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Traditional analysis tools usually read back hardware counters and 
display statistics that correspond to the question ”What is going wrong“. 
In contrast to these tools, the aim of this work [1] is to utilize 
visualizations that allow programmers to quickly test their 
hypotheses on ”Why is something going wrong“.
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The execution of parallel programs is often 
considered as a black box, where only input and 
output is known, but only little is displayed about the 
execution of the code itself. 

However, knowledge about the execution behavior 
is crucial for the understanding, correctness and 
especially for the performance of the 
implementation.
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Domain-specific Language (DSL)
- We have developed a DSL, based on ViSlang [2], to rapidly develop parallel 
programs and to analyze their execution behavior and interaction with the 
underlying hardware through the aid of visualizations
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Intermediate Data Extraction 
- This example demonstrates the usage 
of code annotations to extract the 
intermediate data (in this case: inter-
mediate values  of a bilateral filter)
- Instead of manually inserting code to 
extract the data, code annotations 
provide a quicker and simpler solution 

Data Visualizations 
- The two images at the top show input 
and output 
- The images below show the filter values 
corresponding to a certain pixel 
- The graph at the bottom shows a 2D 
representation of one horizontal snippet 
of the filter values

Source-to-Source Compiler
- A compiler transforms programs, written in our DSL, to OpenCL programs 
with additional instrumentations (corresponding to the annotations) that 
enable the recording of trace information

Code Annotations
- Our DSL provides code annotations that define the recording of the 
execution behavior, as well as the recording of arbitrary intermediate data 

Application
- Our DSL approach facilitates rapid prototyping, debugging and profiling of 
parallel programs

Code View : Serves as tool for the development, as well as a visual element, which color encodes and highlights source code corresponding to selected elements

CODE VIEW DATA VISUALIZATION VIEW DOMAIN VIEW

Data Visualization View: Shows visualizations of arbitrary intermediate data, local and global memory accesses and different control flow, using the well-known 
D3 framework [3].
Domain View : A specialized view that can be used to show the output of a certain domain and that can be linked with the other views.

View Linking: The different views automatically expose their properties within the interface of our tool in order to facilitate their visual linking. 


