowing to placea cell’s imagein betweenimage-
pixel positions.Theplacementon a 4x4 grid within a pixel
producessatisfyingresults.

Theplacementof cell imagesonsub-pixel positionsleads
to slightly differentshapesof thetemplatesfor differentx/y
displacementsandalsorequiresthecalculationof individual
rayentry/exit positionsfor eachof thetemplates.Theresult-
ing (4x4) arrayof templatescanbedirectly accessedduring
renderingusingthesub-pixel displacementsof a cell’s pro-
jection.

To optimize the rendering performanceeach element
(=pixel) of thetemplatestoresasetof values:� theoffsetof thiselement’spixel from thepixel containing

the projectionof the cell’s origin (cell vertex v1). As the
imageof v1 canbelocatedanywherewithin thecell’s im-
agedependingon theviewing direction,thepixel offsets
mayalsobecomenegative.� theinterpolationweights(u,v,w) for rayentryandexit co-
ordinatesat thiselement.� thenumberof interpolationstepsrequiredalongtheray /
cell intersection� A (du,dv,dw) vectordefiningastepalongtheray.

Beforerendering,the templateis optimizedto speedup
access.To avoid thenecessityof skippingnon-coveredpix-
elswithin a template,just a list of coveredtemplateentries
is storedinsteadof a2D array. Thus,eachtemplateis justan
arrayof imageoffset/ rayinformationelementsfor locations
coveredby acell’sprojection.

4.2. Projection

As the parallel projectionof a point can be performedby
independentlyprojectingit’ sx, y, zcoordinates,

P

��
x
y
z

��
� P

��
x
0
0

��
� P

��
0
y
0

��
� P

��
0
0
z

��

The projectedpositionsximg, yimg can be precalculated
for theprojectionof all possiblex, y, andz cell coordinates
within the volume.This resultsin six arrays- onefor each
ximg, yimg positionof eachx, y, andz coordinate.

For performancereasonswe useintegerpositions.As the
summationof 3 integervaluesto obtaintheximg or yimg po-
sition of a cell’s projectionintroducesan error of up to 1.5
pixels in ximg andyimg, thearrayshave to containsub-pixel
coordinatesto keeptheerrorbelow onepixel.

In combinationwith precalculatedtemplates,the projec-
tionof acell becomessimpleandefficient.Cmax is obtained
in awaydescribedin Section4.3,img_width is thewidth
of the imagein pixels..pixel is thex or y coordinateof
animagepixel,.subpix is asub-pixel offset.

(xp,yp)=projection(cell.v1);
imgpos=xp.pixel+yp.pixel*img_width;
template=subtemplate[xp.subpix, yp.subpix];
for all elements in template
{
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if(image[imgpos+
template_element.imgoffset]<Cmax)
evaluate cell contribution at this pixel

}

4.3. Evaluation of the Maximum

Comparedto theotherstagesof MIP generation,theevalua-
tion of maximumvalueswithin cells(trilinear interpolation)
is by far themostexpensive part.Thereductionof thenum-
ber andeffort of evaluationsrequiredto generatean image
is crucialfor performance.Performancecanbeimprovedon
onehandby usinga lessexpensive but usuallyalsolessac-
curateevaluationmethodto approximatethemaximum.On
the otherhand,moreevaluationscanbe omittedif a good
guessfor the ray maximumcanbe foundearly. The sorted
cell arrayallows to accessandrendermostpromisingcells
first. If the renderingis startedwith the projectionof cells
which have the highestcell maximumand minimum, the
probabilityof having to evaluatesuccessive cells projected
on thesamepixels is significantlyreduced.As canbe seen
in Table4, only about2-4%of thecellsof theoriginal data
setrequiretheuseof trilinear interpolationto evaluatetheir
possiblecontributionto aMIP. Theevaluationof theremain-
ing cells is stoppedeitherafter checkingCmax or afterper-
forming the slightly more expensive maximumestimation
describedbelow.

Valuesof pixels covered by the currentcell which are
lowerthanthecell maximumpotentiallyhaveto bereplaced
by a highervalue.An analyticalsolutionfor the maximum
alongthe ray throughthepixel is extremelyexpensive, and
afew trilinearinterpolationstepsalongtherayarealsoquite
costly. A cheapestimationof an upperboundfor the ray
maximumwhich is morerestrictive thanthecell maximum
Cmax can greatly reducethe numberof more costly exact
evaluationsof themaximum.Wefacilitatethefollowing ob-
servationsto presentsuchaheuristic:� If themaximumis locatedontheentryor exit pointof the

ray: applyingtwo bilinearinterpolationson theentryand
exit facesof the cell gainsthe exact valuefor the maxi-
mumasmax
 entry� exit � .� If for thisraythemaximumis locatedwithin thecell, there
mustbe somepositive deviation from a linear evolution
betweentheentryandexit pointof theray. If a cheapap-
proximativeguessfor thisnonlinearitywithin thecell can
befound,theupper-boundof theray canbeestimatedas
min
 Cmax� max
 entry� exit � � deviation� .

