
Towards Visual Exploration of Parallel Programs
 using a Domain-specific Language

CONTACT tobias.da.klein@gmail.com

LINKED VIEWS & VISUAL EXPLORATION

peter.rautek@kaust.edu.sa

REFERENCES

MOTIVATION & APPROACH

DOMAIN SPECFIC LANGUAGE INTERMEDIATE DATA VISUALIZATION

Peter Rautek, Stefan Bruckner, M. Eduard Gröller, and Markus Hadwiger. ViSlang: A system for interpreted domain-specific languages for scientific visualization.
IEEE Transactions on Visualization and Computer Graphics (Proc. SCIVIS ’14), 20(12):2388-2396, 2014.

[2]

Traditional analysis tools usually read back hardware counters and
display statistics that correspond to the question ”What is going wrong“.
In contrast to these tools, the aim of this work [1] is to utilize
visualizations that allow programmers to quickly test their
hypotheses on ”Why is something going wrong“.

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (Proc. InfoVis ’11), 17(12):2301-2309, 2011.

[3]

The execution of parallel programs is often
considered as a black box, where only input and
output is known, but only little is displayed about the
execution of the code itself.

However, knowledge about the execution behavior
is crucial for the understanding, correctness and
especially for the performance of the
implementation.

INPUT

OUTPUT

?OpenCL

10

20

30

50

40

10 20 30 5040 10 20 30 5040

12
8

8 4

12
8

8 4

12
8

8 4

12
8

8 4

0 1 2 3 4 5 6 7

...

...

OpenCL

Stefan Bruckner Eduard Gröller Markus Hadwiger Peter RautekTobias Klein

1) Vienna University of Technology 3) University of Bergen2) King Abdullah University of Science & Technology

1,2 13 2 2

[1] Tobias Klein. Towards interactive visual exploration of massively parallel programs using a domain-specific language.
Talk at NVIDIA GPU Technology Conference (GTC) , 2016.

Domain-specific Language (DSL)
- We have developed a DSL, based on ViSlang [2], to rapidly develop parallel
programs and to analyze their execution behavior and interaction with the
underlying hardware through the aid of visualizations

Intermediate Data

spatial range

1.00

0.00

0.50

work items

combined

Intermediate Data Extraction
- This example demonstrates the usage
of code annotations to extract the
intermediate data (in this case: inter-
mediate values of a bilateral filter)
- Instead of manually inserting code to
extract the data, code annotations
provide a quicker and simpler solution

Data Visualizations
- The two images at the top show input
and output
- The images below show the filter values
corresponding to a certain pixel
- The graph at the bottom shows a 2D
representation of one horizontal snippet
of the filter values

Source-to-Source Compiler
- A compiler transforms programs, written in our DSL, to OpenCL programs
with additional instrumentations (corresponding to the annotations) that
enable the recording of trace information

Code Annotations
- Our DSL provides code annotations that define the recording of the
execution behavior, as well as the recording of arbitrary intermediate data

Application
- Our DSL approach facilitates rapid prototyping, debugging and profiling of
parallel programs

Code View : Serves as tool for the development, as well as a visual element, which color encodes and highlights source code corresponding to selected elements

CODE VIEW DATA VISUALIZATION VIEW DOMAIN VIEW

Data Visualization View: Shows visualizations of arbitrary intermediate data, local and global memory accesses and different control flow, using the well-known
D3 framework [3].
Domain View : A specialized view that can be used to show the output of a certain domain and that can be linked with the other views.

View Linking: The different views automatically expose their properties within the interface of our tool in order to facilitate their visual linking.