A fast approximative estimation of this deviation is
deviation � Max
 0 � Max
�
 vi � v j � � 2� � c� with vi , v j be-
ing datavaluesat theverticeslocatedat theendsof thefour
spacediagonalsof thecell andc beingthetrilinearly interpo-
latedvalueat thecenterof thecell (cheap,asspecialcase).
Although this estimationis not a strict upperboundin all
cases(99%),novisible impacton imagesof real-world data
setshasbeenfound.On average,this estimationfor theray

method interpol. cells pix.set

bruteforce 100% 100% 24

+Cmax � max 26% 29% 24

+ignore noise 7.7% 7.8% 13

cell array 1.3% 2.5% 1.65

Table 2: Comparisonof interpolationefficiency:bruteforce
(row 1) interpolatesat everystepalongray (col. 1), within
everycell (col. 2). Each pixelchanges24times(col. 3). Row
2: interpolationonlyif Cmax � max.Row3: alsoignore low-
valuedcells.Row4 showstheresultsfor our approach.

dataset size toler. sweep1 sweep2 total

hand 2562x100 1% 81% 3% 84%

hand 2562x100 2% 93% 2% 95%

kidney 2562x69 1% 56% 5.5% 61%

Table 3: Cell eliminationresults

maximumwithin acell is 30%lowercomparedwith Cmaxas
anestimation.Whenusingthisestimationabout60%lessof
significantlymoreexpensive trilinearevaluationshave to be
performed(Table4). As only 25-30%of the trilinear eval-
uationsleadto a changeof a pixel value,a moretight up-
perboundestimationcouldgainevenmoreperformance.If
theestimatedupperboundfor theray is above thevalueof
the examinedpixel, several stepsof trilinear interpolation
within thecell areperformedutilizing informationstoredin
thetemplatesto obtaintheraymaximum.

Projectinghigh valuedcellsfirst andusingan additional
estimationof the ray/cellmaximumis very efficient, asthe
valueof eachnon-backgroundpixel of theimageis setonly
1.3 to 4 timescomparedto 10-25timesfor MIP usingcon-
ventionalray-castingwith optimizations.

For thefollowing pseudo-codesummaryof theprojection
of the cell array, gray[] storesthe mappingfrom data-
valuesto graylevelsdefinedby thewindowing function.

cells=get_cell_set(viewmatrix);
calculate_template(viewmatrix);
calculate_projection_arrays(viewmatrix);
for Cmax=highest to 0
if(gray[Cmax]>0)
for cell=cells.first_cell_with_Cmax

to cells.last_cell_with_Cmax
project(cell);
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difference
a) trilinear interpolation b) n. neighborraycasting c) n. neighborshear-warp d) cell array

Figure 6: Quality comparisonof MIP producedusinga) ray castingwith trilinear interpolation,b) ray castingwith nearest
neighborinterpolation,c) shear-warpprojectionwith nearestneighborinterpolation,d) sortedcellsandtrilinear interpolation.
Thedifferenceimagesdepictamplifieddifferencewith respectto ray castingwith trilinear interpolation.

levelsof our preprocessing memory speed-upcomparedto
approach time factor bruteforce +Cmax � max +ignore noise

cell array 6s 2.0 1.3-1.4

+Cmax � max 6s 2.0 6.1-7.4 3.9-5.3 3.1-4

+ignore noise 6s 2.0 20-40 14-25 11-20

+cell elimination 93.6s 3.6-12 28-43 18-27 24-22

Table 1: Comparisonof ray-castingbasedMIP (trilinear interpolation,columns4 and5 with optimizations)with our approach
(cell array andoptimizations).

data img. size cell acc. appr. eval. pixel set

hand 4652 2.5% 1518066 26% 1.65

hand 5122 4.1% 2439476 27% 1.5

kidney 4652 3.2% 1077898 29% 1.46

Table 4: Efficiencyof maximumvalueevaluation: Column
“cell acc.” givesthepercentage of cellsinvolvedin theeval-
uationprocess.“Appr.” is thetotal numberof approximation
operations, “eval” is the percentage of approximatedray
intersectionswhich required more exact evaluation.“Pixel
set” is thenumberof writesto a non-backgroundpixel.

dataset size imgsize no prepr. prepr.

hand 2562x100 2562 295ms 215ms
5122 615ms 450ms

kidney 2562x69 2562 180ms 150ms
5122 350ms 315ms

head 2562x124 2562 180ms 170ms
5122 380ms 365ms

Table 5: Renderingtimesfor different datasetsand image
sizes.all data setshavebeenpreprocessedwith a 1% tol-
erancethreshold.The timingsdependon the usedwindow
definition.Someof theresultingimagescanbeseenin Fig-
ures6d and 8a,b.
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difference
tolerance0% tolerance1% tolerance2%

Figure 7: Resultsfor sortedcell array MIP with different tolerancevaluesfor preprocessing(handdataset).As toleranceis
increased,deviationsappearmainlywithin areascontaininglow-valuednoise.

5. Results

The MIP algorithm presented in this paper has
been implemented as a Java applet. The applet
and further high-resolution results are available at
(http://www.cg.tuwien.ac.at/research/vis/vismed/CMIP/).
We expecta C implementationto exhibit a 30-40%better
performance.

Table 1 depicts the speed-upachieved by our method
comparedto brute-forceray castingwith trilinear interpola-
tion (integerarithmetic)andto optimizedray-casting(no in-
terpolationin cellswith Cmax � max, skipbackgroundnoise
windowed to black). The secondrow (sortedcells, evalu-
ation only if Cmax 	 max) clearly shows the advantageof
projectinghigh-valuedcellsfirst (factor3-7). Even moreis
gainedby the ability to skip low-valuedcells without any
overhead(row 3). This resultsin aspeed-upfactorof 11-40.
Finally, by eliminatingcells during the preprocessingstep,
factorsof upto 43comparedto bruteforceand24compared
to optimizedray-castingcanbeachieved.

Renderingtimesascomparedin Table1 maydependon
theoptimizationof theimplementation.To obtaina lessim-
plementationdependentmeasurefor the efficiency of the
approach,we comparethe numberof interpolationsper-
formed,cell andimage-accessstatisticsof our algorithmto
ray-castingin Table 2. Comparedto even optimized ray-

casting,thecell arrayrequiresfive timeslessinterpolations
andchangesray-maximaandthuspixel valuessignificantly
lessfrequently. Dueto thedifferencein thenumberof inter-
polationsperformed,wecanconcludethataspeed-upfactor
of approximatelyfiveis relatedto theavoidanceof cell eval-
uations.Theremainingportionof thespeed-upis basedon
efficient volume traversal(strictly linear accessto the cell
array)andcell skipping.

Table3 shows cell removal statisticsfor the preprocess-
ing of thehanddatasetdepictedin Figures6 and7 andthe
kidney dataset of Figure 8a. As the secondsweepelimi-
natesjustfew additionalcells,it canbeoptionallyomittedto
shortenthe preprocessing.Increasingthe tolerancefor pre-
processingmainly affectslow-gradientareaswhich usually
donotcontainvesseldata(Figure7).

Table4 presentsstatisticalinformationon thenumberof
cells involved in the imagecreation,the numberof upper
boundestimationsfor ray-cellintersectionsandthepercent-
ageof intersectionswhich requirea moreaccuratetrilinear
interpolationto evaluatethe maximumwithin a cell. Rows
1 and2 representthe handdatasetfor two differentimage
sizes,Row 3 shows datafor thekidney dataset.

Finally, Table5 presentsrenderingtimesfor MIP using
thecell arrayapproach.Therenderingtimeshavebeenmea-
suredonaPIII/750PC.
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Figure 8: a) kidney datasetb) headdataset

6. Future Work

The performanceof MIP methodsbasedon sortedcell ar-
rayscanbestill improvedby furtherdevelopmentin two ar-
eas:amoreselective preprocessingtechnique,which is able
to remove morecells,canreducememoryrequirementsand
unnecessaryprocessingof invisible cells.As thetestresults
discussedin Section4.3 andsummarizedin Table4 show,
more rigid upper bound approximationtechniquescould
eliminateevenmoreexactmaximumevaluations.Furtherre-
searchshouldbedoneon thesetopics.

7. Conclusion

In this paperwe have presenteda new high-qualitymethod
for the generationof MIP images.During a preprocessing
stepcellswhich do not contributeto any MIP (regardlessof
theviewing direction)areidentifiedandremoved.To mini-
mize dependenciesandmaximizethe numberof irrelevant
cells, the preprocessingis performedfor 12 distinct clus-
ters of viewing directions.The positionsof the remaining
cellsaresortedaccordingto thecell maximum.For render-
ing, the clustercontainingthe currentviewing direction is
selectedandprojected.Thecellsareprocessedstartingwith
cellswith highvaluesusingprecalculatedtemplatesto deter-
minepixelsaffectedby theprojection.As pixelsof the im-
ageareinitially setto highvaluesby theprojectionof high-
valuedcells,many unnecessarymaximumevaluationswhich
areperformedby otherMIP approachescanbeavoided.To
furtherdecreasethenumberof costlymaximumevaluations,
a cheapandeffective estimationof theupperboundfor the
maximumof a ray throughacell is performedfirst.

Themethodprovidesinteractive frame-rateson high-end
PCsandis well-suitedfor fastgenerationof animationloops
especiallyto depictsmalldetailswithin thedatawhich may
be missedor deformedusing other fast, but lessaccurate
methods.Comparedto ray-castingbasedhigh-qualityMIP
approachesour methodavoids trilinear interpolationsin a
significantly more efficient way and achieves at least 20
timesbetterperformance,whileprovidingbetterqualitythan
other(shear-warpor hardwarebased)approaches.
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